File: tree.m

package info (click to toggle)
mercury 0.10.1-3
  • links: PTS
  • area: main
  • in suites: woody
  • size: 21,984 kB
  • ctags: 11,923
  • sloc: objc: 187,634; ansic: 66,107; sh: 7,570; lisp: 1,568; cpp: 1,337; makefile: 614; perl: 511; awk: 274; asm: 252; exp: 32; xml: 12; fortran: 3; csh: 1
file content (77 lines) | stat: -rw-r--r-- 2,474 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
%-----------------------------------------------------------------------------%
% Copyright (C) 1993-2000 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% Main authors: conway, fjh.
%
% This file provides a 'tree' data type.
% The code generater uses this to build a tree of instructions and
% then flatten them into a list.
%
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%

:- module tree.

%-----------------------------------------------------------------------------%

:- interface.
:- import_module list.
:- type tree(T)		--->	empty
			;	node(T)
			;	tree(tree(T), tree(T)).

:- func tree__flatten(tree(T)) =  list(T).

	% Make a tree from a list of trees.
:- func tree__list(list(tree(T))) = tree(T).

:- pred tree__flatten(tree(T), list(T)).
:- mode tree__flatten(in, out) is det.

:- pred tree__is_empty(tree(T)).
:- mode tree__is_empty(in) is semidet.

:- pred tree__tree_of_lists_is_empty(tree(list(T))).
:- mode tree__tree_of_lists_is_empty(in) is semidet.

%-----------------------------------------------------------------------------%

:- implementation.

tree__flatten(T) = L :- tree__flatten(T, L).

tree__list([]) = empty.
tree__list([X | Xs]) = tree(X, tree__list(Xs)).

tree__flatten(T, L) :-
	tree__flatten_2(T, [], L).

:- pred tree__flatten_2(tree(T), list(T), list(T)).
:- mode tree__flatten_2(in, in, out) is det.
	% flatten_2(T, L0, L) is true iff L is the list that results from
	% traversing T left-to-right depth-first, and then appending L0.
tree__flatten_2(empty, L, L).
tree__flatten_2(node(T), L, [T|L]).
tree__flatten_2(tree(T1,T2), L0, L) :-
	tree__flatten_2(T2, L0, L1),
	tree__flatten_2(T1, L1, L).

%-----------------------------------------------------------------------------%

tree__is_empty(empty).
tree__is_empty(tree(L, R)) :-
	tree__is_empty(L),
	tree__is_empty(R).

%-----------------------------------------------------------------------------%

tree__tree_of_lists_is_empty(empty).
tree__tree_of_lists_is_empty(node([])).
tree__tree_of_lists_is_empty(tree(L, R)) :-
	tree__tree_of_lists_is_empty(L),
	tree__tree_of_lists_is_empty(R).

%-----------------------------------------------------------------------------%