1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
|
%-----------------------------------------------------------------------------%
% Copyright (C) 1997-2000 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% term_errors.m
% Main author: crs.
%
% This module prints out the various error messages that are produced by
% the various modules of termination analysis.
%
%-----------------------------------------------------------------------------%
:- module term_errors.
:- interface.
:- import_module hlds_module, hlds_pred, prog_data.
:- import_module io, bag, std_util, list, assoc_list.
:- type termination_error
---> pragma_foreign_code
% The analysis result depends on the change constant
% of a piece of pragma foreign code, (which cannot be
% obtained without analyzing the foreign code, which is
% something we cannot do).
% Valid in both passes.
; imported_pred
% The SCC contains some imported procedures,
% whose code is not accessible.
; can_loop_proc_called(pred_proc_id, pred_proc_id)
% can_loop_proc_called(Caller, Callee, Context)
% The call from Caller to Callee at the associated
% context is to a procedure (Callee) whose termination
% info is set to can_loop.
% Although this error does not prevent us from
% producing argument size information, it would
% prevent us from proving termination.
% We look for this error in pass 1; if we find it,
% we do not perform pass 2.
; horder_args(pred_proc_id, pred_proc_id)
% horder_args(Caller, Callee, Context)
% The call from Caller to Callee at the associated
% context has some arguments of a higher order type.
% Valid in both passes.
; horder_call
% horder_call
% There is a higher order call at the associated
% context.
% Valid in both passes.
; inf_termination_const(pred_proc_id, pred_proc_id)
% inf_termination_const(Caller, Callee, Context)
% The call from Caller to Callee at the associated
% context is to a procedure (Callee) whose arg size
% info is set to infinite.
% Valid in both passes.
; not_subset(pred_proc_id, bag(prog_var), bag(prog_var))
% not_subset(Proc, SupplierVariables, InHeadVariables)
% This error occurs when the bag of active variables
% is not a subset of the input head variables.
% Valid error only in pass 1.
; inf_call(pred_proc_id, pred_proc_id)
% inf_call(Caller, Callee)
% The call from Caller to Callee at the associated
% context has infinite weight.
% Valid error only in pass 2.
; cycle(pred_proc_id, assoc_list(pred_proc_id, prog_context))
% cycle(StartPPId, CallSites)
% In the cycle of calls starting at StartPPId and
% going through the named call sites may be an
% infinite loop.
% Valid error only in pass 2.
; no_eqns
% There are no equations in this SCC.
% This has 2 possible causes. (1) If the predicate has
% no output arguments, no equations will be created
% for them. The change constant of the predicate is
% undefined, but it will also never be used.
% (2) If the procedure is a builtin predicate, with
% an empty body, traversal cannot create any equations.
% Valid error only in pass 1.
; too_many_paths
% There are too many distinct paths to be analyzed.
% Valid in both passes (which analyze different sets
% of paths).
; solver_failed
% The solver could not find finite termination
% constants for the procedures in the SCC.
% Valid only in pass 1.
; is_builtin(pred_id)
% The termination constant of the given builtin is
% set to infinity; this happens when the type of at
% least one output argument permits a norm greater
% than zero.
; does_not_term_pragma(pred_id).
% The given procedure has a does_not_terminate pragma.
:- type term_errors__error == pair(prog_context, termination_error).
:- pred term_errors__report_term_errors(list(pred_proc_id)::in,
list(term_errors__error)::in, module_info::in,
io__state::di, io__state::uo) is det.
% An error is considered an indirect error if it is due either to a
% language feature we cannot analyze or due to an error in another part
% of the code. By default, we do not issue warnings about indirect errors,
% since in the first case, the programmer cannot do anything about it,
% and in the second case, the piece of code that the programmer *can* do
% something about is not this piece.
:- pred indirect_error(term_errors__termination_error).
:- mode indirect_error(in) is semidet.
:- implementation.
:- import_module hlds_out, prog_out, passes_aux, error_util.
:- import_module term, varset.
:- import_module mercury_to_mercury, term_util, options, globals.
:- import_module bool, int, string, map, bag, require.
indirect_error(horder_call).
indirect_error(pragma_foreign_code).
indirect_error(imported_pred).
indirect_error(can_loop_proc_called(_, _)).
indirect_error(horder_args(_, _)).
indirect_error(does_not_term_pragma(_)).
term_errors__report_term_errors(SCC, Errors, Module) -->
{ get_context_from_scc(SCC, Module, Context) },
( { SCC = [PPId] } ->
{ Pieces0 = [words("Termination of")] },
{ error_util__describe_one_proc_name(Module, PPId, PredName) },
{ list__append(Pieces0, [fixed(PredName)], Pieces1) },
{ Single = yes(PPId) }
;
{ Pieces0 = [words("Termination of the mutually recursive procedures")] },
{ error_util__describe_several_proc_names(Module, SCC,
ProcNamePieces) },
{ list__append(Pieces0, ProcNamePieces, Pieces1) },
{ Single = no }
),
(
{ Errors = [] },
% XXX this should never happen
% XXX but for some reason, it often does
% { error("empty list of errors") }
{ Pieces2 = [words("not proven, for unknown reason(s).")] },
{ list__append(Pieces1, Pieces2, Pieces) },
write_error_pieces(Context, 0, Pieces)
;
{ Errors = [Error] },
{ Pieces2 = [words("not proven for the following reason:")] },
{ list__append(Pieces1, Pieces2, Pieces) },
write_error_pieces(Context, 0, Pieces),
term_errors__output_error(Error, Single, no, 0, Module)
;
{ Errors = [_, _ | _] },
{ Pieces2 = [words("not proven for the following reasons:")] },
{ list__append(Pieces1, Pieces2, Pieces) },
write_error_pieces(Context, 0, Pieces),
term_errors__output_errors(Errors, Single, 1, 0, Module)
).
:- pred term_errors__report_arg_size_errors(list(pred_proc_id)::in,
list(term_errors__error)::in, module_info::in,
io__state::di, io__state::uo) is det.
term_errors__report_arg_size_errors(SCC, Errors, Module) -->
{ get_context_from_scc(SCC, Module, Context) },
( { SCC = [PPId] } ->
{ Pieces0 = [words("Termination constant of")] },
{ error_util__describe_one_proc_name(Module, PPId, ProcName) },
{ list__append(Pieces0, [fixed(ProcName)], Pieces1) },
{ Single = yes(PPId) }
;
{ Pieces0 = [words("Termination constants"),
words("of the mutually recursive procedures")] },
{ error_util__describe_several_proc_names(Module, SCC,
ProcNamePieces) },
{ list__append(Pieces0, ProcNamePieces, Pieces1) },
{ Single = no }
),
{ Piece2 = words("set to infinity for the following") },
(
{ Errors = [] },
{ error("empty list of errors") }
;
{ Errors = [Error] },
{ Piece3 = words("reason:") },
{ list__append(Pieces1, [Piece2, Piece3], Pieces) },
write_error_pieces(Context, 0, Pieces),
term_errors__output_error(Error, Single, no, 0, Module)
;
{ Errors = [_, _ | _] },
{ Piece3 = words("reasons:") },
{ list__append(Pieces1, [Piece2, Piece3], Pieces) },
write_error_pieces(Context, 0, Pieces),
term_errors__output_errors(Errors, Single, 1, 0, Module)
).
:- pred term_errors__output_errors(list(term_errors__error)::in,
maybe(pred_proc_id)::in, int::in, int::in, module_info::in,
io__state::di, io__state::uo) is det.
term_errors__output_errors([], _, _, _, _) --> [].
term_errors__output_errors([Error | Errors], Single, ErrNum0, Indent, Module)
-->
term_errors__output_error(Error, Single, yes(ErrNum0), Indent, Module),
{ ErrNum1 is ErrNum0 + 1 },
term_errors__output_errors(Errors, Single, ErrNum1, Indent, Module).
:- pred term_errors__output_error(term_errors__error::in,
maybe(pred_proc_id)::in, maybe(int)::in, int::in, module_info::in,
io__state::di, io__state::uo) is det.
term_errors__output_error(Context - Error, Single, ErrorNum, Indent, Module) -->
{ term_errors__description(Error, Single, Module, Pieces0, Reason) },
{ ErrorNum = yes(N) ->
string__int_to_string(N, Nstr),
string__append_list(["Reason ", Nstr, ":"], Preamble),
Pieces = [fixed(Preamble) | Pieces0]
;
Pieces = Pieces0
},
write_error_pieces(Context, Indent, Pieces),
( { Reason = yes(InfArgSizePPId) } ->
{ lookup_proc_arg_size_info(Module, InfArgSizePPId, ArgSize) },
( { ArgSize = yes(infinite(ArgSizeErrors)) } ->
% XXX the next line is cheating
{ ArgSizePPIdSCC = [InfArgSizePPId] },
term_errors__report_arg_size_errors(ArgSizePPIdSCC,
ArgSizeErrors, Module)
;
{ error("inf arg size procedure does not have inf arg size") }
)
;
[]
).
:- pred term_errors__description(termination_error::in,
maybe(pred_proc_id)::in, module_info::in, list(format_component)::out,
maybe(pred_proc_id)::out) is det.
term_errors__description(horder_call, _, _, Pieces, no) :-
Pieces = [words("It contains a higher order call.")].
term_errors__description(pragma_foreign_code, _, _, Pieces, no) :-
Pieces = [words("It depends on the properties of"),
words("foreign language code included via a"),
fixed("`:- pragma c_code'"),
words("or"),
fixed("`:- pragma foreign'"),
words("declaration.")].
term_errors__description(inf_call(CallerPPId, CalleePPId),
Single, Module, Pieces, no) :-
(
Single = yes(PPId),
require(unify(PPId, CallerPPId), "caller outside this SCC"),
Piece1 = words("It")
;
Single = no,
error_util__describe_one_proc_name(Module, CallerPPId,
ProcName),
Piece1 = fixed(ProcName)
),
Piece2 = words("calls"),
error_util__describe_one_proc_name(Module, CalleePPId, CalleePiece),
Pieces3 = [words("with an unbounded increase"),
words("in the size of the input arguments.")],
Pieces = [Piece1, Piece2, fixed(CalleePiece) | Pieces3].
term_errors__description(can_loop_proc_called(CallerPPId, CalleePPId),
Single, Module, Pieces, no) :-
(
Single = yes(PPId),
require(unify(PPId, CallerPPId), "caller outside this SCC"),
Piece1 = words("It")
;
Single = no,
error_util__describe_one_proc_name(Module, CallerPPId,
ProcName),
Piece1 = fixed(ProcName)
),
Piece2 = words("calls"),
error_util__describe_one_proc_name(Module, CalleePPId, CalleePiece),
Pieces3 = [words("which could not be proven to terminate.")],
Pieces = [Piece1, Piece2, fixed(CalleePiece) | Pieces3].
term_errors__description(imported_pred, _, _, Pieces, no) :-
Pieces = [words("It contains one or more"),
words("predicates and/or functions"),
words("imported from another module.")].
term_errors__description(horder_args(CallerPPId, CalleePPId), Single, Module,
Pieces, no) :-
(
Single = yes(PPId),
require(unify(PPId, CallerPPId), "caller outside this SCC"),
Piece1 = words("It")
;
Single = no,
error_util__describe_one_proc_name(Module, CallerPPId,
ProcName),
Piece1 = fixed(ProcName)
),
Piece2 = words("calls"),
error_util__describe_one_proc_name(Module, CalleePPId, CalleePiece),
Pieces3 = [words("with one or more higher order arguments.")],
Pieces = [Piece1, Piece2, fixed(CalleePiece) | Pieces3].
term_errors__description(inf_termination_const(CallerPPId, CalleePPId),
Single, Module, Pieces, yes(CalleePPId)) :-
(
Single = yes(PPId),
require(unify(PPId, CallerPPId), "caller outside this SCC"),
Piece1 = words("It")
;
Single = no,
error_util__describe_one_proc_name(Module, CallerPPId,
ProcName),
Piece1 = fixed(ProcName)
),
Piece2 = words("calls"),
error_util__describe_one_proc_name(Module, CalleePPId, CalleePiece),
Pieces3 = [words("which has a termination constant of infinity.")],
Pieces = [Piece1, Piece2, fixed(CalleePiece) | Pieces3].
term_errors__description(not_subset(ProcPPId, OutputSuppliers, HeadVars),
Single, Module, Pieces, no) :-
(
Single = yes(PPId),
( PPId = ProcPPId ->
Pieces1 = [words("The set of"),
words("its output supplier variables")]
;
% XXX this should never happen (but it does)
% error("not_subset outside this SCC"),
error_util__describe_one_proc_name(Module, ProcPPId,
PPIdPiece),
Pieces1 = [words("The set of"),
words("output supplier variables of"),
fixed(PPIdPiece)]
)
;
Single = no,
error_util__describe_one_proc_name(Module, ProcPPId,
PPIdPiece),
Pieces1 = [words("The set of output supplier variables of"),
fixed(PPIdPiece)]
),
ProcPPId = proc(PredId, ProcId),
module_info_pred_proc_info(Module, PredId, ProcId, _, ProcInfo),
proc_info_varset(ProcInfo, Varset),
term_errors_var_bag_description(OutputSuppliers, Varset,
OutputSuppliersNames),
list__map(lambda([OS::in, FOS::out] is det, (FOS = fixed(OS))),
OutputSuppliersNames, OutputSuppliersPieces),
Pieces3 = [words("is not a subset of the head variables")],
term_errors_var_bag_description(HeadVars, Varset, HeadVarsNames),
list__map(lambda([HV::in, FHV::out] is det, (FHV = fixed(HV))),
HeadVarsNames, HeadVarsPieces),
list__condense([Pieces1, OutputSuppliersPieces, Pieces3,
HeadVarsPieces], Pieces).
term_errors__description(cycle(_StartPPId, CallSites), _, Module, Pieces, no) :-
( CallSites = [DirectCall] ->
error_util__describe_one_call_site(Module, DirectCall, Site),
Pieces = [words("At the recursive call to"),
fixed(Site),
words("the arguments are"),
words("not guaranteed to decrease in size.")]
;
Pieces1 = [words("In the recursive cycle"),
words("through the calls to")],
error_util__describe_several_call_sites(Module, CallSites,
SitePieces),
Pieces2 = [words("the arguments are"),
words("not guaranteed to decrease in size.")],
list__condense([Pieces1, SitePieces, Pieces2], Pieces)
).
term_errors__description(too_many_paths, _, _, Pieces, no) :-
Pieces = [words("There are too many execution paths"),
words("for the analysis to process.")].
term_errors__description(no_eqns, _, _, Pieces, no) :-
Pieces = [words("The analysis was unable to form any constraints"),
words("between the arguments of this group of procedures.")].
term_errors__description(solver_failed, _, _, Pieces, no) :-
Pieces = [words("The solver found the constraints produced"),
words("by the analysis to be infeasible.")].
term_errors__description(is_builtin(_PredId), _Single, _, Pieces, no) :-
% XXX require(unify(Single, yes(_)), "builtin not alone in SCC"),
Pieces = [words("It is a builtin predicate.")].
term_errors__description(does_not_term_pragma(PredId), Single, Module,
Pieces, no) :-
Pieces1 = [words(
"There is a `:- pragma does_not_terminate' declaration for")],
(
Single = yes(PPId),
PPId = proc(SCCPredId, _),
require(unify(PredId, SCCPredId), "does not terminate pragma outside this SCC"),
Piece2 = words("it.")
;
Single = no,
error_util__describe_one_pred_name(Module, PredId,
Piece2Nodot),
string__append(Piece2Nodot, ".", Piece2Str),
Piece2 = fixed(Piece2Str)
),
list__append(Pieces1, [Piece2], Pieces).
%----------------------------------------------------------------------------%
:- pred term_errors_var_bag_description(bag(prog_var)::in, prog_varset::in,
list(string)::out) is det.
term_errors_var_bag_description(HeadVars, Varset, Pieces) :-
bag__to_assoc_list(HeadVars, HeadVarCountList),
term_errors_var_bag_description_2(HeadVarCountList, Varset, yes,
Pieces).
:- pred term_errors_var_bag_description_2(assoc_list(prog_var, int)::in,
prog_varset::in, bool::in, list(string)::out) is det.
term_errors_var_bag_description_2([], _, _, ["{}"]).
term_errors_var_bag_description_2([Var - Count | VarCounts], Varset, First,
[Piece | Pieces]) :-
varset__lookup_name(Varset, Var, VarName),
( Count > 1 ->
string__append(VarName, "*", VarCountPiece0),
string__int_to_string(Count, CountStr),
string__append(VarCountPiece0, CountStr, VarCountPiece)
;
VarCountPiece = VarName
),
( First = yes ->
string__append("{", VarCountPiece, Piece0)
;
Piece0 = VarCountPiece
),
( VarCounts = [] ->
string__append(Piece0, "}.", Piece),
Pieces = []
;
Piece = Piece0,
term_errors_var_bag_description_2(VarCounts, Varset, First,
Pieces)
).
%----------------------------------------------------------------------------%
%----------------------------------------------------------------------------%
|