1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
|
%-----------------------------------------------------------------------------%
% Copyright (C) 1994-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
%
% file: code_util.m.
%
% various utilities routines for code generation and recognition
% of builtins.
%
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module code_util.
:- interface.
:- import_module hlds_module, hlds_pred, hlds_goal, hlds_data, prog_data, llds.
:- import_module list, assoc_list, set, std_util.
% Create a code address which holds the address of the specified
% procedure.
% The fourth argument should be `no' if the the caller wants the
% returned address to be valid from everywhere in the program.
% If being valid from within the current procedure is enough,
% this argument should be `yes' wrapped around the value of the
% --procs-per-c-function option and the current procedure id.
% Using an address that is only valid from within the current
% procedure may make jumps more efficient.
:- pred code_util__make_entry_label(module_info, pred_id, proc_id,
maybe(pair(int, pred_proc_id)), code_addr).
:- mode code_util__make_entry_label(in, in, in, in, out) is det.
% Create a label which holds the address of the specified procedure,
% which must be defined in the current module (procedures that are
% imported from other modules have representations only as code_addrs,
% not as labels, since their address is not known at C compilation
% time).
% The fourth argument has the same meaning as for
% code_util__make_entry_label.
:- pred code_util__make_local_entry_label(module_info, pred_id, proc_id,
maybe(pair(int, pred_proc_id)), label).
:- mode code_util__make_local_entry_label(in, in, in, in, out) is det.
% Create a label internal to a Mercury procedure.
:- pred code_util__make_internal_label(module_info, pred_id, proc_id, int,
label).
:- mode code_util__make_internal_label(in, in, in, in, out) is det.
:- pred code_util__make_proc_label(module_info, pred_id, proc_id, proc_label).
:- mode code_util__make_proc_label(in, in, in, out) is det.
:- pred code_util__make_uni_label(module_info, type_id, proc_id, proc_label).
:- mode code_util__make_uni_label(in, in, in, out) is det.
:- pred code_util__extract_proc_label_from_code_addr(code_addr, proc_label).
:- mode code_util__extract_proc_label_from_code_addr(in, out) is det.
:- pred code_util__extract_proc_label_from_label(label, proc_label).
:- mode code_util__extract_proc_label_from_label(in, out) is det.
:- pred code_util__arg_loc_to_register(arg_loc, lval).
:- mode code_util__arg_loc_to_register(in, out) is det.
% Determine whether a goal might allocate some heap space,
% i.e. whether it contains any construction unifications
% or predicate calls. BEWARE that this predicate is only
% an approximation, used to decide whether or not to try to
% reclaim the heap space; currently it fails even for some
% goals which do allocate heap space, such as construction
% of boxed constants.
:- pred code_util__goal_may_allocate_heap(hlds_goal).
:- mode code_util__goal_may_allocate_heap(in) is semidet.
:- pred code_util__goal_list_may_allocate_heap(list(hlds_goal)).
:- mode code_util__goal_list_may_allocate_heap(in) is semidet.
% Negate a condition.
% This is used mostly just to make the generated code more readable.
:- pred code_util__neg_rval(rval, rval).
:- mode code_util__neg_rval(in, out) is det.
:- pred code_util__negate_the_test(list(instruction), list(instruction)).
:- mode code_util__negate_the_test(in, out) is det.
:- pred code_util__compiler_generated(pred_info).
:- mode code_util__compiler_generated(in) is semidet.
:- pred code_util__predinfo_is_builtin(pred_info).
:- mode code_util__predinfo_is_builtin(in) is semidet.
:- pred code_util__builtin_state(module_info, pred_id, proc_id, builtin_state).
:- mode code_util__builtin_state(in, in, in, out) is det.
% Given a module name, a predicate name, a proc_id and a list of
% variables as the arguments, find out if that procedure of that
% predicate is an inline builtin. If yes, the last two arguments
% return two things:
%
% - an rval to execute as a test if the builtin is semidet; and
%
% - an rval to assign to a variable if the builtin calls for this.
%
% At least one of these will be present.
%
% Each test rval returned is guaranteed to be either a unop or a binop,
% applied to arguments that are either variables (from the argument
% list) or constants.
%
% Each to be assigned rval is guaranteed to be either in a form
% acceptable for a test rval, or in the form of a variable.
:- pred code_util__translate_builtin(module_name, string, proc_id,
list(prog_var), maybe(rval), maybe(pair(prog_var, rval))).
:- mode code_util__translate_builtin(in, in, in, in, out, out) is semidet.
% Find out how a function symbol (constructor) is represented
% in the given type.
:- pred code_util__cons_id_to_tag(cons_id, type, module_info, cons_tag).
:- mode code_util__cons_id_to_tag(in, in, in, out) is det.
% Succeed if the given goal cannot encounter a context
% that causes any variable to be flushed to its stack slot.
% If such a goal needs a resume point, and that resume point cannot
% be backtracked to once control leaves the goal, then the only entry
% point we need for the resume point is the one with the resume
% variables in their original locations.
:- pred code_util__cannot_stack_flush(hlds_goal).
:- mode code_util__cannot_stack_flush(in) is semidet.
% Succeed if the given goal cannot fail before encountering a context
% that forces all variables to be flushed to their stack slots.
% If such a goal needs a resume point, the only entry point we need
% is the stack entry point.
:- pred code_util__cannot_fail_before_stack_flush(hlds_goal).
:- mode code_util__cannot_fail_before_stack_flush(in) is semidet.
% code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max)
% Given that we are in predicate PredId and procedure ProcId,
% return the minimum and maximum number of recursive calls that
% an execution of Goal may encounter.
:- pred code_util__count_recursive_calls(hlds_goal, pred_id, proc_id,
int, int).
:- mode code_util__count_recursive_calls(in, in, in, out, out) is det.
% Return the set of locations occupied by output arguments.
:- pred code_util__output_args(assoc_list(prog_var, arg_info), set(lval)).
:- mode code_util__output_args(in, out) is det.
% These predicates return the set of lvals referenced in an rval
% and an lval respectively. Lvals referenced indirectly through
% lvals of the form var(_) are not counted.
:- pred code_util__lvals_in_rval(rval, list(lval)).
:- mode code_util__lvals_in_rval(in, out) is det.
:- pred code_util__lvals_in_lval(lval, list(lval)).
:- mode code_util__lvals_in_lval(in, out) is det.
%---------------------------------------------------------------------------%
:- implementation.
:- import_module prog_data, builtin_ops, type_util, special_pred.
:- import_module bool, char, int, string, set, map, term, varset.
:- import_module require, std_util, assoc_list.
%---------------------------------------------------------------------------%
code_util__make_entry_label(ModuleInfo, PredId, ProcId, Immed, PredAddress) :-
module_info_preds(ModuleInfo, Preds),
map__lookup(Preds, PredId, PredInfo),
(
(
pred_info_is_imported(PredInfo)
;
pred_info_is_pseudo_imported(PredInfo),
% only the (in, in) mode of unification is imported
hlds_pred__in_in_unification_proc_id(ProcId)
)
->
code_util__make_proc_label(ModuleInfo, PredId, ProcId,
ProcLabel),
PredAddress = imported(ProcLabel)
;
code_util__make_local_entry_label(ModuleInfo, PredId, ProcId,
Immed, Label),
PredAddress = label(Label)
).
code_util__make_local_entry_label(ModuleInfo, PredId, ProcId, Immed, Label) :-
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel),
module_info_preds(ModuleInfo, Preds),
map__lookup(Preds, PredId, PredInfo),
(
procedure_is_exported(PredInfo, ProcId)
->
(
Immed = no,
Label = exported(ProcLabel)
;
Immed = yes(ProcsPerFunc - proc(CurPredId, CurProcId)),
choose_local_label_type(ProcsPerFunc, CurPredId,
CurProcId, PredId, ProcId, ProcLabel, Label)
)
;
(
% If we want to define the label or use it to put it
% into a data structure, a label that is usable only
% within the current C module won't do.
Immed = no,
Label = local(ProcLabel)
;
Immed = yes(ProcsPerFunc - proc(CurPredId, CurProcId)),
choose_local_label_type(ProcsPerFunc, CurPredId,
CurProcId, PredId, ProcId, ProcLabel, Label)
)
).
:- pred choose_local_label_type(int, pred_id, proc_id,
pred_id, proc_id, proc_label, label).
:- mode choose_local_label_type(in, in, in, in, in, in, out) is det.
choose_local_label_type(ProcsPerFunc, CurPredId, CurProcId,
PredId, ProcId, ProcLabel, Label) :-
(
% If we want to branch to the label now,
% we prefer a form that are usable only within
% the current C module, since it is likely
% to be faster.
(
ProcsPerFunc = 0
;
PredId = CurPredId,
ProcId = CurProcId
)
->
Label = c_local(ProcLabel)
;
Label = local(ProcLabel)
).
%-----------------------------------------------------------------------------%
code_util__make_internal_label(ModuleInfo, PredId, ProcId, LabelNum, Label) :-
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel),
Label = local(ProcLabel, LabelNum).
code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel) :-
module_info_pred_info(ModuleInfo, PredId, PredInfo),
pred_info_module(PredInfo, PredModule),
pred_info_name(PredInfo, PredName),
module_info_name(ModuleInfo, ThisModule),
(
code_util__compiler_generated(PredInfo)
->
pred_info_arg_types(PredInfo, ArgTypes),
(
special_pred_get_type(PredName, ArgTypes, Type),
type_to_type_id(Type, TypeId, _),
% All type_ids here should be module qualified,
% since builtin types are handled separately in
% polymorphism.m.
TypeId = qualified(TypeModule, TypeName) - Arity
->
(
ThisModule \= TypeModule,
PredName = "__Unify__",
\+ hlds_pred__in_in_unification_proc_id(ProcId)
->
DefiningModule = ThisModule
;
DefiningModule = TypeModule
),
ProcLabel = special_proc(DefiningModule, PredName,
TypeModule, TypeName, Arity, ProcId)
;
string__append_list(["code_util__make_proc_label:\n",
"cannot make label for special pred `",
PredName, "'"], ErrorMessage),
error(ErrorMessage)
)
;
(
% Work out which module supplies the code for
% the predicate.
ThisModule \= PredModule,
\+ pred_info_is_imported(PredInfo)
->
% This predicate is a specialized version of
% a pred from a `.opt' file.
DefiningModule = ThisModule
;
DefiningModule = PredModule
),
pred_info_get_is_pred_or_func(PredInfo, PredOrFunc),
pred_info_arity(PredInfo, Arity),
ProcLabel = proc(DefiningModule, PredOrFunc,
PredModule, PredName, Arity, ProcId)
).
code_util__make_uni_label(ModuleInfo, TypeId, UniModeNum, ProcLabel) :-
module_info_name(ModuleInfo, ModuleName),
( TypeId = qualified(TypeModule, TypeName) - Arity ->
( hlds_pred__in_in_unification_proc_id(UniModeNum) ->
Module = TypeModule
;
Module = ModuleName
),
ProcLabel = special_proc(Module, "__Unify__", TypeModule,
TypeName, Arity, UniModeNum)
;
error("code_util__make_uni_label: unqualified type_id")
).
code_util__extract_proc_label_from_code_addr(CodeAddr, ProcLabel) :-
( code_util__proc_label_from_code_addr(CodeAddr, ProcLabelPrime) ->
ProcLabel = ProcLabelPrime
;
error("code_util__extract_label_from_code_addr failed")
).
:- pred code_util__proc_label_from_code_addr(code_addr::in,
proc_label::out) is semidet.
code_util__proc_label_from_code_addr(CodeAddr, ProcLabel) :-
(
CodeAddr = label(Label),
code_util__extract_proc_label_from_label(Label, ProcLabel)
;
CodeAddr = imported(ProcLabel)
).
code_util__extract_proc_label_from_label(local(ProcLabel, _), ProcLabel).
code_util__extract_proc_label_from_label(c_local(ProcLabel), ProcLabel).
code_util__extract_proc_label_from_label(local(ProcLabel), ProcLabel).
code_util__extract_proc_label_from_label(exported(ProcLabel), ProcLabel).
%-----------------------------------------------------------------------------%
code_util__arg_loc_to_register(ArgLoc, reg(r, ArgLoc)).
%-----------------------------------------------------------------------------%
code_util__predinfo_is_builtin(PredInfo) :-
pred_info_module(PredInfo, ModuleName),
pred_info_name(PredInfo, PredName),
% code_util__translate_builtin(ModuleName, PredName, _, _, _, _).
pred_info_arity(PredInfo, Arity),
ProcId = 0,
code_util__inline_builtin(ModuleName, PredName, ProcId, Arity).
code_util__builtin_state(ModuleInfo, PredId0, ProcId, BuiltinState) :-
predicate_module(ModuleInfo, PredId0, ModuleName),
predicate_name(ModuleInfo, PredId0, PredName),
predicate_arity(ModuleInfo, PredId0, Arity),
proc_id_to_int(ProcId, ProcInt),
( code_util__inline_builtin(ModuleName, PredName, ProcInt, Arity) ->
BuiltinState = inline_builtin
;
BuiltinState = not_builtin
).
:- pred code_util__inline_builtin(module_name, string, int, int).
:- mode code_util__inline_builtin(in, in, in, in) is semidet.
code_util__inline_builtin(FullyQualifiedModule, PredName, ProcId, Arity) :-
Arity =< 3,
varset__init(VarSet),
varset__new_vars(VarSet, Arity, Args, _),
% --- not yet:
% FullyQualifiedModule = qualified(unqualified("std"), ModuleName),
FullyQualifiedModule = unqualified(ModuleName),
code_util__translate_builtin_2(ModuleName, PredName, ProcId, Args,
_, _).
code_util__translate_builtin(FullyQualifiedModule, PredName, ProcId, Args,
BinOp, AsgOp) :-
proc_id_to_int(ProcId, ProcInt),
% -- not yet:
% FullyQualifiedModule = qualified(unqualified("std"), ModuleName),
FullyQualifiedModule = unqualified(ModuleName),
code_util__translate_builtin_2(ModuleName, PredName, ProcInt, Args,
BinOp, AsgOp).
:- pred code_util__translate_builtin_2(string, string, int, list(prog_var),
maybe(rval), maybe(pair(prog_var, rval))).
:- mode code_util__translate_builtin_2(in, in, in, in, out, out) is semidet.
% WARNING: any changes here will probably require similar changes
% in ml_code_gen:ml_translate_builtin_2 and vice versa.
code_util__translate_builtin_2("private_builtin", "unsafe_type_cast", 0,
[X, Y], no, yes(Y - var(X))).
code_util__translate_builtin_2("builtin", "unsafe_promise_unique", 0,
[X, Y], no, yes(Y - var(X))).
code_util__translate_builtin_2("private_builtin", "builtin_int_gt", 0, [X, Y],
yes(binop((>), var(X), var(Y))), no).
code_util__translate_builtin_2("private_builtin", "builtin_int_lt", 0, [X, Y],
yes(binop((<), var(X), var(Y))), no).
code_util__translate_builtin_2("int", "builtin_plus", 0, [X, Y, Z],
no, yes(Z - binop((+), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_plus", 1, [X, Y, Z],
no, yes(X - binop((-), var(Z), var(Y)))).
code_util__translate_builtin_2("int", "builtin_plus", 2, [X, Y, Z],
no, yes(Y - binop((-), var(Z), var(X)))).
code_util__translate_builtin_2("int", "+", 0, [X, Y, Z],
no, yes(Z - binop((+), var(X), var(Y)))).
code_util__translate_builtin_2("int", "+", 1, [X, Y, Z],
no, yes(X - binop((-), var(Z), var(Y)))).
code_util__translate_builtin_2("int", "+", 2, [X, Y, Z],
no, yes(Y - binop((-), var(Z), var(X)))).
code_util__translate_builtin_2("int", "builtin_minus", 0, [X, Y, Z],
no, yes(Z - binop((-), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_minus", 1, [X, Y, Z],
no, yes(X - binop((+), var(Y), var(Z)))).
code_util__translate_builtin_2("int", "builtin_minus", 2, [X, Y, Z],
no, yes(Y - binop((-), var(X), var(Z)))).
code_util__translate_builtin_2("int", "-", 0, [X, Y, Z],
no, yes(Z - binop((-), var(X), var(Y)))).
code_util__translate_builtin_2("int", "-", 1, [X, Y, Z],
no, yes(X - binop((+), var(Y), var(Z)))).
code_util__translate_builtin_2("int", "-", 2, [X, Y, Z],
no, yes(Y - binop((-), var(X), var(Z)))).
code_util__translate_builtin_2("int", "builtin_times", 0, [X, Y, Z],
no, yes(Z - binop((*), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_times", 1, [X, Y, Z],
no, yes(X - binop((/), var(Z), var(Y)))).
code_util__translate_builtin_2("int", "builtin_times", 2, [X, Y, Z],
no, yes(Y - binop((/), var(Z), var(X)))).
code_util__translate_builtin_2("int", "*", 0, [X, Y, Z],
no, yes(Z - binop((*), var(X), var(Y)))).
code_util__translate_builtin_2("int", "*", 1, [X, Y, Z],
no, yes(X - binop((/), var(Z), var(Y)))).
code_util__translate_builtin_2("int", "*", 2, [X, Y, Z],
no, yes(Y - binop((/), var(Z), var(X)))).
code_util__translate_builtin_2("int", "builtin_div", 0, [X, Y, Z],
no, yes(Z - binop((/), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_div", 1, [X, Y, Z],
no, yes(X - binop((*), var(Y), var(Z)))).
code_util__translate_builtin_2("int", "builtin_div", 2, [X, Y, Z],
no, yes(Y - binop((/), var(X), var(Z)))).
code_util__translate_builtin_2("int", "//", 0, [X, Y, Z],
no, yes(Z - binop((/), var(X), var(Y)))).
code_util__translate_builtin_2("int", "//", 1, [X, Y, Z],
no, yes(X - binop((*), var(Y), var(Z)))).
code_util__translate_builtin_2("int", "//", 2, [X, Y, Z],
no, yes(Y - binop((/), var(X), var(Z)))).
code_util__translate_builtin_2("int", "builtin_mod", 0, [X, Y, Z],
no, yes(Z - binop((mod), var(X), var(Y)))).
code_util__translate_builtin_2("int", "rem", 0, [X, Y, Z],
no, yes(Z - binop((mod), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_left_shift", 0, [X, Y, Z],
no, yes(Z - binop((<<), var(X), var(Y)))).
code_util__translate_builtin_2("int", "unchecked_left_shift", 0, [X, Y, Z],
no, yes(Z - binop((<<), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_right_shift", 0, [X, Y, Z],
no, yes(Z - binop((>>), var(X), var(Y)))).
code_util__translate_builtin_2("int", "unchecked_right_shift", 0, [X, Y, Z],
no, yes(Z - binop((>>), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_bit_and", 0, [X, Y, Z],
no, yes(Z - binop((&), var(X), var(Y)))).
code_util__translate_builtin_2("int", "/\\", 0, [X, Y, Z],
no, yes(Z - binop((&), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_bit_or", 0, [X, Y, Z],
no, yes(Z - binop(('|'), var(X), var(Y)))).
code_util__translate_builtin_2("int", "\\/", 0, [X, Y, Z],
no, yes(Z - binop(('|'), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_bit_xor", 0, [X, Y, Z],
no, yes(Z - binop((^), var(X), var(Y)))).
code_util__translate_builtin_2("int", "^", 0, [X, Y, Z],
no, yes(Z - binop((^), var(X), var(Y)))).
code_util__translate_builtin_2("int", "xor", 0, [X, Y, Z],
no, yes(Z - binop((^), var(X), var(Y)))).
code_util__translate_builtin_2("int", "builtin_unary_plus", 0, [X, Y],
no, yes(Y - var(X))).
code_util__translate_builtin_2("int", "+", 0, [X, Y],
no, yes(Y - var(X))).
code_util__translate_builtin_2("int", "builtin_unary_minus", 0, [X, Y],
no, yes(Y - binop((-), const(int_const(0)), var(X)))).
code_util__translate_builtin_2("int", "-", 0, [X, Y],
no, yes(Y - binop((-), const(int_const(0)), var(X)))).
code_util__translate_builtin_2("int", "builtin_bit_neg", 0, [X, Y],
no, yes(Y - unop(bitwise_complement, var(X)))).
code_util__translate_builtin_2("int", "\\", 0, [X, Y],
no, yes(Y - unop(bitwise_complement, var(X)))).
code_util__translate_builtin_2("int", ">", 0, [X, Y],
yes(binop((>), var(X), var(Y))), no).
code_util__translate_builtin_2("int", "<", 0, [X, Y],
yes(binop((<), var(X), var(Y))), no).
code_util__translate_builtin_2("int", ">=", 0, [X, Y],
yes(binop((>=), var(X), var(Y))), no).
code_util__translate_builtin_2("int", "=<", 0, [X, Y],
yes(binop((<=), var(X), var(Y))), no).
code_util__translate_builtin_2("float", "builtin_float_plus", 0, [X, Y, Z],
no, yes(Z - binop(float_plus, var(X), var(Y)))).
code_util__translate_builtin_2("float", "builtin_float_plus", 1, [X, Y, Z],
no, yes(X - binop(float_minus, var(Z), var(Y)))).
code_util__translate_builtin_2("float", "builtin_float_plus", 2, [X, Y, Z],
no, yes(Y - binop(float_minus, var(Z), var(X)))).
code_util__translate_builtin_2("float", "+", 0, [X, Y, Z],
no, yes(Z - binop(float_plus, var(X), var(Y)))).
code_util__translate_builtin_2("float", "+", 1, [X, Y, Z],
no, yes(X - binop(float_minus, var(Z), var(Y)))).
code_util__translate_builtin_2("float", "+", 2, [X, Y, Z],
no, yes(Y - binop(float_minus, var(Z), var(X)))).
code_util__translate_builtin_2("float", "builtin_float_minus", 0, [X, Y, Z],
no, yes(Z - binop(float_minus, var(X), var(Y)))).
code_util__translate_builtin_2("float", "builtin_float_minus", 1, [X, Y, Z],
no, yes(X - binop(float_plus, var(Y), var(Z)))).
code_util__translate_builtin_2("float", "builtin_float_minus", 2, [X, Y, Z],
no, yes(Y - binop(float_minus, var(X), var(Z)))).
code_util__translate_builtin_2("float", "-", 0, [X, Y, Z],
no, yes(Z - binop(float_minus, var(X), var(Y)))).
code_util__translate_builtin_2("float", "-", 1, [X, Y, Z],
no, yes(X - binop(float_plus, var(Y), var(Z)))).
code_util__translate_builtin_2("float", "-", 2, [X, Y, Z],
no, yes(Y - binop(float_minus, var(X), var(Z)))).
code_util__translate_builtin_2("float", "builtin_float_times", 0, [X, Y, Z],
no, yes(Z - binop(float_times, var(X), var(Y)))).
code_util__translate_builtin_2("float", "builtin_float_times", 1, [X, Y, Z],
no, yes(X - binop(float_divide, var(Z), var(Y)))).
code_util__translate_builtin_2("float", "builtin_float_times", 2, [X, Y, Z],
no, yes(Y - binop(float_divide, var(Z), var(X)))).
code_util__translate_builtin_2("float", "*", 0, [X, Y, Z],
no, yes(Z - binop(float_times, var(X), var(Y)))).
code_util__translate_builtin_2("float", "*", 1, [X, Y, Z],
no, yes(X - binop(float_divide, var(Z), var(Y)))).
code_util__translate_builtin_2("float", "*", 2, [X, Y, Z],
no, yes(Y - binop(float_divide, var(Z), var(X)))).
code_util__translate_builtin_2("float", "builtin_float_divide", 0, [X, Y, Z],
no, yes(Z - binop(float_divide, var(X), var(Y)))).
code_util__translate_builtin_2("float", "builtin_float_divide", 1, [X, Y, Z],
no, yes(X - binop(float_times, var(Y), var(Z)))).
code_util__translate_builtin_2("float", "builtin_float_divide", 2, [X, Y, Z],
no, yes(Y - binop(float_divide, var(X), var(Z)))).
code_util__translate_builtin_2("float", "/", 0, [X, Y, Z],
no, yes(Z - binop(float_divide, var(X), var(Y)))).
code_util__translate_builtin_2("float", "/", 1, [X, Y, Z],
no, yes(X - binop(float_times, var(Y), var(Z)))).
code_util__translate_builtin_2("float", "/", 2, [X, Y, Z],
no, yes(Y - binop(float_divide, var(X), var(Z)))).
code_util__translate_builtin_2("float", "+", 0, [X, Y],
no, yes(Y - var(X))).
code_util__translate_builtin_2("float", "-", 0, [X, Y],
no, yes(Y - binop(float_minus, const(float_const(0.0)), var(X)))).
code_util__translate_builtin_2("float", "builtin_float_gt", 0, [X, Y],
yes(binop(float_gt, var(X), var(Y))), no).
code_util__translate_builtin_2("float", ">", 0, [X, Y],
yes(binop(float_gt, var(X), var(Y))), no).
code_util__translate_builtin_2("float", "builtin_float_lt", 0, [X, Y],
yes(binop(float_lt, var(X), var(Y))), no).
code_util__translate_builtin_2("float", "<", 0, [X, Y],
yes(binop(float_lt, var(X), var(Y))), no).
code_util__translate_builtin_2("float", "builtin_float_ge", 0, [X, Y],
yes(binop(float_ge, var(X), var(Y))), no).
code_util__translate_builtin_2("float", ">=", 0, [X, Y],
yes(binop(float_ge, var(X), var(Y))), no).
code_util__translate_builtin_2("float", "builtin_float_le", 0, [X, Y],
yes(binop(float_le, var(X), var(Y))), no).
code_util__translate_builtin_2("float", "=<", 0, [X, Y],
yes(binop(float_le, var(X), var(Y))), no).
%-----------------------------------------------------------------------------%
% code_util__compiler_generated(PredInfo) should succeed iff
% the PredInfo is for a compiler generated predicate.
code_util__compiler_generated(PredInfo) :-
pred_info_name(PredInfo, PredName),
pred_info_arity(PredInfo, PredArity),
special_pred_name_arity(_, _, PredName, PredArity).
%-----------------------------------------------------------------------------%
% This code may _look_ nondeterministic, but it's really semidet,
% and Mercury is smart enough to know this.
code_util__goal_may_allocate_heap(Goal - _GoalInfo) :-
code_util__goal_may_allocate_heap_2(Goal).
:- pred code_util__goal_may_allocate_heap_2(hlds_goal_expr).
:- mode code_util__goal_may_allocate_heap_2(in) is semidet.
code_util__goal_may_allocate_heap_2(generic_call(_, _, _, _)).
code_util__goal_may_allocate_heap_2(call(_, _, _, Builtin, _, _)) :-
Builtin \= inline_builtin.
code_util__goal_may_allocate_heap_2(
unify(_, _, _, construct(_,_,Args,_,_,_,_), _)) :-
Args = [_|_].
code_util__goal_may_allocate_heap_2(some(_Vars, _, Goal)) :-
code_util__goal_may_allocate_heap(Goal).
code_util__goal_may_allocate_heap_2(not(Goal)) :-
code_util__goal_may_allocate_heap(Goal).
code_util__goal_may_allocate_heap_2(conj(Goals)) :-
code_util__goal_list_may_allocate_heap(Goals).
code_util__goal_may_allocate_heap_2(disj(Goals, _)) :-
code_util__goal_list_may_allocate_heap(Goals).
code_util__goal_may_allocate_heap_2(switch(_Var, _Det, Cases, _)) :-
code_util__cases_may_allocate_heap(Cases).
code_util__goal_may_allocate_heap_2(if_then_else(_Vars, A, B, C, _)) :-
(
code_util__goal_may_allocate_heap(A)
;
code_util__goal_may_allocate_heap(B)
;
code_util__goal_may_allocate_heap(C)
).
:- pred code_util__cases_may_allocate_heap(list(case)).
:- mode code_util__cases_may_allocate_heap(in) is semidet.
code_util__cases_may_allocate_heap([case(_, Goal) | _]) :-
code_util__goal_may_allocate_heap(Goal).
code_util__cases_may_allocate_heap([_ | Cases]) :-
code_util__cases_may_allocate_heap(Cases).
code_util__goal_list_may_allocate_heap([Goal | _]) :-
code_util__goal_may_allocate_heap(Goal).
code_util__goal_list_may_allocate_heap([_ | Goals]) :-
code_util__goal_list_may_allocate_heap(Goals).
%-----------------------------------------------------------------------------%
% Negate a condition.
% This is used mostly just to make the generated code more readable.
code_util__neg_rval(Rval, NegRval) :-
( code_util__neg_rval_2(Rval, NegRval0) ->
NegRval = NegRval0
;
NegRval = unop(not, Rval)
).
:- pred code_util__neg_rval_2(rval, rval).
:- mode code_util__neg_rval_2(in, out) is semidet.
code_util__neg_rval_2(const(Const), const(NegConst)) :-
(
Const = true, NegConst = false
;
Const = false, NegConst = true
).
code_util__neg_rval_2(unop(not, Rval), Rval).
code_util__neg_rval_2(binop(Op, X, Y), binop(NegOp, X, Y)) :-
code_util__neg_op(Op, NegOp).
:- pred code_util__neg_op(binary_op, binary_op).
:- mode code_util__neg_op(in, out) is semidet.
code_util__neg_op(eq, ne).
code_util__neg_op(ne, eq).
code_util__neg_op(<, >=).
code_util__neg_op(<=, >).
code_util__neg_op(>, <=).
code_util__neg_op(>=, <).
code_util__neg_op(str_eq, str_ne).
code_util__neg_op(str_ne, str_eq).
code_util__neg_op(str_lt, str_ge).
code_util__neg_op(str_le, str_gt).
code_util__neg_op(str_gt, str_le).
code_util__neg_op(str_ge, str_lt).
code_util__neg_op(float_eq, float_ne).
code_util__neg_op(float_ne, float_eq).
code_util__neg_op(float_lt, float_ge).
code_util__neg_op(float_le, float_gt).
code_util__neg_op(float_gt, float_le).
code_util__neg_op(float_ge, float_lt).
code_util__negate_the_test([], _) :-
error("code_util__negate_the_test on empty list").
code_util__negate_the_test([Instr0 | Instrs0], Instrs) :-
( Instr0 = if_val(Test, Target) - Comment ->
code_util__neg_rval(Test, NewTest),
Instrs = [if_val(NewTest, Target) - Comment]
;
code_util__negate_the_test(Instrs0, Instrs1),
Instrs = [Instr0 | Instrs1]
).
%-----------------------------------------------------------------------------%
code_util__cons_id_to_tag(int_const(X), _, _, int_constant(X)).
code_util__cons_id_to_tag(float_const(X), _, _, float_constant(X)).
code_util__cons_id_to_tag(string_const(X), _, _, string_constant(X)).
code_util__cons_id_to_tag(code_addr_const(P,M), _, _, code_addr_constant(P,M)).
code_util__cons_id_to_tag(pred_const(P,M,E), _, _, pred_closure_tag(P,M,E)).
code_util__cons_id_to_tag(type_ctor_info_const(M,T,A), _, _,
type_ctor_info_constant(M,T,A)).
code_util__cons_id_to_tag(base_typeclass_info_const(M,C,_,N), _, _,
base_typeclass_info_constant(M,C,N)).
code_util__cons_id_to_tag(tabling_pointer_const(PredId,ProcId), _, _,
tabling_pointer_constant(PredId,ProcId)).
code_util__cons_id_to_tag(cons(Name, Arity), Type, ModuleInfo, Tag) :-
(
% handle the `character' type specially
Type = term__functor(term__atom("character"), [], _),
Name = unqualified(ConsName),
string__char_to_string(Char, ConsName)
->
char__to_int(Char, CharCode),
Tag = int_constant(CharCode)
;
% Use the type to determine the type_id
( type_to_type_id(Type, TypeId0, _) ->
TypeId = TypeId0
;
% the type-checker should ensure that this never happens
error("code_util__cons_id_to_tag: invalid type")
),
% Given the type_id, lookup up the constructor tag
% table for that type
module_info_types(ModuleInfo, TypeTable),
map__lookup(TypeTable, TypeId, TypeDefn),
hlds_data__get_type_defn_body(TypeDefn, TypeBody),
(
TypeBody = du_type(_, ConsTable0, _, _)
->
ConsTable = ConsTable0
;
% this should never happen
error(
"code_util__cons_id_to_tag: type is not d.u. type?"
)
),
% Finally look up the cons_id in the table
map__lookup(ConsTable, cons(Name, Arity), Tag)
).
%-----------------------------------------------------------------------------%
code_util__cannot_stack_flush(GoalExpr - _) :-
code_util__cannot_stack_flush_2(GoalExpr).
:- pred code_util__cannot_stack_flush_2(hlds_goal_expr).
:- mode code_util__cannot_stack_flush_2(in) is semidet.
code_util__cannot_stack_flush_2(unify(_, _, _, Unify, _)) :-
Unify \= complicated_unify(_, _, _).
code_util__cannot_stack_flush_2(call(_, _, _, BuiltinState, _, _)) :-
BuiltinState = inline_builtin.
code_util__cannot_stack_flush_2(conj(Goals)) :-
code_util__cannot_stack_flush_goals(Goals).
code_util__cannot_stack_flush_2(switch(_, _, Cases, _)) :-
code_util__cannot_stack_flush_cases(Cases).
:- pred code_util__cannot_stack_flush_goals(list(hlds_goal)).
:- mode code_util__cannot_stack_flush_goals(in) is semidet.
code_util__cannot_stack_flush_goals([]).
code_util__cannot_stack_flush_goals([Goal | Goals]) :-
code_util__cannot_stack_flush(Goal),
code_util__cannot_stack_flush_goals(Goals).
:- pred code_util__cannot_stack_flush_cases(list(case)).
:- mode code_util__cannot_stack_flush_cases(in) is semidet.
code_util__cannot_stack_flush_cases([]).
code_util__cannot_stack_flush_cases([case(_, Goal) | Cases]) :-
code_util__cannot_stack_flush(Goal),
code_util__cannot_stack_flush_cases(Cases).
%-----------------------------------------------------------------------------%
code_util__cannot_fail_before_stack_flush(GoalExpr - GoalInfo) :-
goal_info_get_determinism(GoalInfo, Detism),
determinism_components(Detism, CanFail, _),
( CanFail = cannot_fail ->
true
;
code_util__cannot_fail_before_stack_flush_2(GoalExpr)
).
:- pred code_util__cannot_fail_before_stack_flush_2(hlds_goal_expr).
:- mode code_util__cannot_fail_before_stack_flush_2(in) is semidet.
code_util__cannot_fail_before_stack_flush_2(conj(Goals)) :-
code_util__cannot_fail_before_stack_flush_conj(Goals).
:- pred code_util__cannot_fail_before_stack_flush_conj(list(hlds_goal)).
:- mode code_util__cannot_fail_before_stack_flush_conj(in) is semidet.
code_util__cannot_fail_before_stack_flush_conj([]).
code_util__cannot_fail_before_stack_flush_conj([Goal | Goals]) :-
Goal = GoalExpr - GoalInfo,
(
(
GoalExpr = call(_, _, _, BuiltinState, _, _),
BuiltinState \= inline_builtin
;
GoalExpr = generic_call(_, _, _, _)
)
->
true
;
goal_info_get_determinism(GoalInfo, Detism),
determinism_components(Detism, cannot_fail, _)
->
code_util__cannot_fail_before_stack_flush_conj(Goals)
;
fail
).
%-----------------------------------------------------------------------------%
code_util__count_recursive_calls(Goal - _, PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_2(Goal, PredId, ProcId, Min, Max).
:- pred code_util__count_recursive_calls_2(hlds_goal_expr, pred_id, proc_id,
int, int).
:- mode code_util__count_recursive_calls_2(in, in, in, out, out) is det.
code_util__count_recursive_calls_2(not(Goal), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(some(_, _, Goal),
PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(unify(_, _, _, _, _), _, _, 0, 0).
code_util__count_recursive_calls_2(generic_call(_, _, _, _), _, _,
0, 0).
code_util__count_recursive_calls_2(pragma_c_code(_,_,_, _, _, _, _), _, _,
0, 0).
code_util__count_recursive_calls_2(call(CallPredId, CallProcId, _, _, _, _),
PredId, ProcId, Count, Count) :-
(
PredId = CallPredId,
ProcId = CallProcId
->
Count = 1
;
Count = 0
).
code_util__count_recursive_calls_2(conj(Goals), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_conj(Goals, PredId, ProcId, 0, 0,
Min, Max).
code_util__count_recursive_calls_2(par_conj(Goals, _), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_conj(Goals, PredId, ProcId, 0, 0, Min, Max).
code_util__count_recursive_calls_2(disj(Goals, _), PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls_disj(Goals, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(switch(_, _, Cases, _), PredId, ProcId,
Min, Max) :-
code_util__count_recursive_calls_cases(Cases, PredId, ProcId, Min, Max).
code_util__count_recursive_calls_2(if_then_else(_, Cond, Then, Else, _),
PredId, ProcId, Min, Max) :-
code_util__count_recursive_calls(Cond, PredId, ProcId, CMin, CMax),
code_util__count_recursive_calls(Then, PredId, ProcId, TMin, TMax),
code_util__count_recursive_calls(Else, PredId, ProcId, EMin, EMax),
CTMin is CMin + TMin,
CTMax is CMax + TMax,
int__min(CTMin, EMin, Min),
int__max(CTMax, EMax, Max).
code_util__count_recursive_calls_2(bi_implication(_, _),
_, _, _, _) :-
% these should have been expanded out by now
error("code_util__count_recursive_calls_2: unexpected bi_implication").
:- pred code_util__count_recursive_calls_conj(list(hlds_goal),
pred_id, proc_id, int, int, int, int).
:- mode code_util__count_recursive_calls_conj(in, in, in, in, in, out, out)
is det.
code_util__count_recursive_calls_conj([], _, _, Min, Max, Min, Max).
code_util__count_recursive_calls_conj([Goal | Goals], PredId, ProcId,
Min0, Max0, Min, Max) :-
code_util__count_recursive_calls(Goal, PredId, ProcId, Min1, Max1),
Min2 is Min0 + Min1,
Max2 is Max0 + Max1,
code_util__count_recursive_calls_conj(Goals, PredId, ProcId,
Min2, Max2, Min, Max).
:- pred code_util__count_recursive_calls_disj(list(hlds_goal),
pred_id, proc_id, int, int).
:- mode code_util__count_recursive_calls_disj(in, in, in, out, out) is det.
code_util__count_recursive_calls_disj([], _, _, 0, 0).
code_util__count_recursive_calls_disj([Goal | Goals], PredId, ProcId,
Min, Max) :-
( Goals = [] ->
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min, Max)
;
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min0, Max0),
code_util__count_recursive_calls_disj(Goals, PredId, ProcId,
Min1, Max1),
int__min(Min0, Min1, Min),
int__max(Max0, Max1, Max)
).
:- pred code_util__count_recursive_calls_cases(list(case),
pred_id, proc_id, int, int).
:- mode code_util__count_recursive_calls_cases(in, in, in, out, out) is det.
code_util__count_recursive_calls_cases([], _, _, _, _) :-
error("empty cases in code_util__count_recursive_calls_cases").
code_util__count_recursive_calls_cases([case(_, Goal) | Cases], PredId, ProcId,
Min, Max) :-
( Cases = [] ->
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min, Max)
;
code_util__count_recursive_calls(Goal, PredId, ProcId,
Min0, Max0),
code_util__count_recursive_calls_cases(Cases, PredId, ProcId,
Min1, Max1),
int__min(Min0, Min1, Min),
int__max(Max0, Max1, Max)
).
code_util__output_args([], LiveVals) :-
set__init(LiveVals).
code_util__output_args([_V - arg_info(Loc, Mode) | Args], Vs) :-
code_util__output_args(Args, Vs0),
(
Mode = top_out
->
code_util__arg_loc_to_register(Loc, Reg),
set__insert(Vs0, Reg, Vs)
;
Vs = Vs0
).
%-----------------------------------------------------------------------------%
code_util__lvals_in_rval(lval(Lval), [Lval | Lvals]) :-
code_util__lvals_in_lval(Lval, Lvals).
code_util__lvals_in_rval(var(_), []).
code_util__lvals_in_rval(create(_, _, _, _, _, _), []).
code_util__lvals_in_rval(mkword(_, Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_rval(const(_), []).
code_util__lvals_in_rval(unop(_, Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_rval(binop(_, Rval1, Rval2), Lvals) :-
code_util__lvals_in_rval(Rval1, Lvals1),
code_util__lvals_in_rval(Rval2, Lvals2),
list__append(Lvals1, Lvals2, Lvals).
code_util__lvals_in_rval(mem_addr(MemRef), Lvals) :-
code_util__lvals_in_mem_ref(MemRef, Lvals).
code_util__lvals_in_lval(reg(_, _), []).
code_util__lvals_in_lval(stackvar(_), []).
code_util__lvals_in_lval(framevar(_), []).
code_util__lvals_in_lval(succip, []).
code_util__lvals_in_lval(maxfr, []).
code_util__lvals_in_lval(curfr, []).
code_util__lvals_in_lval(succip(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(redofr(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(redoip(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(succfr(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(prevfr(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
code_util__lvals_in_lval(hp, []).
code_util__lvals_in_lval(sp, []).
code_util__lvals_in_lval(field(_, Rval1, Rval2), Lvals) :-
code_util__lvals_in_rval(Rval1, Lvals1),
code_util__lvals_in_rval(Rval2, Lvals2),
list__append(Lvals1, Lvals2, Lvals).
code_util__lvals_in_lval(lvar(_), []).
code_util__lvals_in_lval(temp(_, _), []).
code_util__lvals_in_lval(mem_ref(Rval), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
:- pred code_util__lvals_in_mem_ref(mem_ref, list(lval)).
:- mode code_util__lvals_in_mem_ref(in, out) is det.
code_util__lvals_in_mem_ref(stackvar_ref(_), []).
code_util__lvals_in_mem_ref(framevar_ref(_), []).
code_util__lvals_in_mem_ref(heap_ref(Rval, _, _), Lvals) :-
code_util__lvals_in_rval(Rval, Lvals).
%-----------------------------------------------------------------------------%
|