1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
%---------------------------------------------------------------------------%
% Copyright (C) 1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% This module defines the representation of basic types used by
% the bytecode interpreter and by the Aditi bytecodes.
%
% Note: This file is included in both the Mercury compiler
% and the Aditi bytecode assembler.
%
% Author: zs, aet, stayl.
%
%---------------------------------------------------------------------------%
:- module bytecode_data.
:- interface.
:- import_module io, int, list, string.
:- pred output_string(string, io__state, io__state).
:- mode output_string(in, di, uo) is det.
:- pred string_to_byte_list(string, list(int)).
:- mode string_to_byte_list(in, out) is det.
:- pred output_byte(int, io__state, io__state).
:- mode output_byte(in, di, uo) is det.
/*
** Spit out an `int' in a portable `highest common denominator' format.
** This format is: big-endian, 64-bit, 2's-complement int.
**
** NOTE: We -assume- the machine architecture uses 2's-complement.
*/
:- pred output_int(int, io__state, io__state).
:- mode output_int(in, di, uo) is det.
:- pred int_to_byte_list(int, list(int)).
:- mode int_to_byte_list(in, out) is det.
/*
** Same as output_int and int_to_byte_list, except only use 32 bits.
*/
:- pred output_int32(int, io__state, io__state).
:- mode output_int32(in, di, uo) is det.
:- pred int32_to_byte_list(int, list(int)).
:- mode int32_to_byte_list(in, out) is det.
/*
** Spit out a `short' in a portable format.
** This format is: big-endian, 16-bit, 2's-complement.
**
** NOTE: We -assume- the machine architecture uses 2's-complement.
*/
:- pred output_short(int, io__state, io__state).
:- mode output_short(in, di, uo) is det.
:- pred short_to_byte_list(int, list(int)).
:- mode short_to_byte_list(in, out) is det.
/*
** Spit out a `float' in a portable `highest common denominator format.
** This format is: big-endian, 64-bit, IEEE-754 floating point value.
**
** NOTE: We -assume- the machine architecture uses IEEE-754.
*/
:- pred output_float(float, io__state, io__state).
:- mode output_float(in, di, uo) is det.
:- pred float_to_byte_list(float, list(int)).
:- mode float_to_byte_list(in, out) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module char, require.
output_string(Val) -->
io__write_bytes(Val),
io__write_byte(0).
string_to_byte_list(Val, List) :-
string__to_char_list(Val, Chars),
ToInt = (pred(C::in, I::out) is det :- char__to_int(C, I)),
list__map(ToInt, Chars, List0),
list__append(List0, [0], List).
output_byte(Val) -->
( { Val < 256 } ->
io__write_byte(Val)
;
{ error("byte does not fit in eight bits") }
).
output_short(Val) -->
output_int(16, Val).
short_to_byte_list(Val, Bytes) :-
int_to_byte_list(16, Val, Bytes).
output_int32(IntVal) -->
output_int(32, IntVal).
int32_to_byte_list(IntVal, List) :-
int_to_byte_list(32, IntVal, List).
output_int(IntVal) -->
{ int__bits_per_int(IntBits) },
( { IntBits > bytecode_int_bits } ->
{ error("size of int is larger than size of bytecode integer.")}
;
output_int(bytecode_int_bits, IntVal)
).
int_to_byte_list(IntVal, Bytes) :-
int__bits_per_int(IntBits),
( IntBits > bytecode_int_bits ->
error("size of int is larger than size of bytecode integer.")
;
int_to_byte_list(bytecode_int_bits, IntVal, Bytes)
).
:- pred output_int(int, int, io__state, io__state).
:- mode output_int(in, in, di, uo) is det.
output_int(Bits, IntVal) -->
output_int(io__write_byte, Bits, IntVal).
:- pred int_to_byte_list(int, int, list(int)).
:- mode int_to_byte_list(in, in, out) is det.
int_to_byte_list(Bits, IntVal, Bytes) :-
output_int(cons, Bits, IntVal, [], RevBytes),
list__reverse(RevBytes, Bytes).
:- pred cons(T, list(T), list(T)).
:- mode cons(in, in, out) is det.
cons(T, List, [T | List]).
:- pred output_int(pred(int, T, T), int, int, T, T).
:- mode output_int(pred(in, in, out) is det, in, in, in, out) is det.
:- mode output_int(pred(in, di, uo) is det, in, in, di, uo) is det.
output_int(Writer, Bits, IntVal) -->
{ int__bits_per_int(IntBits) },
{
Bits < IntBits,
int__pow(2, Bits - 1, MaxVal),
( IntVal >= MaxVal
; IntVal < -MaxVal
)
->
string__format(
"error: bytecode_data__output_int: %d does not fit in %d bits",
[i(IntVal), i(Bits)], Msg),
error(Msg)
;
true
},
{ Bits > IntBits ->
ZeroPadBytes is (Bits - IntBits) // bits_per_byte
;
ZeroPadBytes = 0
},
output_padding_zeros(Writer, ZeroPadBytes),
{ BytesToDump = Bits // bits_per_byte },
{ FirstByteToDump is BytesToDump - ZeroPadBytes - 1 },
output_int_bytes(Writer, FirstByteToDump, IntVal).
:- func bytecode_int_bits = int.
:- mode bytecode_int_bits = out is det.
bytecode_int_bits = bits_per_byte * bytecode_int_bytes.
:- func bytecode_int_bytes = int.
:- mode bytecode_int_bytes = out is det.
bytecode_int_bytes = 8.
:- func bits_per_byte = int.
:- mode bits_per_byte = out is det.
bits_per_byte = 8.
:- pred output_padding_zeros(pred(int, T, T), int, T, T).
:- mode output_padding_zeros(pred(in, in, out) is det, in, in, out) is det.
:- mode output_padding_zeros(pred(in, di, uo) is det, in, di, uo) is det.
output_padding_zeros(Writer, NumBytes) -->
( { NumBytes > 0 } ->
call(Writer, 0),
{ NumBytes1 is NumBytes - 1 },
output_padding_zeros(Writer, NumBytes1)
;
[]
).
:- pred output_int_bytes(pred(int, T, T), int, int, T, T).
:- mode output_int_bytes(pred(in, in, out) is det, in, in, in, out) is det.
:- mode output_int_bytes(pred(in, di, uo) is det, in, in, di, uo) is det.
output_int_bytes(Writer, ByteNum, IntVal) -->
( { ByteNum >= 0 } ->
{ BitShifts is ByteNum * bits_per_byte },
{ Byte is (IntVal >> BitShifts) mod (1 << bits_per_byte) },
{ ByteNum1 is ByteNum - 1 },
call(Writer, Byte),
output_int_bytes(Writer, ByteNum1, IntVal)
;
[]
).
output_float(Val) -->
{ float_to_float64_bytes(Val, B0, B1, B2, B3, B4, B5, B6, B7) },
output_byte(B0),
output_byte(B1),
output_byte(B2),
output_byte(B3),
output_byte(B4),
output_byte(B5),
output_byte(B6),
output_byte(B7).
float_to_byte_list(Val, [B0, B1, B2, B3, B4, B5, B6, B7]) :-
float_to_float64_bytes(Val, B0, B1, B2, B3, B4, B5, B6, B7).
/*
** Convert a `float' to the representation used in the bytecode.
** That is, a sequence of eight bytes.
*/
:- pred float_to_float64_bytes(float::in,
int::out, int::out, int::out, int::out,
int::out, int::out, int::out, int::out) is det.
:- pragma c_code(
float_to_float64_bytes(FloatVal::in, B0::out, B1::out, B2::out, B3::out,
B4::out, B5::out, B6::out, B7::out),
will_not_call_mercury,
"
{
Float64 float64;
unsigned char *raw_mem_p;
float64 = (Float64) FloatVal;
raw_mem_p = (unsigned char*) &float64;
#if defined(MR_BIG_ENDIAN)
B0 = raw_mem_p[0];
B1 = raw_mem_p[1];
B2 = raw_mem_p[2];
B3 = raw_mem_p[3];
B4 = raw_mem_p[4];
B5 = raw_mem_p[5];
B6 = raw_mem_p[6];
B7 = raw_mem_p[7];
#elif defined(MR_LITTLE_ENDIAN)
B7 = raw_mem_p[0];
B6 = raw_mem_p[1];
B5 = raw_mem_p[2];
B4 = raw_mem_p[3];
B3 = raw_mem_p[4];
B2 = raw_mem_p[5];
B1 = raw_mem_p[6];
B0 = raw_mem_p[7];
#else
#error Weird-endian architecture
#endif
}
"
).
%---------------------------------------------------------------------------%
|