1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
|
%---------------------------------------------------------------------------%
% Copyright (C) 1996-2000 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% File: type_ctor_info.m.
% Authors: zs, trd.
%
% This module is responsible for the generation of the static type_ctor_info
% structures of the types defined by the current module. This includes the
% RTTI data structures that describe the representation of each type.
% These structures form the type_ctor_rep, type_num_functors, type_functors
% and type_layout fields of a type_ctor_info. This RTTI information is
% used for several purposes: examples include deep copy, tabling, and functor,
% arg and their cousins.
%
% Since it is possible for the type_ctor_info of a type local to the module
% not to be referred to anywhere in the module (and therefore, not to be
% referred to anywhere in the program), this module works in two stages.
% In the first stage, it inserts type_ctor_gen_info structures describing the
% type_ctor_infos of all the locally-defined types into the HLDS; some of
% these type_ctor_gen_infos are later eliminated by dead_proc_elim.m. The
% second stage then generates lower-level RTTI descriptions of type_ctor_infos
% from the surviving type_ctor_gen_infos. These can then be easily
% turned into either LLDS or MLDS.
%
% The documentation of the data structures built in this module is in
% runtime/mercury_type_info.h; that file also contains a list of all
% the files that depend on these data structures.
%
%---------------------------------------------------------------------------%
:- module type_ctor_info.
:- interface.
:- import_module hlds_module, rtti.
:- import_module list.
:- pred type_ctor_info__generate_hlds(module_info::in, module_info::out)
is det.
:- pred type_ctor_info__generate_rtti(module_info::in, list(rtti_data)::out)
is det.
:- implementation.
:- import_module rtti, pseudo_type_info.
:- import_module hlds_data, hlds_pred, hlds_out.
:- import_module make_tags, prog_data, prog_util, prog_out.
:- import_module code_util, special_pred, type_util, globals, options.
:- import_module builtin_ops.
:- import_module bool, string, int, map, std_util, assoc_list, require.
:- import_module term.
%---------------------------------------------------------------------------%
type_ctor_info__generate_hlds(ModuleInfo0, ModuleInfo) :-
module_info_name(ModuleInfo0, ModuleName),
module_info_types(ModuleInfo0, TypeTable),
map__keys(TypeTable, TypeIds),
type_ctor_info__gen_type_ctor_gen_infos(TypeIds, TypeTable, ModuleName,
ModuleInfo0, TypeCtorGenInfos),
module_info_set_type_ctor_gen_infos(ModuleInfo0, TypeCtorGenInfos,
ModuleInfo).
% Given a list of the ids of all the types in the type table,
% find the types defined in this module, and return a type_ctor_gen_info
% for each.
:- pred type_ctor_info__gen_type_ctor_gen_infos(list(type_id)::in,
type_table::in, module_name::in, module_info::in,
list(type_ctor_gen_info)::out) is det.
type_ctor_info__gen_type_ctor_gen_infos([], _, _, _, []).
type_ctor_info__gen_type_ctor_gen_infos([TypeId | TypeIds], TypeTable,
ModuleName, ModuleInfo, TypeCtorGenInfos) :-
type_ctor_info__gen_type_ctor_gen_infos(TypeIds, TypeTable, ModuleName,
ModuleInfo, TypeCtorGenInfos1),
TypeId = SymName - TypeArity,
(
SymName = qualified(TypeModuleName, TypeName),
(
TypeModuleName = ModuleName,
map__lookup(TypeTable, TypeId, TypeDefn),
hlds_data__get_type_defn_body(TypeDefn, TypeBody),
TypeBody \= abstract_type,
\+ type_id_has_hand_defined_rtti(TypeId)
->
type_ctor_info__gen_type_ctor_gen_info(TypeId,
TypeName, TypeArity, TypeDefn,
ModuleName, ModuleInfo, TypeCtorGenInfo),
TypeCtorGenInfos = [TypeCtorGenInfo | TypeCtorGenInfos1]
;
TypeCtorGenInfos = TypeCtorGenInfos1
)
;
SymName = unqualified(TypeName),
string__append_list(["unqualified type ", TypeName,
"found in type_ctor_info"], Msg),
error(Msg)
).
:- pred type_ctor_info__gen_type_ctor_gen_info(type_id::in, string::in,
int::in, hlds_type_defn::in, module_name::in, module_info::in,
type_ctor_gen_info::out) is det.
type_ctor_info__gen_type_ctor_gen_info(TypeId, TypeName, TypeArity, TypeDefn,
ModuleName, ModuleInfo, TypeCtorGenInfo) :-
hlds_data__get_type_defn_status(TypeDefn, Status),
module_info_globals(ModuleInfo, Globals),
module_info_get_special_pred_map(ModuleInfo, SpecMap),
globals__lookup_bool_option(Globals, special_preds, SpecialPreds),
(
(
SpecialPreds = yes
;
SpecialPreds = no,
hlds_data__get_type_defn_body(TypeDefn, Body),
Body = du_type(_, _, _, yes(_UserDefinedEquality))
)
->
map__lookup(SpecMap, unify - TypeId, UnifyPredId),
special_pred_mode_num(unify, UnifyProcInt),
proc_id_to_int(UnifyProcId, UnifyProcInt),
MaybeUnify = yes(proc(UnifyPredId, UnifyProcId)),
map__lookup(SpecMap, compare - TypeId, ComparePredId),
special_pred_mode_num(compare, CompareProcInt),
proc_id_to_int(CompareProcId, CompareProcInt),
MaybeCompare = yes(proc(ComparePredId, CompareProcId))
;
MaybeUnify = no,
MaybeCompare = no
),
TypeCtorGenInfo = type_ctor_gen_info(TypeId, ModuleName,
TypeName, TypeArity, Status, TypeDefn,
MaybeUnify, MaybeCompare, no, no, no).
%---------------------------------------------------------------------------%
type_ctor_info__generate_rtti(ModuleInfo, Tables) :-
module_info_type_ctor_gen_infos(ModuleInfo, TypeCtorGenInfos),
type_ctor_info__construct_type_ctor_infos(TypeCtorGenInfos,
ModuleInfo, [], Dynamic, [], Static0),
% The same pseudo_type_info may be generated in several
% places; we need to eliminate duplicates here, to avoid
% duplicate definition errors in the generated C code.
Static = list__remove_dups(Static0),
list__append(Dynamic, Static, Tables).
:- pred type_ctor_info__construct_type_ctor_infos(
list(type_ctor_gen_info)::in, module_info::in,
list(rtti_data)::in, list(rtti_data)::out,
list(rtti_data)::in, list(rtti_data)::out) is det.
type_ctor_info__construct_type_ctor_infos([], _ModuleInfo,
Dynamic, Dynamic, Static, Static).
type_ctor_info__construct_type_ctor_infos(
[TypeCtorGenInfo | TypeCtorGenInfos], ModuleInfo,
Dynamic0, Dynamic, Static0, Static) :-
type_ctor_info__construct_type_ctor_info(TypeCtorGenInfo,
ModuleInfo, TypeCtorCModule, TypeCtorTables),
Dynamic1 = [TypeCtorCModule | Dynamic0],
list__append(TypeCtorTables, Static0, Static1),
type_ctor_info__construct_type_ctor_infos(TypeCtorGenInfos,
ModuleInfo, Dynamic1, Dynamic, Static1, Static).
:- pred type_ctor_info__construct_type_ctor_info(type_ctor_gen_info::in,
module_info::in, rtti_data::out, list(rtti_data)::out) is det.
type_ctor_info__construct_type_ctor_info(TypeCtorGenInfo,
ModuleInfo, TypeCtorData, TypeCtorTables) :-
TypeCtorGenInfo = type_ctor_gen_info(_TypeId, ModuleName, TypeName,
TypeArity, _Status, HldsDefn,
MaybeUnify, MaybeCompare,
MaybeSolver, MaybeInit, MaybePretty),
type_ctor_info__make_proc_label(MaybeUnify, ModuleInfo, Unify),
type_ctor_info__make_proc_label(MaybeCompare, ModuleInfo, Compare),
type_ctor_info__make_proc_label(MaybeSolver, ModuleInfo, Solver),
type_ctor_info__make_proc_label(MaybeInit, ModuleInfo, Init),
type_ctor_info__make_proc_label(MaybePretty, ModuleInfo, Pretty),
module_info_globals(ModuleInfo, Globals),
globals__lookup_bool_option(Globals, type_layout, TypeLayoutOption),
( TypeLayoutOption = yes ->
type_ctor_info__gen_layout_info(ModuleName,
TypeName, TypeArity, HldsDefn, ModuleInfo,
TypeCtorRep, NumFunctors, MaybeFunctors, MaybeLayout,
NumPtags, TypeCtorTables)
;
% This is for measuring code size only; if this path
% is ever taken, the resulting executable will not
% work.
TypeCtorRep = unknown,
NumPtags = -1,
NumFunctors = -1,
MaybeFunctors = no_functors,
MaybeLayout = no_layout,
TypeCtorTables = []
),
Version = type_ctor_info_rtti_version,
RttiTypeId = rtti_type_id(ModuleName, TypeName, TypeArity),
TypeCtorData = type_ctor_info(RttiTypeId, Unify, Compare,
TypeCtorRep, Solver, Init, Version, NumPtags, NumFunctors,
MaybeFunctors, MaybeLayout, no, Pretty).
:- pred type_ctor_info__make_proc_label(maybe(pred_proc_id)::in,
module_info::in, maybe(rtti_proc_label)::out) is det.
type_ctor_info__make_proc_label(no, _ModuleInfo, no).
type_ctor_info__make_proc_label(yes(PredProcId), ModuleInfo, yes(ProcLabel)) :-
PredProcId = proc(PredId, ProcId),
ProcLabel = rtti__make_proc_label(ModuleInfo, PredId, ProcId).
%---------------------------------------------------------------------------%
% The version of the RTTI data structures -- useful for bootstrapping.
% If you write runtime code that checks this version number and
% can at least handle the previous version of the data
% structure, it makes it easier to bootstrap changes to the data
% structures used for RTTI.
%
% This number should be kept in sync with MR_RTTI_VERSION in
% runtime/mercury_type_info.h. This means you need to update
% the handwritten type_ctor_info structures and the code in the
% runtime that uses RTTI to conform to whatever changes the new
% version introduces.
:- func type_ctor_info_rtti_version = int.
type_ctor_info_rtti_version = 4.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
% Generate RTTI layout information for the named type.
:- pred type_ctor_info__gen_layout_info(module_name::in,
string::in, int::in, hlds_type_defn::in,
module_info::in, type_ctor_rep::out, int::out,
type_ctor_functors_info::out, type_ctor_layout_info::out,
int::out, list(rtti_data)::out) is det.
type_ctor_info__gen_layout_info(ModuleName, TypeName, TypeArity, HldsDefn,
ModuleInfo, TypeCtorRep, NumFunctors,
FunctorsInfo, LayoutInfo, NumPtags, TypeTables) :-
module_info_globals(ModuleInfo, Globals),
hlds_data__get_type_defn_body(HldsDefn, TypeBody),
(
TypeBody = uu_type(_Alts),
error("type_ctor_layout: sorry, undiscriminated union unimplemented\n")
;
TypeBody = abstract_type,
TypeCtorRep = unknown,
NumFunctors = -1,
FunctorsInfo = no_functors,
LayoutInfo = no_layout,
TypeTables = [],
NumPtags = -1
;
TypeBody = eqv_type(Type),
( term__is_ground(Type) ->
TypeCtorRep = equiv(equiv_type_is_ground)
;
TypeCtorRep = equiv(equiv_type_is_not_ground)
),
NumFunctors = -1,
FunctorsInfo = no_functors,
UnivTvars = TypeArity,
% There can be no existentially typed args to an
% equivalence.
ExistTvars = [],
make_pseudo_type_info_and_tables(Type,
UnivTvars, ExistTvars, PseudoTypeInfoRttiData,
[], TypeTables),
LayoutInfo = equiv_layout(PseudoTypeInfoRttiData),
NumPtags = -1
;
TypeBody = du_type(Ctors, ConsTagMap, Enum, EqualityPred),
(
EqualityPred = yes(_),
EqualityAxioms = user_defined
;
EqualityPred = no,
EqualityAxioms = standard
),
list__length(Ctors, NumFunctors),
RttiTypeId = rtti_type_id(ModuleName, TypeName, TypeArity),
(
Enum = yes,
TypeCtorRep = enum(EqualityAxioms),
type_ctor_info__make_enum_tables(Ctors, ConsTagMap,
RttiTypeId, TypeTables,
FunctorsInfo, LayoutInfo),
NumPtags = -1
;
Enum = no,
globals__lookup_bool_option(Globals,
unboxed_no_tag_types, NoTagOption),
(
NoTagOption = yes,
type_constructors_are_no_tag_type(Ctors,
Name, ArgType, MaybeArgName)
->
( term__is_ground(ArgType) ->
Inst = equiv_type_is_ground
;
Inst = equiv_type_is_not_ground
),
TypeCtorRep = notag(EqualityAxioms, Inst),
type_ctor_info__make_notag_tables(Name,
ArgType, MaybeArgName, RttiTypeId,
TypeTables, FunctorsInfo, LayoutInfo),
NumPtags = -1
;
globals__lookup_int_option(Globals,
num_tag_bits, NumTagBits),
int__pow(2, NumTagBits, NumTags),
MaxPtag = NumTags - 1,
TypeCtorRep = du(EqualityAxioms),
type_ctor_info__make_du_tables(Ctors,
ConsTagMap, MaxPtag, RttiTypeId,
ModuleInfo,
TypeTables, NumPtags,
FunctorsInfo, LayoutInfo)
)
)
).
% Construct an rtti_data for a pseudo_type_info,
% and also construct rtti_data definitions for all of the pseudo_type_infos
% that it references and prepend them to the given list of rtti_data tables.
:- pred make_pseudo_type_info_and_tables(type, int, existq_tvars, rtti_data,
list(rtti_data), list(rtti_data)).
:- mode make_pseudo_type_info_and_tables(in, in, in, out, in, out) is det.
make_pseudo_type_info_and_tables(Type, UnivTvars, ExistTvars, RttiData,
Tables0, Tables) :-
pseudo_type_info__construct_pseudo_type_info(Type,
UnivTvars, ExistTvars, PseudoTypeInfo),
RttiData = pseudo_type_info(PseudoTypeInfo),
make_pseudo_type_info_tables(PseudoTypeInfo,
Tables0, Tables).
% Construct rtti_data definitions for all of the non-atomic subterms
% of a pseudo_type_info, and prepend them to the given
% list of rtti_data tables.
:- pred make_pseudo_type_info_tables(pseudo_type_info,
list(rtti_data), list(rtti_data)).
:- mode make_pseudo_type_info_tables(in, in, out) is det.
make_pseudo_type_info_tables(type_var(_), Tables, Tables).
make_pseudo_type_info_tables(type_ctor_info(_), Tables, Tables).
make_pseudo_type_info_tables(TypeInfo, Tables0, Tables) :-
TypeInfo = type_info(_, Args),
Tables1 = [pseudo_type_info(TypeInfo) | Tables0],
list__foldl(make_pseudo_type_info_tables, Args, Tables1, Tables).
make_pseudo_type_info_tables(HO_TypeInfo, Tables0, Tables) :-
HO_TypeInfo = higher_order_type_info(_, _, Args),
Tables1 = [pseudo_type_info(HO_TypeInfo) | Tables0],
list__foldl(make_pseudo_type_info_tables, Args, Tables1, Tables).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
% Make the functor and notag tables for a notag type.
:- pred type_ctor_info__make_notag_tables(sym_name::in, (type)::in,
maybe(string)::in, rtti_type_id::in, list(rtti_data)::out,
type_ctor_functors_info::out, type_ctor_layout_info::out) is det.
type_ctor_info__make_notag_tables(SymName, ArgType, MaybeArgName, RttiTypeId,
TypeTables, FunctorsInfo, LayoutInfo) :-
unqualify_name(SymName, FunctorName),
RttiTypeId = rtti_type_id(_, _, UnivTvars),
% There can be no existentially typed args to the functor
% in a notag type.
ExistTvars = [],
make_pseudo_type_info_and_tables(ArgType, UnivTvars, ExistTvars,
RttiData, [], Tables0),
FunctorDesc = notag_functor_desc(RttiTypeId, FunctorName, RttiData,
MaybeArgName),
FunctorRttiName = notag_functor_desc,
FunctorsInfo = notag_functors(FunctorRttiName),
LayoutInfo = notag_layout(FunctorRttiName),
TypeTables = [FunctorDesc | Tables0].
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- type name_sort_info == assoc_list(pair(string, int), rtti_name).
% Make the functor and notag tables for an enum type.
:- pred type_ctor_info__make_enum_tables(list(constructor)::in,
cons_tag_values::in, rtti_type_id::in, list(rtti_data)::out,
type_ctor_functors_info::out, type_ctor_layout_info::out) is det.
type_ctor_info__make_enum_tables(Ctors, ConsTagMap, RttiTypeId,
TypeTables, FunctorInfo, LayoutInfo) :-
type_ctor_info__make_enum_functor_tables(Ctors, 0, ConsTagMap,
RttiTypeId, FunctorDescs, OrdinalOrderRttiNames, SortInfo0),
list__sort(SortInfo0, SortInfo),
assoc_list__values(SortInfo, NameOrderedRttiNames),
NameOrderedTable = enum_name_ordered_table(RttiTypeId,
NameOrderedRttiNames),
NameOrderedTableRttiName = enum_name_ordered_table,
FunctorInfo = enum_functors(NameOrderedTableRttiName),
ValueOrderedTable = enum_value_ordered_table(RttiTypeId,
OrdinalOrderRttiNames),
ValueOrderedTableRttiName = enum_value_ordered_table,
LayoutInfo = enum_layout(ValueOrderedTableRttiName),
TypeTables = [NameOrderedTable, ValueOrderedTable | FunctorDescs].
% Create an enum_functor_desc structure for each functor in an enum type.
% The functors are given to us in ordinal order (since that's how the HLDS
% stored them), and that is how we return the list of rtti names of the
% enum_functor_desc structures; that way, it is directly usable in the type
% layout structure. We also return a structure that allows our caller to
% sort this list on functor name, which is how the type functors structure
% is constructed.
:- pred type_ctor_info__make_enum_functor_tables(list(constructor)::in,
int::in, cons_tag_values::in, rtti_type_id::in,
list(rtti_data)::out, list(rtti_name)::out,
name_sort_info::out) is det.
type_ctor_info__make_enum_functor_tables([], _, _, _, [], [], []).
type_ctor_info__make_enum_functor_tables([Functor | Functors], NextOrdinal0,
ConsTagMap, RttiTypeId,
FunctorDescs, RttiNames, SortInfo) :-
Functor = ctor(ExistTvars, Constraints, SymName, FunctorArgs),
require(unify(ExistTvars, []),
"existential arguments in functor in enum"),
require(unify(Constraints, []),
"class constraints on functor in enum"),
list__length(FunctorArgs, Arity),
require(unify(Arity, 0),
"functor in enum has nonzero arity"),
make_cons_id_from_qualified_sym_name(SymName, FunctorArgs, ConsId),
map__lookup(ConsTagMap, ConsId, ConsTag),
require(unify(ConsTag, int_constant(NextOrdinal0)),
"mismatch on constant assigned to functor in enum"),
unqualify_name(SymName, FunctorName),
FunctorDesc = enum_functor_desc(RttiTypeId, FunctorName, NextOrdinal0),
RttiName = enum_functor_desc(NextOrdinal0),
FunctorSortInfo = (FunctorName - 0) - RttiName,
type_ctor_info__make_enum_functor_tables(Functors, NextOrdinal0 + 1,
ConsTagMap, RttiTypeId, FunctorDescs1, RttiNames1, SortInfo1),
FunctorDescs = [FunctorDesc | FunctorDescs1],
RttiNames = [RttiName | RttiNames1],
SortInfo = [FunctorSortInfo | SortInfo1].
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- type tag_map == map(int, pair(sectag_locn, map(int, rtti_name))).
:- type tag_list == assoc_list(int, pair(sectag_locn, map(int, rtti_name))).
% Make the functor and notag tables for a du type.
:- pred type_ctor_info__make_du_tables(list(constructor)::in,
cons_tag_values::in, int::in, rtti_type_id::in, module_info::in,
list(rtti_data)::out, int::out,
type_ctor_functors_info::out, type_ctor_layout_info::out) is det.
type_ctor_info__make_du_tables(Ctors, ConsTagMap, MaxPtag, RttiTypeId,
ModuleInfo, TypeTables, NumPtags, FunctorInfo, LayoutInfo) :-
map__init(TagMap0),
type_ctor_info__make_du_functor_tables(Ctors, 0, ConsTagMap,
RttiTypeId, ModuleInfo,
FunctorDescs, SortInfo0, TagMap0, TagMap),
list__sort(SortInfo0, SortInfo),
assoc_list__values(SortInfo, NameOrderedRttiNames),
NameOrderedTable = du_name_ordered_table(RttiTypeId,
NameOrderedRttiNames),
NameOrderedTableRttiName = du_name_ordered_table,
FunctorInfo = du_functors(NameOrderedTableRttiName),
type_ctor_info__make_du_ptag_ordered_table(TagMap, MaxPtag,
RttiTypeId, ValueOrderedTableRttiName, ValueOrderedTables,
NumPtags),
LayoutInfo = du_layout(ValueOrderedTableRttiName),
list__append([NameOrderedTable | FunctorDescs], ValueOrderedTables,
TypeTables).
% Create an enum_functor_desc structure for each functor in a du type.
% Besides returning a list of the rtti names of their du_functor_desc
% structures, we return two other items of information. The SortInfo
% enables our caller to sort these rtti names on functor name and then arity,
% which is how the type functors structure is constructed. The TagMap
% groups the rttis into groups depending on their primary tags; this is
% how the type layout structure is constructed.
:- pred type_ctor_info__make_du_functor_tables(list(constructor)::in,
int::in, cons_tag_values::in, rtti_type_id::in, module_info::in,
list(rtti_data)::out, name_sort_info::out,
tag_map::in, tag_map::out) is det.
type_ctor_info__make_du_functor_tables([], _, _, _, _,
[], [], TagMap, TagMap).
type_ctor_info__make_du_functor_tables([Functor | Functors], Ordinal,
ConsTagMap, RttiTypeId, ModuleInfo,
Tables, SortInfo, TagMap0, TagMap) :-
Functor = ctor(ExistTvars, Constraints, SymName, FunctorArgs),
list__length(FunctorArgs, Arity),
unqualify_name(SymName, FunctorName),
RttiName = du_functor_desc(Ordinal),
make_cons_id_from_qualified_sym_name(SymName, FunctorArgs, ConsId),
map__lookup(ConsTagMap, ConsId, ConsTag),
( ConsTag = unshared_tag(ConsPtag) ->
Locn = sectag_none,
Ptag = ConsPtag,
Stag = 0,
type_ctor_info__update_tag_info(Ptag, Stag, Locn, RttiName,
TagMap0, TagMap1)
; ConsTag = shared_local_tag(ConsPtag, ConsStag) ->
Locn = sectag_local,
Ptag = ConsPtag,
Stag = ConsStag,
type_ctor_info__update_tag_info(Ptag, Stag, Locn, RttiName,
TagMap0, TagMap1)
; ConsTag = shared_remote_tag(ConsPtag, ConsStag) ->
Locn = sectag_remote,
Ptag = ConsPtag,
Stag = ConsStag,
type_ctor_info__update_tag_info(Ptag, Stag, Locn, RttiName,
TagMap0, TagMap1)
;
error("unexpected cons_tag for du function symbol")
),
type_ctor_info__generate_arg_info_tables(ModuleInfo,
RttiTypeId, Ordinal, FunctorArgs, ExistTvars,
MaybeArgNames,
ArgPseudoTypeInfoVector, FieldTables, ContainsVarBitVector),
( ExistTvars = [] ->
MaybeExistInfo = no,
ExistTables = []
;
module_info_classes(ModuleInfo, ClassTable),
type_ctor_info__generate_type_info_locns(ExistTvars,
Constraints, ClassTable, RttiTypeId, Ordinal,
ExistInfo, ExistTables),
MaybeExistInfo = yes(ExistInfo)
),
list__append(FieldTables, ExistTables, SubTables),
FunctorDesc = du_functor_desc(RttiTypeId, FunctorName, Ptag, Stag,
Locn, Ordinal, Arity, ContainsVarBitVector,
ArgPseudoTypeInfoVector, MaybeArgNames, MaybeExistInfo),
FunctorSortInfo = (FunctorName - Arity) - RttiName,
type_ctor_info__make_du_functor_tables(Functors, Ordinal + 1,
ConsTagMap, RttiTypeId, ModuleInfo,
Tables1, SortInfo1, TagMap1, TagMap),
list__append([FunctorDesc | SubTables], Tables1, Tables),
SortInfo = [FunctorSortInfo | SortInfo1].
% Generate the tables that describe the arguments of a functor.
:- pred type_ctor_info__generate_arg_info_tables(module_info::in,
rtti_type_id::in, int::in, list(constructor_arg)::in, existq_tvars::in,
maybe(rtti_name)::out, maybe(rtti_name)::out, list(rtti_data)::out,
int::out) is det.
type_ctor_info__generate_arg_info_tables(
ModuleInfo, RttiTypeId, Ordinal, Args, ExistTvars,
MaybeFieldNamesRttiName, MaybeFieldTypesRttiName, Tables,
ContainsVarBitVector) :-
RttiTypeId = rtti_type_id(_TypeModule, _TypeName, TypeArity),
type_ctor_info__generate_arg_infos(Args, TypeArity, ExistTvars,
ModuleInfo, MaybeArgNames, PseudoTypeInfos,
0, 0, ContainsVarBitVector, [], Tables0),
(
PseudoTypeInfos = [],
MaybeFieldTypesRttiName = no,
Tables1 = Tables0
;
PseudoTypeInfos = [_|_],
FieldTypesTable = field_types(RttiTypeId, Ordinal,
PseudoTypeInfos),
FieldTypesRttiName = field_types(Ordinal),
MaybeFieldTypesRttiName = yes(FieldTypesRttiName),
Tables1 = [FieldTypesTable | Tables0]
),
list__filter((lambda([MaybeName::in] is semidet, MaybeName = yes(_))),
MaybeArgNames, FieldNames),
(
FieldNames = [],
MaybeFieldNamesRttiName = no,
Tables = Tables1
;
FieldNames = [_|_],
FieldNameTable = field_names(RttiTypeId, Ordinal,
MaybeArgNames),
FieldNamesRttiName = field_names(Ordinal),
MaybeFieldNamesRttiName = yes(FieldNamesRttiName),
Tables = [FieldNameTable | Tables1]
).
% For each argument of a functor, return three items of information:
% its name (if any), a rtti_data for the pseudotypeinfo describing
% its type, and an indication whether the type
% contains variables or not. The last item is encoded as an integer
% which contains a 1 bit in the position given by 1 << N if argument N's type
% contains variables (assuming that arguments are numbered starting from zero).
% The number of bits in the integer is given by contains_var_bit_vector_size;
% arguments beyond this limit do not contribute to this bit vector.
:- pred type_ctor_info__generate_arg_infos(list(constructor_arg)::in,
int::in, existq_tvars::in, module_info::in, list(maybe(string))::out,
list(rtti_data)::out, int::in, int::in, int::out,
list(rtti_data)::in, list(rtti_data)::out) is det.
type_ctor_info__generate_arg_infos([], _, _, _, [], [],
_, ContainsVarBitVector, ContainsVarBitVector, Tables, Tables).
type_ctor_info__generate_arg_infos([MaybeArgSymName - ArgType | Args],
NumUnivTvars, ExistTvars, ModuleInfo,
[MaybeArgName | MaybeArgNames], [RttiData | RttiDatas],
ArgNum, ContainsVarBitVector0, ContainsVarBitVector,
Tables0, Tables) :-
(
MaybeArgSymName = yes(SymName),
unqualify_name(SymName, ArgName),
MaybeArgName = yes(ArgName)
;
MaybeArgSymName = no,
MaybeArgName = no
),
make_pseudo_type_info_and_tables(ArgType, NumUnivTvars, ExistTvars,
RttiData, Tables0, Tables1),
( term__is_ground(ArgType) ->
ContainsVarBitVector1 = ContainsVarBitVector0
;
( ArgNum >= contains_var_bit_vector_size - 1 ->
BitNum = contains_var_bit_vector_size - 1
;
BitNum = ArgNum
),
ContainsVarBitVector1 = ContainsVarBitVector0 \/ (1 << BitNum)
),
type_ctor_info__generate_arg_infos(Args, NumUnivTvars,
ExistTvars, ModuleInfo, MaybeArgNames, RttiDatas,
ArgNum + 1, ContainsVarBitVector1, ContainsVarBitVector,
Tables1, Tables).
% This function gives the size of the MR_du_functor_arg_type_contains_var
% field of the C type MR_DuFunctorDesc in bits.
:- func type_ctor_info__contains_var_bit_vector_size = int.
type_ctor_info__contains_var_bit_vector_size = 16.
% Construct the RTTI structures that record information about the locations
% of the typeinfos describing the types of the existentially typed arguments
% of a functor.
:- pred type_ctor_info__generate_type_info_locns(list(tvar)::in,
list(class_constraint)::in, class_table::in, rtti_type_id::in, int::in,
rtti_name::out, list(rtti_data)::out) is det.
type_ctor_info__generate_type_info_locns(ExistTvars, Constraints, ClassTable,
RttiTypeId, Ordinal, exist_info(Ordinal),
[ExistInfo, ExistLocns]) :-
list__map((pred(C::in, Ts::out) is det :- C = constraint(_, Ts)),
Constraints, ConstrainedTvars0),
list__condense(ConstrainedTvars0, ConstrainedTvars1),
term__vars_list(ConstrainedTvars1, ConstrainedTvars2),
list__delete_elems(ExistTvars, ConstrainedTvars2, UnconstrainedTvars),
% We do this to maintain the ordering of the type variables.
list__delete_elems(ExistTvars, UnconstrainedTvars, ConstrainedTvars),
map__init(LocnMap0),
list__foldl2((pred(T::in, N0::in, N::out, Lm0::in, Lm::out) is det :-
Locn = plain_typeinfo(N0),
map__det_insert(Lm0, T, Locn, Lm),
N = N0 + 1
), UnconstrainedTvars, 0, TIsPlain, LocnMap0, LocnMap1),
list__length(ExistTvars, AllTIs),
TIsInTCIs = AllTIs - TIsPlain,
list__foldl(
find_type_info_index(Constraints, ClassTable, TIsPlain),
ConstrainedTvars, LocnMap1, LocnMap),
list__length(Constraints, TCIs),
ExistInfo = exist_info(RttiTypeId, Ordinal,
TIsPlain, TIsInTCIs, TCIs, exist_locns(Ordinal)),
list__map((pred(Tvar::in, Locn::out) is det :-
map__lookup(LocnMap, Tvar, Locn)),
ExistTvars, Locns),
ExistLocns = exist_locns(RttiTypeId, Ordinal, Locns).
:- pred find_type_info_index(list(class_constraint)::in, class_table::in,
int::in, tvar::in, map(tvar, exist_typeinfo_locn)::in,
map(tvar, exist_typeinfo_locn)::out) is det.
find_type_info_index(Constraints, ClassTable, StartSlot, Tvar,
LocnMap0, LocnMap) :-
first_matching_type_class_info(Constraints, Tvar,
FirstConstraint, StartSlot, Slot, TypeInfoIndex),
FirstConstraint = constraint(ClassName, Args),
list__length(Args, ClassArity),
map__lookup(ClassTable, class_id(ClassName, ClassArity), ClassDefn),
ClassDefn = hlds_class_defn(_, SuperClasses, _, _, _, _, _),
list__length(SuperClasses, NumSuperClasses),
RealTypeInfoIndex = TypeInfoIndex + NumSuperClasses,
Locn = typeinfo_in_tci(Slot, RealTypeInfoIndex),
map__det_insert(LocnMap0, Tvar, Locn, LocnMap).
:- pred first_matching_type_class_info(list(class_constraint)::in, tvar::in,
class_constraint::out, int::in, int::out, int::out) is det.
first_matching_type_class_info([], _, _, _, _, _) :-
error("first_matching_type_class_info: not found").
first_matching_type_class_info([C|Cs], Tvar, MatchingConstraint, N0, N,
TypeInfoIndex) :-
C = constraint(_, Ts),
term__vars_list(Ts, TVs),
( list__nth_member_search(TVs, Tvar, Index) ->
N = N0,
MatchingConstraint = C,
TypeInfoIndex = Index
;
first_matching_type_class_info(Cs, Tvar, MatchingConstraint,
N0 + 1, N, TypeInfoIndex)
).
%---------------------------------------------------------------------------%
:- pred type_ctor_info__update_tag_info(int::in, int::in, sectag_locn::in,
rtti_name::in, tag_map::in, tag_map::out) is det.
type_ctor_info__update_tag_info(Ptag, Stag, Locn, RttiName, TagMap0, TagMap)
:-
( map__search(TagMap0, Ptag, OldLocn - OldSharerMap) ->
( Locn = sectag_none ->
error("unshared ptag shared after all")
; OldLocn = Locn ->
true
;
error("disagreement on sectag location for ptag")
),
map__det_insert(OldSharerMap, Stag, RttiName, NewSharerMap),
map__det_update(TagMap0, Ptag, Locn - NewSharerMap, TagMap)
;
map__init(NewSharerMap0),
map__det_insert(NewSharerMap0, Stag, RttiName, NewSharerMap),
map__det_insert(TagMap0, Ptag, Locn - NewSharerMap, TagMap)
).
:- pred type_ctor_info__make_du_ptag_ordered_table(tag_map::in, int::in,
rtti_type_id::in, rtti_name::out, list(rtti_data)::out, int::out)
is det.
type_ctor_info__make_du_ptag_ordered_table(TagMap, MaxPtagValue,
RttiTypeId, PtagOrderedRttiName, Tables, NumPtags) :-
map__to_assoc_list(TagMap, TagList),
type_ctor_info__make_du_ptag_layouts(TagList, 0, MaxPtagValue,
RttiTypeId, PtagLayouts, SubTables, NumPtags),
PtagOrderedTable = du_ptag_ordered_table(RttiTypeId, PtagLayouts),
PtagOrderedRttiName = du_ptag_ordered_table,
Tables = [PtagOrderedTable | SubTables].
:- pred type_ctor_info__make_du_ptag_layouts(tag_list::in, int::in, int::in,
rtti_type_id::in, list(du_ptag_layout)::out, list(rtti_data)::out,
int::out) is det.
type_ctor_info__make_du_ptag_layouts(TagList0, CurPtag, MaxPtag,
RttiTypeId, PtagLayouts, Tables, NumPtags) :-
(
TagList0 = [],
PtagLayouts = [],
Tables = [],
NumPtags = CurPtag
;
TagList0 = [Ptag - (Locn - StagMap) | TagList],
require(unify(CurPtag, Ptag),
"missing ptag value in make_du_ptag_layout"),
require(CurPtag =< MaxPtag,
"ptag value exceeds maximum"),
map__to_assoc_list(StagMap, StagList),
list__length(StagList, StagListLength),
type_ctor_info__make_du_stag_table(0, StagListLength - 1,
StagList, StagRttiNames),
StagOrderedTable = du_stag_ordered_table(RttiTypeId,
Ptag, StagRttiNames),
StagOrderedAddr = du_stag_ordered_table(Ptag),
PtagLayout = du_ptag_layout(StagListLength, Locn,
StagOrderedAddr),
type_ctor_info__make_du_ptag_layouts(TagList,
CurPtag + 1, MaxPtag, RttiTypeId,
PtagLayouts1, Tables1, NumPtags),
PtagLayouts = [PtagLayout | PtagLayouts1],
Tables = [StagOrderedTable | Tables1]
).
:- pred type_ctor_info__make_du_stag_table(int::in, int::in,
assoc_list(int, rtti_name)::in, list(rtti_name)::out) is det.
type_ctor_info__make_du_stag_table(CurStag, MaxStag, TagList0,
StagRttiNames) :-
( CurStag =< MaxStag ->
(
TagList0 = [],
error("short stag list in make_du_stag_table")
;
TagList0 = [Stag - RttiName | TagList],
require(unify(CurStag, Stag),
"missing stag value in make_du_stag_table")
),
type_ctor_info__make_du_stag_table(CurStag + 1, MaxStag,
TagList, StagRttiNames1),
StagRttiNames = [RttiName | StagRttiNames1]
;
require(unify(TagList0, []),
"leftover stag values in make_du_stag_table"),
StagRttiNames = []
).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
:- pred type_ctor_info__get_next_cell_number(int::in, int::out, int::out)
is det.
type_ctor_info__get_next_cell_number(CellNumber0, Next, CellNumber) :-
CellNumber = CellNumber0 + 1,
Next = CellNumber.
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
|