File: pseudo_type_info.m

package info (click to toggle)
mercury 0.10.1-3
  • links: PTS
  • area: main
  • in suites: woody
  • size: 21,984 kB
  • ctags: 11,923
  • sloc: objc: 187,634; ansic: 66,107; sh: 7,570; lisp: 1,568; cpp: 1,337; makefile: 614; perl: 511; awk: 274; asm: 252; exp: 32; xml: 12; fortran: 3; csh: 1
file content (211 lines) | stat: -rw-r--r-- 6,883 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
%---------------------------------------------------------------------------%
% Copyright (C) 1996-2000 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% This module generates representations for pseudo-type-infos.
%
% The documentation of the structures of pseudo-type-infos is in
% runtime/mercury_type_info.h; that file also contains a list of all
% the files that depend on such data structures.
%
% Authors: trd, zs.
%
%---------------------------------------------------------------------------%

:- module pseudo_type_info.
:- interface.
:- import_module prog_data, rtti.
:- import_module list.

	% pseudo_type_info__construct_pseudo_type_info(Type,
	% 	NumUnivQTvars, ExistQVars, PseudoTypeInfo)
	%
	% Given a Mercury type (`Type'), this predicate returns an
	% representation of the pseudo type info for that type.
	%
	% NumUnivQTvars is either the number of universally quantified type
	% variables of the enclosing type (so that all universally quantified
	% variables in the type have numbers in the range [1..NumUnivQTvars],
	% or is the special value -1, meaning that all variables in the type
	% are universally quantified. ExistQVars is the list of existentially
	% quantified type variables of the constructor in question.

:- pred pseudo_type_info__construct_pseudo_type_info((type)::in,
	int::in, existq_tvars::in, pseudo_type_info::out) is det.

:- type pseudo_type_info
	--->	type_var(int)
			% This represents a type variable.
			% Type variables are numbered consecutively,
			% starting from 1.
	;	type_ctor_info(
			%
			% This represents a zero-arity type,
			% i.e. a type constructor with no arguments.
			%
			rtti_type_id
		)
	;	type_info(
			%
			% This represents a type with arity > zero,
			% i.e. a type constructor applied to some arguments.
			% The argument list should not be empty.
			%
			rtti_type_id,
			list(pseudo_type_info)
		)
	;	higher_order_type_info(
			%
			% This represents a higher-order or tuple type.
			% The rtti_type_id field will be pred/0,
			% func/0 or tuple/0; the real arity is 
			% given in the arity field.
			%
			rtti_type_id,
			arity,
			list(pseudo_type_info)
		)
	.

%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%

:- implementation.

:- import_module prog_util, type_util.
:- import_module int, list, term, std_util, require.

%---------------------------------------------------------------------------%

pseudo_type_info__construct_pseudo_type_info(Type, NumUnivQTvars,
		ExistQTvars, Pseudo) :-
	(
		type_to_type_id(Type, TypeId, TypeArgs0)
	->
		(
			% The argument to typeclass_info types is not
			% a type - it encodes the class constraint.
			% So we replace the argument with type `void'.
			mercury_private_builtin_module(PrivateBuiltin),
			TypeId = qualified(PrivateBuiltin, TName) - 1,
			( TName = "typeclass_info"
			; TName = "base_typeclass_info"
			)
		->
			construct_type(unqualified("void") - 0, [], ArgType),
			TypeArgs = [ArgType]
		;
			TypeArgs = TypeArgs0
		),
		(
			% For higher order types: they all refer to the
			% defined pred_0 type_ctor_info, have an extra
			% argument for their real arity, and then type
			% arguments according to their types.
			% Tuples are similar -- they use the tuple_0
			% type_ctor_info.
			% polymorphism.m has a detailed explanation.
			% XXX polymorphism.m does not have a
			% detailed explanation.
			( type_is_higher_order(Type, _, _, _) ->
				TypeName = "pred"
			; type_is_tuple(Type, _) ->
				TypeName = "tuple"
			;
				fail
			)
		->
			TypeModule = unqualified(""),
			Arity = 0,
			RttiTypeId = rtti_type_id(TypeModule, TypeName, Arity),
			TypeId = _QualTypeName - RealArity,
			pseudo_type_info__generate_args(TypeArgs,
				NumUnivQTvars, ExistQTvars, PseudoArgs),
			Pseudo = higher_order_type_info(RttiTypeId, RealArity,
				PseudoArgs)
		;
			TypeId = QualTypeName - Arity,
			unqualify_name(QualTypeName, TypeName),
			sym_name_get_module_name(QualTypeName, unqualified(""),
					TypeModule),
			RttiTypeId = rtti_type_id(TypeModule, TypeName, Arity),
			pseudo_type_info__generate_args(TypeArgs,
				NumUnivQTvars, ExistQTvars, PseudoArgs),
			( PseudoArgs = [] ->
				Pseudo = type_ctor_info(RttiTypeId)
			;
				Pseudo = type_info(RttiTypeId, PseudoArgs)
			)
		)
	;
		type_util__var(Type, Var)
	->
			% In the case of a type variable, we need to assign a
			% variable number *for this constructor*, i.e. taking
			% only the existentially quantified variables of
			% this constructor (and not those of other functors in
			% the same type) into account.

			% XXX term__var_to_int doesn't guarantee anything
			% about the ints returned (other than that they be
			% distinct for different variables), but here we are
			% relying more, specifically, on the integers being
			% allocated densely (i.e. the first N vars get integers
			% 1 to N).
		term__var_to_int(Var, VarInt0),
		(
			( VarInt0 =< NumUnivQTvars
			; NumUnivQTvars < 0
			)
		->
				% This is a universally quantified variable.
			VarInt = VarInt0
		;
				% It is existentially quantified.
			(
				list__nth_member_search(ExistQTvars,
					Var, ExistNum0)
			->
				VarInt = ExistNum0 +
				pseudo_type_info__pseudo_typeinfo_exist_var_base
			;
				error("construct_pseudo_type_info: var not in list")
			)
		),
		require(VarInt =< pseudo_type_info__pseudo_typeinfo_max_var,
			"type_ctor_layout: type variable representation exceeds limit"),
		Pseudo = type_var(VarInt)
	;
		error("type_ctor_layout: type neither var nor non-var")
	).

:- pred pseudo_type_info__generate_args(list(type)::in,
		int::in, existq_tvars::in, list(pseudo_type_info)::out) is det.

pseudo_type_info__generate_args(TypeArgs, NumUnivQTvars, ExistQTvars,
		PseudoArgs) :-
	list__map((pred(T::in, P::out) is det :-
		pseudo_type_info__construct_pseudo_type_info(
			T, NumUnivQTvars, ExistQTvars, P)
	), TypeArgs, PseudoArgs).

%---------------------------------------------------------------------------%

	% This number corresponds to MR_PSEUDOTYPEINFO_MAX_VAR in
	% runtime/mercury_type_info.h, and must be kept in sync with it.
	% The documentation is located there as well.

:- func pseudo_type_info__pseudo_typeinfo_max_var = int.

pseudo_type_info__pseudo_typeinfo_max_var = 1024.

	% This number corresponds to MR_PSEUDOTYPEINFO_EXIST_VAR_BASE in
	% runtime/mercury_type_info.h, and must be kept in sync with it.
	% The documentation is located there as well.
:- func pseudo_type_info__pseudo_typeinfo_exist_var_base = int.

pseudo_type_info__pseudo_typeinfo_exist_var_base = 512.

%---------------------------------------------------------------------------%