1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
%-----------------------------------------------------------------------------%
% Copyright (C) 1994-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% dense_switch.m
% For switches on atomic types, generate code using a dense jump table.
% Author: fjh.
%-----------------------------------------------------------------------------%
:- module dense_switch.
:- interface.
:- import_module llds, prog_data, switch_gen, code_info, type_util.
:- import_module hlds_data, hlds_goal.
% Should this switch be implemented as a dense jump table?
% If so, we return the starting and ending values for the table,
% and whether the switch is not covers all cases or not
% (we may convert locally semidet switches into locally det
% switches by adding extra cases whose body is just `fail').
:- pred dense_switch__is_dense_switch(prog_var, cases_list, can_fail, int,
int, int, can_fail, code_info, code_info).
:- mode dense_switch__is_dense_switch(in, in, in, in, out, out, out, in, out)
is semidet.
% Generate code for a switch using a dense jump table.
:- pred dense_switch__generate(cases_list, int, int, prog_var, code_model,
can_fail, store_map, label, branch_end, branch_end, code_tree,
code_info, code_info).
:- mode dense_switch__generate(in, in, in, in, in, in, in, in,
in, out, out, in, out) is det.
% also used by lookup_switch
:- pred dense_switch__calc_density(int, int, int).
:- mode dense_switch__calc_density(in, in, out) is det.
% also used by lookup_switch
:- pred dense_switch__type_range(builtin_type, type, int, code_info, code_info).
:- mode dense_switch__type_range(in, in, out, in, out) is semidet.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module builtin_ops, hlds_module, code_gen, trace.
:- import_module char, map, tree, int, std_util, require, list.
dense_switch__is_dense_switch(CaseVar, TaggedCases, CanFail0, ReqDensity,
FirstVal, LastVal, CanFail) -->
{
list__length(TaggedCases, NumCases),
NumCases > 2,
TaggedCases = [FirstCase | _],
FirstCase = case(_, int_constant(FirstCaseVal), _, _),
list__index1_det(TaggedCases, NumCases, LastCase),
LastCase = case(_, int_constant(LastCaseVal), _, _),
Span is LastCaseVal - FirstCaseVal,
Range is Span + 1,
dense_switch__calc_density(NumCases, Range, Density),
Density > ReqDensity
},
( { CanFail0 = can_fail } ->
% For semidet switches, we normally need to check that
% the variable is in range before we index into the jump table.
% However, if the range of the type is sufficiently small,
% we can make the jump table large enough to hold all
% of the values for the type.
code_info__variable_type(CaseVar, Type),
code_info__get_module_info(ModuleInfo),
{ classify_type(Type, ModuleInfo, TypeCategory) },
(
dense_switch__type_range(TypeCategory, Type, TypeRange),
{ dense_switch__calc_density(NumCases, TypeRange, DetDensity) },
{ DetDensity > ReqDensity }
->
{ CanFail = cannot_fail },
{ FirstVal = 0 },
{ LastVal is TypeRange - 1 }
;
{ CanFail = CanFail0 },
{ FirstVal = FirstCaseVal },
{ LastVal = LastCaseVal }
)
;
{ CanFail = CanFail0 },
{ FirstVal = FirstCaseVal },
{ LastVal = LastCaseVal }
).
%---------------------------------------------------------------------------%
% Calculate the percentage density given the range
% and the number of cases.
dense_switch__calc_density(NumCases, Range, Density) :-
N1 is NumCases * 100,
Density is N1 // Range.
%---------------------------------------------------------------------------%
% Determine the range of an atomic type.
% Fail if the type isn't the sort of type that has a range
% or if the type's range is to big to switch on (e.g. int).
dense_switch__type_range(char_type, _, CharRange) -->
% XXX the following code uses the host's character size,
% not the target's, so it won't work if cross-compiling
% to a machine with a different character size.
% Note also that the code above in dense_switch.m and the code
% in lookup_switch.m assume that char__min_char_value is 0.
{ char__max_char_value(MaxChar) },
{ char__min_char_value(MinChar) },
{ CharRange is MaxChar - MinChar + 1 }.
dense_switch__type_range(enum_type, Type, TypeRange) -->
{ type_to_type_id(Type, TypeId0, _) ->
TypeId = TypeId0
;
error("dense_switch__type_range: invalid enum type?")
},
code_info__get_module_info(ModuleInfo),
{ module_info_types(ModuleInfo, TypeTable) },
{ map__lookup(TypeTable, TypeId, TypeDefn) },
{ hlds_data__get_type_defn_body(TypeDefn, TypeBody) },
{ TypeBody = du_type(_, ConsTable, _, _) ->
map__count(ConsTable, TypeRange)
;
error("dense_switch__type_range: enum type is not d.u. type?")
}.
%---------------------------------------------------------------------------%
dense_switch__generate(Cases, StartVal, EndVal, Var, CodeModel, CanFail,
StoreMap, EndLabel, MaybeEnd0, MaybeEnd, Code) -->
% Evaluate the variable which we are going to be switching on
code_info__produce_variable(Var, VarCode, Rval),
% If the case values start at some number other than 0,
% then subtract that number to give us a zero-based index
{ StartVal = 0 ->
Index = Rval
;
Index = binop(-, Rval, const(int_const(StartVal)))
},
% If the switch is not locally deterministic, we need to
% check that the value of the variable lies within the
% appropriate range
(
{ CanFail = can_fail },
{ Difference is EndVal - StartVal },
code_info__fail_if_rval_is_false(
binop(<=, unop(cast_to_unsigned, Index),
const(int_const(Difference))), RangeCheck)
;
{ CanFail = cannot_fail },
{ RangeCheck = empty }
),
% Now generate the jump table and the cases
dense_switch__generate_cases(Cases, StartVal, EndVal, CodeModel,
StoreMap, EndLabel, MaybeEnd0, MaybeEnd,
Labels, CasesCode),
% XXX
% We keep track of the code_info at the end of one of
% the non-fail cases. We have to do this because
% generating a `fail' slot last would yield the
% wrong liveness and would not unset the failure cont
% for a nondet switch.
{ DoJump = node([
computed_goto(Index, Labels)
- "switch (using dense jump table)"
]) },
% Assemble the code together
{ Code = tree(VarCode, tree(RangeCheck, tree(DoJump, CasesCode))) }.
:- pred dense_switch__generate_cases(cases_list, int, int,
code_model, store_map, label, branch_end, branch_end,
list(label), code_tree, code_info, code_info).
:- mode dense_switch__generate_cases(in, in, in, in, in, in, in, out,
out, out, in, out) is det.
dense_switch__generate_cases(Cases0, NextVal, EndVal, CodeModel, StoreMap,
EndLabel, MaybeEnd0, MaybeEnd, Labels, Code) -->
(
{ NextVal > EndVal }
->
{ MaybeEnd = MaybeEnd0 },
{ Labels = [] },
{ Code = node([
label(EndLabel)
- "End of dense switch"
]) }
;
code_info__get_next_label(ThisLabel),
dense_switch__generate_case(Cases0, NextVal, CodeModel,
StoreMap, Cases1, MaybeEnd0, MaybeEnd1,
ThisCode, Comment),
{ LabelCode = node([
label(ThisLabel)
- Comment
]) },
{ JumpCode = node([
goto(label(EndLabel))
- "branch to end of dense switch"
]) },
% generate the rest of the cases.
{ NextVal1 is NextVal + 1 },
dense_switch__generate_cases(Cases1, NextVal1, EndVal,
CodeModel, StoreMap, EndLabel, MaybeEnd1, MaybeEnd,
Labels1, OtherCasesCode),
{ Labels = [ThisLabel | Labels1] },
{ Code =
tree(LabelCode,
tree(ThisCode,
tree(JumpCode,
OtherCasesCode)))
}
).
%---------------------------------------------------------------------------%
:- pred dense_switch__generate_case(cases_list, int, code_model, store_map,
cases_list, branch_end, branch_end, code_tree, string,
code_info, code_info).
:- mode dense_switch__generate_case(in, in, in, in, out, in, out, out, out,
in, out) is det.
dense_switch__generate_case(Cases0, NextVal, CodeModel, StoreMap, Cases,
MaybeEnd0, MaybeEnd, Code, Comment) -->
(
{ Cases0 = [Case | Cases1] },
{ Case = case(_, int_constant(NextVal), _, Goal) }
->
{ Comment = "case of dense switch" },
% We need to save the expression cache, etc.,
% and restore them when we've finished.
code_info__remember_position(BranchStart),
trace__maybe_generate_internal_event_code(Goal, TraceCode),
code_gen__generate_goal(CodeModel, Goal, GoalCode),
code_info__generate_branch_end(StoreMap, MaybeEnd0, MaybeEnd,
SaveCode),
{ Code =
tree(TraceCode,
tree(GoalCode,
SaveCode))
},
code_info__reset_to_position(BranchStart),
{ Cases = Cases1 }
;
% This case didn't occur in the original case list
% - just generate a `fail' for it.
{ Comment = "compiler-introduced `fail' case of dense switch" },
code_info__generate_failure(Code),
{ MaybeEnd = MaybeEnd0 },
{ Cases = Cases0 }
).
|