1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
|
%-----------------------------------------------------------------------------%
% Copyright (C) 1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU Library General
% Public License - see the file COPYING.LIB in the Mercury distribution.
%-----------------------------------------------------------------------------%
% File: declarative_execution.m
% Author: Mark Brown
%
% This module defines a Mercury representation of Mercury program
% execution. The declarative debugging infrastructure in the trace
% directory builds such a representation, using predicates exported
% from this module. The debugging front end analyses the structure
% to produce a bug diagnosis.
:- module declarative_execution.
:- interface.
:- import_module bool, list, std_util, string, io.
:- import_module util.
% This type represents a port in a stored event trace.
% The type R is the type of references to other nodes
% in the store.
%
% If this type is modified, some of the macros in
% trace/mercury_trace_declarative.h may also need to be
% updated.
%
:- type trace_node(R)
---> call(
R, % Preceding event.
R, % Last EXIT or REDO event.
trace_atom % Atom that was called.
)
; exit(
R, % Preceding event.
R, % CALL event.
R, % Previous REDO event.
trace_atom % Atom in its final state.
)
; redo(
R, % Preceding event.
R % EXIT event.
)
; fail(
R, % Preceding event.
R % CALL event.
)
; first_disj(
R, % Preceding event.
goal_path, % Path for this event.
bool % Was this a switch?
)
; later_disj(
R, % Preceding event.
R, % Event before the first DISJ.
goal_path % Path for this event.
)
; cond(
R, % Preceding event.
goal_path, % Path for this event.
goal_status % Whether we have reached
% a THEN or ELSE event.
)
; then(
R, % Preceding event.
R % COND event.
)
; else(
R, % Preceding event.
R % COND event.
)
; neg(
R, % Preceding event.
goal_path, % Path for this event.
goal_status % Whether we have reached
% a NEGS or NEGF event.
)
; neg_succ(
R, % Preceding event.
R % NEGE event.
)
; neg_fail(
R, % Preceding event.
R % NEGE event.
)
.
% If either of the following two types are modified, some of
% the macros in trace/mercury_trace_declarative.h may need
% to be updated.
%
:- type trace_atom
---> atom(
string, % Procedure name.
list(univ) % Arguments.
% XXX we also need to store some information about
% where the arguments come from, since they will
% not necessarily be in the right order or all
% present (we do not store unbound variables).
).
:- type goal_status
---> succeeded
; failed
; undecided.
:- type goal_path == goal_path_string.
% Members of this typeclass represent an entire stored
% event trace. The second parameter is the type of identifiers
% for trace nodes, and the first parameter is the type of
% an abstract mapping from the identfiers to the nodes they
% identify.
%
:- typeclass execution_tree(S, R) where [
% Dereference the identifier. This fails if the
% identifier does not refer to any trace_node (ie.
% it is a NULL pointer).
%
pred trace_node_from_id(S, R, trace_node(R)),
mode trace_node_from_id(in, in, out) is semidet
].
% The following procedures also dereference the identifiers,
% but they give an error if the node is not of the expected type.
%
:- pred det_trace_node_from_id(S, R, trace_node(R)) <= execution_tree(S, R).
:- mode det_trace_node_from_id(in, in, out) is det.
:- inst trace_node_call = bound(call(ground, ground, ground)).
:- pred call_node_from_id(S, R, trace_node(R)) <= execution_tree(S, R).
:- mode call_node_from_id(in, in, out(trace_node_call)) is det.
:- inst trace_node_redo = bound(redo(ground, ground)).
% maybe_redo_node_from_id/3 fails if the argument is a
% NULL reference.
%
:- pred maybe_redo_node_from_id(S, R, trace_node(R)) <= execution_tree(S, R).
:- mode maybe_redo_node_from_id(in, in, out(trace_node_redo)) is semidet.
:- inst trace_node_exit = bound(exit(ground, ground, ground, ground)).
:- pred exit_node_from_id(S, R, trace_node(R)) <= execution_tree(S, R).
:- mode exit_node_from_id(in, in, out(trace_node_exit)) is det.
:- inst trace_node_cond = bound(cond(ground, ground, ground)).
:- pred cond_node_from_id(S, R, trace_node(R)) <= execution_tree(S, R).
:- mode cond_node_from_id(in, in, out(trace_node_cond)) is det.
:- inst trace_node_neg = bound(neg(ground, ground, ground)).
:- pred neg_node_from_id(S, R, trace_node(R)) <= execution_tree(S, R).
:- mode neg_node_from_id(in, in, out(trace_node_neg)) is det.
% Load an execution tree which was previously saved by
% the back end.
%
:- pred load_trace_node_map(io__input_stream, trace_node_map,
trace_node_key, io__state, io__state).
:- mode load_trace_node_map(in, out, out, di, uo) is det.
% Save an execution tree generated by the back end. It is
% first converted into a trace_node_map/trace_node_key pair.
%
:- pred save_trace_node_store(io__output_stream, trace_node_store,
trace_node_id, io__state, io__state).
:- mode save_trace_node_store(in, in, in, di, uo) is det.
%-----------------------------------------------------------------------------%
% This instance is used when the declarative debugger is in
% normal mode. Values of this instance are produced by the
% back end and passed directly to the front end.
%
:- type trace_node_store.
:- type trace_node_id.
:- instance execution_tree(trace_node_store, trace_node_id).
% This instance is used when the declarative debugger is in
% test mode. Values of this instance are produced by copying
% values of the previous instance. Unlike the previous
% instance, values of this one can be fed through a stream.
%
:- type trace_node_map.
:- type trace_node_key.
:- instance execution_tree(trace_node_map, trace_node_key).
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module map, require.
det_trace_node_from_id(Store, NodeId, Node) :-
(
trace_node_from_id(Store, NodeId, Node0)
->
Node = Node0
;
error("det_trace_node_from_id: NULL node id")
).
call_node_from_id(Store, NodeId, Node) :-
(
trace_node_from_id(Store, NodeId, Node0),
Node0 = call(_, _, _)
->
Node = Node0
;
error("call_node_from_id: not a CALL node")
).
maybe_redo_node_from_id(Store, NodeId, Node) :-
trace_node_from_id(Store, NodeId, Node0),
(
Node0 = redo(_, _)
->
Node = Node0
;
error("maybe_redo_node_from_id: not a REDO node or NULL")
).
exit_node_from_id(Store, NodeId, Node) :-
(
trace_node_from_id(Store, NodeId, Node0),
Node0 = exit(_, _, _, _)
->
Node = Node0
;
error("exit_node_from_id: not an EXIT node")
).
cond_node_from_id(Store, NodeId, Node) :-
(
trace_node_from_id(Store, NodeId, Node0),
Node0 = cond(_, _, _)
->
Node = Node0
;
error("cond_node_from_id: not a COND node")
).
neg_node_from_id(Store, NodeId, Node) :-
(
trace_node_from_id(Store, NodeId, Node0),
Node0 = neg(_, _, _)
->
Node = Node0
;
error("neg_node_from_id: not a NEG node")
).
%-----------------------------------------------------------------------------%
:- instance execution_tree(trace_node_store, trace_node_id) where [
pred(trace_node_from_id/3) is search_trace_node_store
].
% The "map" is actually just an integer representing the version
% of the map. The empty map should be given the value 0, and
% each time the map is destructively modified (by C code), the
% value should be incremented.
%
:- type trace_node_store ---> store(int).
% The implementation of the identifiers is the same as what
% is identified. This fact is hidden, however, to force the
% abstract map to be explicitly used whenever a new node is
% accessed.
%
:- type trace_node_id ---> id(c_pointer).
:- pred search_trace_node_store(trace_node_store, trace_node_id,
trace_node(trace_node_id)).
:- mode search_trace_node_store(in, in, out) is semidet.
:- pragma c_code(
search_trace_node_store(_Store::in, Id::in, Node::out),
[will_not_call_mercury, thread_safe],
"
Node = Id;
SUCCESS_INDICATOR = (Id != (Word) NULL);
"
).
%
% Following are some predicates that are useful for
% manipulating the above instance in C code.
%
:- func trace_node_port(trace_node(trace_node_id)) = trace_port_type.
:- pragma export(trace_node_port(in) = out,
"MR_DD_trace_node_port").
trace_node_port(call(_, _, _)) = call.
trace_node_port(exit(_, _, _, _)) = exit.
trace_node_port(redo(_, _)) = redo.
trace_node_port(fail(_, _)) = fail.
trace_node_port(first_disj(_, _, yes)) = switch.
trace_node_port(first_disj(_, _, no)) = disj.
trace_node_port(later_disj(_, _, _)) = disj.
trace_node_port(cond(_, _, _)) = ite_cond.
trace_node_port(then(_, _)) = ite_then.
trace_node_port(else(_, _)) = ite_else.
trace_node_port(neg(_, _, _)) = neg_enter.
trace_node_port(neg_succ(_, _)) = neg_success.
trace_node_port(neg_fail(_, _)) = neg_failure.
:- func trace_node_path(trace_node_store, trace_node(trace_node_id))
= goal_path_string.
:- pragma export(trace_node_path(in, in) = out,
"MR_DD_trace_node_path").
trace_node_path(_, call(_, _, _)) = "".
trace_node_path(_, exit(_, _, _, _)) = "".
trace_node_path(_, redo(_, _)) = "".
trace_node_path(_, fail(_, _)) = "".
trace_node_path(_, first_disj(_, P, _)) = P.
trace_node_path(_, later_disj(_, _, P)) = P.
trace_node_path(_, cond(_, P, _)) = P.
trace_node_path(S, then(_, Cond)) = P :-
cond_node_from_id(S, Cond, cond(_, P, _)).
trace_node_path(S, else(_, Cond)) = P :-
cond_node_from_id(S, Cond, cond(_, P, _)).
trace_node_path(_, neg(_, P, _)) = P.
trace_node_path(S, neg_succ(_, Neg)) = P :-
neg_node_from_id(S, Neg, neg(_, P, _)).
trace_node_path(S, neg_fail(_, Neg)) = P :-
neg_node_from_id(S, Neg, neg(_, P, _)).
% Given any node in a stored event trace, find the most recent
% node in the same context which has not been backtracked over,
% skipping negations, conditions, the bodies of calls, and
% alternative disjuncts. Return the NULL reference if there
% is no such node (eg. if we are at the start of a negation,
% condition, or call).
%
:- func scan_backwards(trace_node_store, trace_node(trace_node_id))
= trace_node_id.
:- pragma export(scan_backwards(in, in) = out,
"MR_DD_scan_backwards").
scan_backwards(_, call(_, _, _)) = NULL :-
null_trace_node_id(NULL).
scan_backwards(_, cond(_, _, _)) = NULL :-
null_trace_node_id(NULL).
scan_backwards(_, neg(_, _, _)) = NULL :-
null_trace_node_id(NULL).
scan_backwards(Store, exit(_, Call, _, _)) = Prec :-
call_node_from_id(Store, Call, call(Prec, _, _)).
scan_backwards(Store, fail(_, Call)) = Prec :-
call_node_from_id(Store, Call, call(Prec, _, _)).
scan_backwards(Store, redo(_, Exit)) = Prec :-
exit_node_from_id(Store, Exit, exit(Prec, _, _, _)).
scan_backwards(_, first_disj(Prec, _, _)) = Prec.
scan_backwards(_, later_disj(_, Back, _)) = Back.
scan_backwards(Store, then(_, Cond)) = Prec :-
cond_node_from_id(Store, Cond, cond(Prec, _, _)).
scan_backwards(Store, else(_, Cond)) = Prec :-
cond_node_from_id(Store, Cond, cond(Prec, _, _)).
scan_backwards(Store, neg_succ(_, Neg)) = Prec :-
neg_node_from_id(Store, Neg, neg(Prec, _, _)).
scan_backwards(Store, neg_fail(_, Neg)) = Prec :-
neg_node_from_id(Store, Neg, neg(Prec, _, _)).
%
% Each node type has a Mercury function which constructs
% a node of that type. The functions are exported to C so
% that the back end can build an execution tree.
%
:- func construct_call_node(trace_node_id, trace_atom)
= trace_node(trace_node_id).
:- pragma export(construct_call_node(in, in) = out,
"MR_DD_construct_call_node").
construct_call_node(Preceding, Atom) = call(Preceding, Answer, Atom) :-
null_trace_node_id(Answer).
:- func construct_exit_node(trace_node_id, trace_node_id, trace_node_id,
trace_atom) = trace_node(trace_node_id).
:- pragma export(construct_exit_node(in, in, in, in) = out,
"MR_DD_construct_exit_node").
construct_exit_node(Preceding, Call, Previous, Atom)
= exit(Preceding, Call, Previous, Atom).
:- func construct_redo_node(trace_node_id, trace_node_id)
= trace_node(trace_node_id).
:- pragma export(construct_redo_node(in, in) = out,
"MR_DD_construct_redo_node").
construct_redo_node(Preceding, Exit) = redo(Preceding, Exit).
:- func construct_fail_node(trace_node_id, trace_node_id)
= trace_node(trace_node_id).
:- pragma export(construct_fail_node(in, in) = out,
"MR_DD_construct_fail_node").
construct_fail_node(Preceding, Call) = fail(Preceding, Call).
:- func construct_first_disj_node(trace_node_id, goal_path_string, bool)
= trace_node(trace_node_id).
:- pragma export(construct_first_disj_node(in, in, in) = out,
"MR_DD_construct_first_disj_node").
construct_first_disj_node(Preceding, Path, Flag) =
first_disj(Preceding, Path, Flag).
:- func construct_later_disj_node(trace_node_id, trace_node_id,
goal_path_string) = trace_node(trace_node_id).
:- pragma export(construct_later_disj_node(in, in, in) = out,
"MR_DD_construct_later_disj_node").
construct_later_disj_node(Preceding, Back, Path)
= later_disj(Preceding, Back, Path).
:- func construct_cond_node(trace_node_id, goal_path_string)
= trace_node(trace_node_id).
:- pragma export(construct_cond_node(in, in) = out,
"MR_DD_construct_cond_node").
construct_cond_node(Preceding, Path) = cond(Preceding, Path, undecided).
:- func construct_then_node(trace_node_id, trace_node_id)
= trace_node(trace_node_id).
:- pragma export(construct_then_node(in, in) = out,
"MR_DD_construct_then_node").
construct_then_node(Preceding, Cond) = then(Preceding, Cond).
:- func construct_else_node(trace_node_id, trace_node_id)
= trace_node(trace_node_id).
:- pragma export(construct_else_node(in, in) = out,
"MR_DD_construct_else_node").
construct_else_node(Preceding, Cond) = else(Preceding, Cond).
:- func construct_neg_node(trace_node_id, goal_path_string)
= trace_node(trace_node_id).
:- pragma export(construct_neg_node(in, in) = out,
"MR_DD_construct_neg_node").
construct_neg_node(Preceding, Path) = neg(Preceding, Path, undecided).
:- func construct_neg_succ_node(trace_node_id, trace_node_id)
= trace_node(trace_node_id).
:- pragma export(construct_neg_succ_node(in, in) = out,
"MR_DD_construct_neg_succ_node").
construct_neg_succ_node(Preceding, Neg) = neg_succ(Preceding, Neg).
:- func construct_neg_fail_node(trace_node_id, trace_node_id)
= trace_node(trace_node_id).
:- pragma export(construct_neg_fail_node(in, in) = out,
"MR_DD_construct_neg_fail_node").
construct_neg_fail_node(Preceding, Neg) = neg_fail(Preceding, Neg).
:- pred null_trace_node_id(trace_node_id).
:- mode null_trace_node_id(out) is det.
:- pragma c_code(
null_trace_node_id(Id::out),
[will_not_call_mercury, thread_safe],
"Id = (Word) NULL;"
).
%-----------------------------------------------------------------------------%
% The most important property of this instance is that it
% can be written to or read in from a stream easily. It
% is not as efficient to use as the earlier instance, though.
%
:- instance execution_tree(trace_node_map, trace_node_key) where [
pred(trace_node_from_id/3) is search_trace_node_map
].
:- type trace_node_map
---> map(map(trace_node_key, trace_node(trace_node_key))).
% Values of this type are represented in the same way (in the
% underlying C code) as corresponding values of the other
% instance.
%
:- type trace_node_key
---> key(int).
:- pred search_trace_node_map(trace_node_map, trace_node_key,
trace_node(trace_node_key)).
:- mode search_trace_node_map(in, in, out) is semidet.
search_trace_node_map(map(Map), Key, Node) :-
map__search(Map, Key, Node).
load_trace_node_map(Stream, Map, Key) -->
io__read(Stream, ResKey),
{
ResKey = ok(Key)
;
ResKey = eof,
error("load_trace_node_map: unexpected EOF")
;
ResKey = error(Msg, _),
error(Msg)
},
io__read(Stream, ResMap),
{
ResMap = ok(Map)
;
ResMap = eof,
error("load_trace_node_map: unexpected EOF")
;
ResMap = error(Msg, _),
error(Msg)
}.
:- pragma export(save_trace_node_store(in, in, in, di, uo),
"MR_DD_save_trace").
save_trace_node_store(Stream, Store, NodeId) -->
{ map__init(Map0) },
{ node_id_to_key(NodeId, Key) },
{ node_map(Store, NodeId, map(Map0), Map) },
io__write(Stream, Key),
io__write_string(Stream, ".\n"),
io__write(Stream, Map),
io__write_string(Stream, ".\n").
:- pred node_map(trace_node_store, trace_node_id, trace_node_map,
trace_node_map).
:- mode node_map(in, in, in, out) is det.
node_map(Store, NodeId, map(Map0), Map) :-
(
search_trace_node_store(Store, NodeId, Node1)
->
node_id_to_key(NodeId, Key),
convert_node(Node1, Node2),
map__det_insert(Map0, Key, Node2, Map1),
Next = preceding_node(Node1),
node_map(Store, Next, map(Map1), Map)
;
Map = map(Map0)
).
:- pred node_id_to_key(trace_node_id, trace_node_key).
:- mode node_id_to_key(in, out) is det.
:- pragma c_code(node_id_to_key(Id::in, Key::out),
[will_not_call_mercury, thread_safe],
"Key = (Integer) Id;").
:- pred convert_node(trace_node(trace_node_id), trace_node(trace_node_key)).
:- mode convert_node(in, out) is det.
:- pragma c_code(convert_node(N1::in, N2::out),
[will_not_call_mercury, thread_safe],
"N2 = N1;").
% Given a node in a stored trace, return a reference to
% the preceding node in the trace, or a NULL reference if
% it is the first.
%
:- func preceding_node(trace_node(T)) = T.
preceding_node(call(P, _, _)) = P.
preceding_node(exit(P, _, _, _)) = P.
preceding_node(redo(P, _)) = P.
preceding_node(fail(P, _)) = P.
preceding_node(first_disj(P, _, _)) = P.
preceding_node(later_disj(P, _, _)) = P.
preceding_node(cond(P, _, _)) = P.
preceding_node(then(P, _)) = P.
preceding_node(else(P, _)) = P.
preceding_node(neg(P, _, _)) = P.
preceding_node(neg_succ(P, _)) = P.
preceding_node(neg_fail(P, _)) = P.
|