1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
|
%-----------------------------------------------------------------------------%
% Copyright (C) 1994-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% det_analysis.m - the determinism analysis pass.
% Main authors: conway, fjh, zs.
% This pass has three components:
%
% o Segregate the procedures into those that have determinism
% declarations, and those that don't
%
% o A step of performing a local inference pass on each procedure
% without a determinism declaration is iterated until
% a fixpoint is reached
%
% o A checking step is performed on all the procedures that have
% determinism declarations to ensure that they are at
% least as deterministic as their declaration. This uses
% a form of the local inference pass.
%
% If we are to avoid global inference for predicates with
% declarations, then it must be an error, not just a warning,
% if the determinism checking step detects that the determinism
% annotation was wrong. If we were to issue just a warning, then
% we would have to override the determinism annotation, and that
% would force us to re-check the inferred determinism for all
% calling predicates.
%
% Alternately, we could leave it as a warning, but then we would
% have to _make_ the predicate deterministic (or semideterministic)
% by inserting run-time checking code which calls error/1 if the
% predicate really isn't deterministic (semideterministic).
% Determinism has three components:
%
% whether a goal can fail
% whether a goal has more than one possible solution
% whether a goal occurs in a context where only the first solution
% is required
%
% The first two components are synthesized attributes: they are inferred
% bottom-up. The last component is an inherited attribute: it is
% propagated top-down.
%-----------------------------------------------------------------------------%
:- module det_analysis.
:- interface.
:- import_module prog_data.
:- import_module hlds_goal, hlds_module, hlds_pred, hlds_data, instmap.
:- import_module det_report, det_util, globals.
:- import_module list, std_util, io.
% Perform determinism inference for local predicates with no
% determinism declarations, and determinism checking for all other
% predicates.
:- pred determinism_pass(module_info, module_info, io__state, io__state).
:- mode determinism_pass(in, out, di, uo) is det.
% Check the determinism of a single procedure
% (only works if the determinism of the procedures it calls
% has already been inferred).
:- pred determinism_check_proc(proc_id, pred_id, module_info, module_info,
io__state, io__state).
:- mode determinism_check_proc(in, in, in, out, di, uo) is det.
% Infer the determinism of a procedure.
:- pred det_infer_proc(pred_id, proc_id, module_info, module_info, globals,
determinism, determinism, list(det_msg)).
:- mode det_infer_proc(in, in, in, out, in, out, out, out) is det.
% Infers the determinism of `Goal0' and returns this in `Detism'.
% It annotates the goal and all its subgoals with their determinism
% and returns the annotated goal in `Goal'.
:- pred det_infer_goal(hlds_goal, instmap, soln_context, det_info,
hlds_goal, determinism, list(det_msg)).
:- mode det_infer_goal(in, in, in, in, out, out, out) is det.
% Work out how many solutions are needed for a given determinism.
:- pred det_get_soln_context(determinism, soln_context).
:- mode det_get_soln_context(in, out) is det.
:- type soln_context
---> all_solns
; first_soln.
% The tables for computing the determinism of compound goals
% from the determinism of their components.
:- pred det_conjunction_detism(determinism, determinism, determinism).
:- mode det_conjunction_detism(in, in, out) is det.
:- pred det_par_conjunction_detism(determinism, determinism, determinism).
:- mode det_par_conjunction_detism(in, in, out) is det.
:- pred det_disjunction_maxsoln(soln_count, soln_count, soln_count).
:- mode det_disjunction_maxsoln(in, in, out) is det.
:- pred det_disjunction_canfail(can_fail, can_fail, can_fail).
:- mode det_disjunction_canfail(in, in, out) is det.
:- pred det_switch_maxsoln(soln_count, soln_count, soln_count).
:- mode det_switch_maxsoln(in, in, out) is det.
:- pred det_switch_canfail(can_fail, can_fail, can_fail).
:- mode det_switch_canfail(in, in, out) is det.
:- pred det_negation_det(determinism, maybe(determinism)).
:- mode det_negation_det(in, out) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module purity.
:- import_module type_util, modecheck_call, mode_util, options, passes_aux.
:- import_module hlds_out, mercury_to_mercury.
:- import_module assoc_list, bool, map, set, require, term.
%-----------------------------------------------------------------------------%
determinism_pass(ModuleInfo0, ModuleInfo) -->
{ determinism_declarations(ModuleInfo0, DeclaredProcs,
UndeclaredProcs, NoInferProcs) },
{ list__foldl(set_non_inferred_proc_determinism, NoInferProcs,
ModuleInfo0, ModuleInfo1) },
globals__io_lookup_bool_option(verbose, Verbose),
globals__io_lookup_bool_option(debug_det, Debug),
( { UndeclaredProcs = [] } ->
{ ModuleInfo2 = ModuleInfo1 }
;
maybe_write_string(Verbose,
"% Doing determinism inference...\n"),
global_inference_pass(ModuleInfo1, UndeclaredProcs, Debug,
ModuleInfo2),
maybe_write_string(Verbose, "% done.\n")
),
maybe_write_string(Verbose, "% Doing determinism checking...\n"),
global_final_pass(ModuleInfo2, DeclaredProcs, Debug, ModuleInfo),
maybe_write_string(Verbose, "% done.\n").
determinism_check_proc(ProcId, PredId, ModuleInfo0, ModuleInfo) -->
globals__io_lookup_bool_option(debug_det, Debug),
global_final_pass(ModuleInfo0, [proc(PredId, ProcId)], Debug,
ModuleInfo).
%-----------------------------------------------------------------------------%
:- pred global_inference_pass(module_info, pred_proc_list, bool, module_info,
io__state, io__state).
:- mode global_inference_pass(in, in, in, out, di, uo) is det.
% Iterate until a fixpoint is reached. This can be expensive
% if a module has many predicates with undeclared determinisms.
% If this ever becomes a problem, we should switch to doing
% iterations only on strongly connected components of the
% dependency graph.
global_inference_pass(ModuleInfo0, ProcList, Debug, ModuleInfo) -->
global_inference_single_pass(ProcList, Debug, ModuleInfo0, ModuleInfo1,
[], Msgs, unchanged, Changed),
maybe_write_string(Debug, "% Inference pass complete\n"),
( { Changed = changed } ->
global_inference_pass(ModuleInfo1, ProcList, Debug, ModuleInfo)
;
% We have arrived at a fixpoint. Therefore all the messages we
% have are based on the final determinisms of all procedures,
% which means it is safe to print them.
det_report_and_handle_msgs(Msgs, ModuleInfo1, ModuleInfo)
).
:- pred global_inference_single_pass(pred_proc_list, bool,
module_info, module_info, list(det_msg), list(det_msg),
maybe_changed, maybe_changed, io__state, io__state).
:- mode global_inference_single_pass(in, in, in, out, in, out, in, out, di, uo)
is det.
global_inference_single_pass([], _, ModuleInfo, ModuleInfo, Msgs, Msgs,
Changed, Changed) --> [].
global_inference_single_pass([proc(PredId, ProcId) | PredProcs], Debug,
ModuleInfo0, ModuleInfo, Msgs0, Msgs, Changed0, Changed) -->
globals__io_get_globals(Globals),
{ det_infer_proc(PredId, ProcId, ModuleInfo0, ModuleInfo1, Globals,
Detism0, Detism, ProcMsgs) },
( { Detism = Detism0 } ->
( { Debug = yes } ->
io__write_string("% Inferred old detism "),
mercury_output_det(Detism),
io__write_string(" for "),
hlds_out__write_pred_proc_id(ModuleInfo1,
PredId, ProcId),
io__write_string("\n")
;
[]
),
{ Changed1 = Changed0 }
;
( { Debug = yes } ->
io__write_string("% Inferred new detism "),
mercury_output_det(Detism),
io__write_string(" for "),
hlds_out__write_pred_proc_id(ModuleInfo1,
PredId, ProcId),
io__write_string("\n")
;
[]
),
{ Changed1 = changed }
),
{ list__append(ProcMsgs, Msgs0, Msgs1) },
global_inference_single_pass(PredProcs, Debug,
ModuleInfo1, ModuleInfo, Msgs1, Msgs, Changed1, Changed).
:- pred global_final_pass(module_info, pred_proc_list, bool,
module_info, io__state, io__state).
:- mode global_final_pass(in, in, in, out, di, uo) is det.
global_final_pass(ModuleInfo0, ProcList, Debug, ModuleInfo) -->
global_inference_single_pass(ProcList, Debug, ModuleInfo0, ModuleInfo1,
[], Msgs, unchanged, _),
det_report_and_handle_msgs(Msgs, ModuleInfo1, ModuleInfo2),
global_checking_pass(ProcList, ModuleInfo2, ModuleInfo).
%-----------------------------------------------------------------------------%
det_infer_proc(PredId, ProcId, ModuleInfo0, ModuleInfo, Globals,
Detism0, Detism, Msgs) :-
% Get the proc_info structure for this procedure
module_info_preds(ModuleInfo0, Preds0),
map__lookup(Preds0, PredId, Pred0),
pred_info_procedures(Pred0, Procs0),
map__lookup(Procs0, ProcId, Proc0),
% Remember the old inferred determinism of this procedure
proc_info_inferred_determinism(Proc0, Detism0),
% Work out whether the procedure occurs in a single-solution
% context or not. Currently we only assume so if
% the predicate has an explicit determinism declaration
% that says so.
proc_info_declared_determinism(Proc0, MaybeDeclaredDetism),
( MaybeDeclaredDetism = yes(DeclaredDetism) ->
det_get_soln_context(DeclaredDetism, SolnContext)
;
SolnContext = all_solns
),
% Infer the determinism of the goal
proc_info_goal(Proc0, Goal0),
proc_info_get_initial_instmap(Proc0, ModuleInfo0, InstMap0),
det_info_init(ModuleInfo0, PredId, ProcId, Globals, DetInfo),
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
Goal, Detism1, Msgs),
% Take the worst of the old and new detisms.
% This is needed to prevent loops on p :- not(p)
% at least if the initial assumed detism is det.
% This may also be needed to ensure that we don't change
% the interface determinism of procedures, if we are
% re-running determinism analysis.
determinism_components(Detism0, CanFail0, MaxSoln0),
determinism_components(Detism1, CanFail1, MaxSoln1),
det_switch_canfail(CanFail0, CanFail1, CanFail),
det_switch_maxsoln(MaxSoln0, MaxSoln1, MaxSoln),
determinism_components(Detism2, CanFail, MaxSoln),
% Now see if the evaluation model can change the detism
proc_info_eval_method(Proc0, EvalMethod),
eval_method_change_determinism(EvalMethod, Detism2, Detism),
% Save the newly inferred information
proc_info_set_goal(Proc0, Goal, Proc1),
proc_info_set_inferred_determinism(Proc1, Detism, Proc),
% Put back the new proc_info structure.
map__det_update(Procs0, ProcId, Proc, Procs),
pred_info_set_procedures(Pred0, Procs, Pred),
map__det_update(Preds0, PredId, Pred, Preds),
module_info_set_preds(ModuleInfo0, Preds, ModuleInfo).
%-----------------------------------------------------------------------------%
det_infer_goal(Goal0 - GoalInfo0, InstMap0, SolnContext0, DetInfo,
Goal - GoalInfo, Detism, Msgs) :-
goal_info_get_nonlocals(GoalInfo0, NonLocalVars),
goal_info_get_instmap_delta(GoalInfo0, DeltaInstMap),
% If a pure or semipure goal has no output variables,
% then the goal is in single-solution context
(
det_no_output_vars(NonLocalVars, InstMap0, DeltaInstMap,
DetInfo),
\+ goal_info_is_impure(GoalInfo0)
->
OutputVars = no,
SolnContext = first_soln
;
OutputVars = yes,
SolnContext = SolnContext0
),
det_infer_goal_2(Goal0, GoalInfo0, InstMap0, SolnContext, DetInfo,
NonLocalVars, DeltaInstMap, Goal1, InternalDetism0, Msgs1),
determinism_components(InternalDetism0, InternalCanFail,
InternalSolns0),
(
% if mode analysis notices that a goal cannot succeed,
% then determinism analysis should notice this too
instmap_delta_is_unreachable(DeltaInstMap)
->
InternalSolns = at_most_zero
;
InternalSolns = InternalSolns0
),
determinism_components(InternalDetism, InternalCanFail, InternalSolns),
(
% If a pure or semipure goal with multiple solutions
% has no output variables,
% then it really it has only one solution
% (we will need to do pruning)
( InternalSolns = at_most_many
; InternalSolns = at_most_many_cc
),
OutputVars = no
->
Solns = at_most_one
;
% If a goal with multiple solutions occurs in a single-solution
% context, then we will need to do pruning
InternalSolns = at_most_many,
SolnContext = first_soln
->
Solns = at_most_many_cc
;
Solns = InternalSolns
),
determinism_components(Detism, InternalCanFail, Solns),
goal_info_set_determinism(GoalInfo0, Detism, GoalInfo),
% See how we should introduce the commit operator, if one is needed.
(
% do we need a commit?
Detism \= InternalDetism,
% for disjunctions, we want to use a semidet
% or cc_nondet disjunction which avoids creating a
% choice point at all, rather than wrapping a
% some [] around a nondet disj, which would
% create a choice point and then prune it.
Goal1 \= disj(_, _),
% do we already have a commit?
Goal1 \= some(_, _, _)
->
% a commit needed - we must introduce an explicit `some'
% so that the code generator knows to insert the appropriate
% code for pruning
goal_info_set_determinism(GoalInfo0, InternalDetism, InnerInfo),
Goal = some([], can_remove, Goal1 - InnerInfo),
Msgs = Msgs1
;
% either no commit needed, or a `some' already present
Goal = Goal1,
Msgs = Msgs1
).
%-----------------------------------------------------------------------------%
:- pred det_infer_goal_2(hlds_goal_expr, hlds_goal_info, instmap,
soln_context, det_info, set(prog_var), instmap_delta,
hlds_goal_expr, determinism, list(det_msg)).
:- mode det_infer_goal_2(in, in, in, in, in, in, in, out, out, out) is det.
% The determinism of a conjunction is the worst case of the elements
% of that conjuction.
det_infer_goal_2(conj(Goals0), _, InstMap0, SolnContext, DetInfo, _, _,
conj(Goals), Detism, Msgs) :-
det_infer_conj(Goals0, InstMap0, SolnContext, DetInfo,
Goals, Detism, Msgs).
det_infer_goal_2(par_conj(Goals0, SM), GoalInfo, InstMap0, SolnContext,
DetInfo, _, _, par_conj(Goals, SM), Detism, Msgs) :-
det_infer_par_conj(Goals0, InstMap0, SolnContext, DetInfo,
Goals, Detism, Msgs0),
(
determinism_components(Detism, CanFail, Solns),
CanFail = cannot_fail,
Solns \= at_most_many
->
Msgs = Msgs0
;
det_info_get_pred_id(DetInfo, PredId),
det_info_get_proc_id(DetInfo, ProcId),
Msg = par_conj_not_det(Detism, PredId, ProcId, GoalInfo, Goals),
Msgs = [Msg|Msgs0]
).
det_infer_goal_2(disj(Goals0, SM), _, InstMap0, SolnContext, DetInfo, _, _,
disj(Goals, SM), Detism, Msgs) :-
det_infer_disj(Goals0, InstMap0, SolnContext, DetInfo,
can_fail, at_most_zero, Goals, Detism, Msgs).
% The determinism of a switch is the worst of the determinism of each
% of the cases. Also, if only a subset of the constructors are handled,
% then it is semideterministic or worse - this is determined
% in switch_detection.m and handled via the SwitchCanFail field.
det_infer_goal_2(switch(Var, SwitchCanFail, Cases0, SM), GoalInfo,
InstMap0, SolnContext, DetInfo, _, _,
switch(Var, SwitchCanFail, Cases, SM), Detism, Msgs) :-
det_infer_switch(Cases0, InstMap0, SolnContext, DetInfo,
cannot_fail, at_most_zero, Cases, CasesDetism, Msgs0),
determinism_components(CasesDetism, CasesCanFail, CasesSolns),
% The switch variable tests are in a first_soln context if and only
% if the switch goal as a whole was in a first_soln context and the
% cases cannot fail.
(
CasesCanFail = cannot_fail,
SolnContext = first_soln
->
SwitchSolnContext = first_soln
;
SwitchSolnContext = all_solns
),
ExaminesRep = yes,
det_check_for_noncanonical_type(Var, ExaminesRep, SwitchCanFail,
SwitchSolnContext, GoalInfo, switch, DetInfo, Msgs0,
SwitchSolns, Msgs),
det_conjunction_canfail(SwitchCanFail, CasesCanFail, CanFail),
det_conjunction_maxsoln(SwitchSolns, CasesSolns, NumSolns),
determinism_components(Detism, CanFail, NumSolns).
% For calls, just look up the determinism entry associated with
% the called predicate.
% This is the point at which annotations start changing
% when we iterate to fixpoint for global determinism inference.
det_infer_goal_2(call(PredId, ModeId0, A, B, C, N), GoalInfo, _, SolnContext,
DetInfo, _, _,
call(PredId, ModeId, A, B, C, N), Detism, Msgs) :-
det_lookup_detism(DetInfo, PredId, ModeId0, Detism0),
%
% Make sure we don't try to call a committed-choice pred
% from a non-committed-choice context.
%
determinism_components(Detism0, CanFail, NumSolns),
(
NumSolns = at_most_many_cc,
SolnContext \= first_soln
->
(
det_find_matching_non_cc_mode(DetInfo, PredId, ModeId0,
ModeId1)
->
ModeId = ModeId1,
Msgs = [],
determinism_components(Detism, CanFail, at_most_many)
;
Msgs = [cc_pred_in_wrong_context(GoalInfo, Detism0,
PredId, ModeId0)],
ModeId = ModeId0,
% Code elsewhere relies on the assumption that
% SolnContext \= first_soln =>
% NumSolns \= at_most_many_cc,
% so we need to enforce that here.
determinism_components(Detism, CanFail, at_most_many)
)
;
Msgs = [],
ModeId = ModeId0,
Detism = Detism0
).
det_infer_goal_2(generic_call(GenericCall, ArgVars, Modes, Det0),
GoalInfo, _InstMap0, SolnContext,
_MiscInfo, _NonLocalVars, _DeltaInstMap,
generic_call(GenericCall, ArgVars, Modes, Det0),
Det, Msgs) :-
determinism_components(Det0, CanFail, NumSolns),
(
NumSolns = at_most_many_cc,
SolnContext \= first_soln
->
% This error can only occur for higher-order calls.
% class_method calls are only introduced by polymorphism,
% and the aditi_builtins are all det (for the updates)
% or introduced later (for calls).
Msgs = [higher_order_cc_pred_in_wrong_context(GoalInfo, Det0)],
% Code elsewhere relies on the assumption that
% SolnContext \= first_soln => NumSolns \= at_most_many_cc,
% so we need to enforce that here.
determinism_components(Det, CanFail, at_most_many)
;
Msgs = [],
Det = Det0
).
% unifications are either deterministic or semideterministic.
% (see det_infer_unify).
det_infer_goal_2(unify(LT, RT0, M, U, C), GoalInfo, InstMap0, SolnContext,
DetInfo, _, _, unify(LT, RT, M, U, C), UnifyDet, Msgs) :-
(
RT0 = lambda_goal(PredOrFunc, EvalMethod, FixModes,
NonLocalVars, Vars, Modes, LambdaDeclaredDet, Goal0)
->
(
determinism_components(LambdaDeclaredDet, _,
at_most_many_cc)
->
LambdaSolnContext = first_soln
;
LambdaSolnContext = all_solns
),
det_info_get_module_info(DetInfo, ModuleInfo),
instmap__pre_lambda_update(ModuleInfo, Vars, Modes,
InstMap0, InstMap1),
det_infer_goal(Goal0, InstMap1, LambdaSolnContext, DetInfo,
Goal, LambdaInferredDet, Msgs1),
det_check_lambda(LambdaDeclaredDet, LambdaInferredDet,
Goal, GoalInfo, DetInfo, Msgs2),
list__append(Msgs1, Msgs2, Msgs3),
RT = lambda_goal(PredOrFunc, EvalMethod, FixModes,
NonLocalVars, Vars, Modes, LambdaDeclaredDet, Goal)
;
RT = RT0,
Msgs3 = []
),
det_infer_unify_canfail(U, UnifyCanFail),
det_infer_unify_examines_rep(U, ExaminesRepresentation),
det_check_for_noncanonical_type(LT, ExaminesRepresentation,
UnifyCanFail, SolnContext, GoalInfo, unify(C), DetInfo, Msgs3,
UnifyNumSolns, Msgs),
determinism_components(UnifyDet, UnifyCanFail, UnifyNumSolns).
det_infer_goal_2(if_then_else(Vars, Cond0, Then0, Else0, SM), _GoalInfo0,
InstMap0, SolnContext, DetInfo, _NonLocalVars, _DeltaInstMap,
if_then_else(Vars, Cond, Then, Else, SM), Detism, Msgs) :-
% We process the goal right-to-left, doing the `then' before
% the condition of the if-then-else, so that we can propagate
% the SolnContext correctly.
% First process the `then' part
update_instmap(Cond0, InstMap0, InstMap1),
det_infer_goal(Then0, InstMap1, SolnContext, DetInfo,
Then, ThenDetism, ThenMsgs),
determinism_components(ThenDetism, ThenCanFail, ThenMaxSoln),
% Next, work out the right soln_context to use for the condition.
% The condition is in a first_soln context if and only if the goal
% as a whole was in a first_soln context and the `then' part
% cannot fail.
(
ThenCanFail = cannot_fail,
SolnContext = first_soln
->
CondSolnContext = first_soln
;
CondSolnContext = all_solns
),
% Process the `condition' part
det_infer_goal(Cond0, InstMap0, CondSolnContext, DetInfo,
Cond, CondDetism, CondMsgs),
determinism_components(CondDetism, CondCanFail, CondMaxSoln),
% Process the `else' part
det_infer_goal(Else0, InstMap0, SolnContext, DetInfo,
Else, ElseDetism, ElseMsgs),
determinism_components(ElseDetism, ElseCanFail, ElseMaxSoln),
% Finally combine the results from the three parts
( CondCanFail = cannot_fail ->
% A -> B ; C is equivalent to A, B if A cannot fail
det_conjunction_detism(CondDetism, ThenDetism, Detism)
; CondMaxSoln = at_most_zero ->
% A -> B ; C is equivalent to ~A, C if A cannot succeed
det_negation_det(CondDetism, MaybeNegDetism),
(
MaybeNegDetism = no,
error("cannot find determinism of negated condition")
;
MaybeNegDetism = yes(NegDetism)
),
det_conjunction_detism(NegDetism, ElseDetism, Detism)
;
det_conjunction_maxsoln(CondMaxSoln, ThenMaxSoln, CTMaxSoln),
det_switch_maxsoln(CTMaxSoln, ElseMaxSoln, MaxSoln),
det_switch_canfail(ThenCanFail, ElseCanFail, CanFail),
determinism_components(Detism, CanFail, MaxSoln)
),
list__append(ThenMsgs, ElseMsgs, AfterMsgs),
list__append(CondMsgs, AfterMsgs, Msgs).
% Negations are almost always semideterministic. It is an error for
% a negation to further instantiate any non-local variable. Such
% errors will be reported by the mode analysis.
%
% Question: should we warn about the negation of goals that either
% cannot succeed or cannot fail?
% Answer: yes, probably, but it's not a high priority.
det_infer_goal_2(not(Goal0), _, InstMap0, _SolnContext, DetInfo, _, _,
not(Goal), Det, Msgs) :-
det_infer_goal(Goal0, InstMap0, first_soln, DetInfo,
Goal, NegDet, Msgs),
det_negation_det(NegDet, MaybeDet),
(
MaybeDet = no,
error("inappropriate determinism inside a negation")
;
MaybeDet = yes(Det)
).
% Existential quantification may require a cut to throw away solutions,
% but we cannot rely on explicit quantification to detect this.
% Therefore cuts are handled in det_infer_goal.
det_infer_goal_2(some(Vars, CanRemove, Goal0), _, InstMap0, SolnContext,
DetInfo, _, _, some(Vars, CanRemove, Goal), Det, Msgs) :-
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
Goal, Det, Msgs).
% pragma c_codes are handled in the same way as predicate calls
det_infer_goal_2(pragma_c_code(IsRecursive, PredId, ProcId, Args,
ArgNameMap, OrigArgTypes, PragmaCode),
GoalInfo, _, SolnContext, DetInfo, _, _,
pragma_c_code(IsRecursive, PredId, ProcId, Args,
ArgNameMap, OrigArgTypes, PragmaCode),
Detism, Msgs) :-
det_info_get_module_info(DetInfo, ModuleInfo),
module_info_pred_proc_info(ModuleInfo, PredId, ProcId, _, ProcInfo),
proc_info_declared_determinism(ProcInfo, MaybeDetism),
( MaybeDetism = yes(Detism0) ->
determinism_components(Detism0, CanFail, NumSolns0),
( PragmaCode = nondet(_, _, _, _, _, _, _, _, _) ->
% pragma C codes of this form
% can have more than one solution
NumSolns1 = at_most_many
;
NumSolns1 = NumSolns0
),
(
NumSolns1 = at_most_many_cc,
SolnContext \= first_soln
->
Msgs = [cc_pred_in_wrong_context(GoalInfo, Detism0,
PredId, ProcId)],
NumSolns = at_most_many
;
Msgs = [],
NumSolns = NumSolns1
),
determinism_components(Detism, CanFail, NumSolns)
;
Msgs = [pragma_c_code_without_det_decl(PredId, ProcId)],
Detism = erroneous
).
det_infer_goal_2(bi_implication(_, _), _, _, _, _, _, _, _, _, _) :-
% these should have been expanded out by now
error("det_infer_goal_2: unexpected bi_implication").
%-----------------------------------------------------------------------------%
:- pred det_infer_conj(list(hlds_goal), instmap, soln_context, det_info,
list(hlds_goal), determinism, list(det_msg)).
:- mode det_infer_conj(in, in, in, in, out, out, out) is det.
det_infer_conj([], _InstMap0, _SolnContext, _DetInfo, [], det, []).
det_infer_conj([Goal0 | Goals0], InstMap0, SolnContext, DetInfo,
[Goal | Goals], Detism, Msgs) :-
% We should look to see when we get to a not_reached point
% and optimize away the remaining elements of the conjunction.
% But that optimization is done in the code generation anyway.
% We infer the determinisms right-to-left, so that we can propagate
% the SolnContext properly.
%
% First, process the second and subsequent conjuncts.
%
update_instmap(Goal0, InstMap0, InstMap1),
det_infer_conj(Goals0, InstMap1, SolnContext, DetInfo,
Goals, DetismB, MsgsB),
determinism_components(DetismB, CanFailB, _MaxSolnsB),
%
% Next, work out whether the first conjunct is in a first_soln context
% or not. We obviously need all its solutions if we need all the
% solutions of the conjunction. However, even if we need only the
% first solution of the conjunction, we may need to generate more
% than one solution of the first conjunct if the later conjuncts
% may possibly fail.
%
(
CanFailB = cannot_fail,
SolnContext = first_soln
->
SolnContextA = first_soln
;
SolnContextA = all_solns
),
%
% Process the first conjunct.
%
det_infer_goal(Goal0, InstMap0, SolnContextA, DetInfo,
Goal, DetismA, MsgsA),
%
% Finally combine the results computed above.
%
det_conjunction_detism(DetismA, DetismB, Detism),
list__append(MsgsA, MsgsB, Msgs).
:- pred det_infer_par_conj(list(hlds_goal), instmap, soln_context, det_info,
list(hlds_goal), determinism, list(det_msg)).
:- mode det_infer_par_conj(in, in, in, in, out, out, out) is det.
det_infer_par_conj([], _InstMap0, _SolnContext, _DetInfo, [], det, []).
det_infer_par_conj([Goal0 | Goals0], InstMap0, SolnContext, DetInfo,
[Goal | Goals], Detism, Msgs) :-
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
Goal, DetismA, MsgsA),
determinism_components(DetismA, CanFailA, MaxSolnsA),
det_infer_par_conj(Goals0, InstMap0, SolnContext, DetInfo,
Goals, DetismB, MsgsB),
determinism_components(DetismB, CanFailB, MaxSolnsB),
det_conjunction_maxsoln(MaxSolnsA, MaxSolnsB, MaxSolns),
det_conjunction_canfail(CanFailA, CanFailB, CanFail),
determinism_components(Detism, CanFail, MaxSolns),
list__append(MsgsA, MsgsB, Msgs).
:- pred det_infer_disj(list(hlds_goal), instmap, soln_context, det_info,
can_fail, soln_count, list(hlds_goal), determinism, list(det_msg)).
:- mode det_infer_disj(in, in, in, in, in, in, out, out, out) is det.
det_infer_disj([], _InstMap0, _SolnContext, _DetInfo, CanFail, MaxSolns,
[], Detism, []) :-
determinism_components(Detism, CanFail, MaxSolns).
det_infer_disj([Goal0 | Goals0], InstMap0, SolnContext, DetInfo, CanFail0,
MaxSolns0, [Goal | Goals1], Detism, Msgs) :-
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
Goal, Detism1, Msgs1),
determinism_components(Detism1, CanFail1, MaxSolns1),
det_disjunction_canfail(CanFail0, CanFail1, CanFail2),
det_disjunction_maxsoln(MaxSolns0, MaxSolns1, MaxSolns2),
% if we're in a single-solution context,
% convert `at_most_many' to `at_most_many_cc'
( SolnContext = first_soln, MaxSolns2 = at_most_many ->
MaxSolns3 = at_most_many_cc
;
MaxSolns3 = MaxSolns2
),
det_infer_disj(Goals0, InstMap0, SolnContext, DetInfo, CanFail2,
MaxSolns3, Goals1, Detism, Msgs2),
list__append(Msgs1, Msgs2, Msgs).
:- pred det_infer_switch(list(case), instmap, soln_context, det_info,
can_fail, soln_count, list(case), determinism, list(det_msg)).
:- mode det_infer_switch(in, in, in, in, in, in, out, out, out) is det.
det_infer_switch([], _InstMap0, _SolnContext, _DetInfo, CanFail, MaxSolns,
[], Detism, []) :-
determinism_components(Detism, CanFail, MaxSolns).
det_infer_switch([Case0 | Cases0], InstMap0, SolnContext, DetInfo, CanFail0,
MaxSolns0, [Case | Cases], Detism, Msgs) :-
% Technically, we should update the instmap to reflect the
% knowledge that the var is bound to this particular
% constructor, but we wouldn't use that information here anyway,
% so we don't bother.
Case0 = case(ConsId, Goal0),
det_infer_goal(Goal0, InstMap0, SolnContext, DetInfo,
Goal, Detism1, Msgs1),
Case = case(ConsId, Goal),
determinism_components(Detism1, CanFail1, MaxSolns1),
det_switch_canfail(CanFail0, CanFail1, CanFail2),
det_switch_maxsoln(MaxSolns0, MaxSolns1, MaxSolns2),
det_infer_switch(Cases0, InstMap0, SolnContext, DetInfo, CanFail2,
MaxSolns2, Cases, Detism, Msgs2),
list__append(Msgs1, Msgs2, Msgs).
%-----------------------------------------------------------------------------%
% det_find_matching_non_cc_mode(DetInfo, PredId, ProcId0, ProcId):
% Search for a mode of the given predicate that
% is identical to the mode ProcId0, except that its
% determinism is non-cc whereas ProcId0's detism is cc.
% Let ProcId be the first such mode.
:- pred det_find_matching_non_cc_mode(det_info, pred_id, proc_id, proc_id).
:- mode det_find_matching_non_cc_mode(in, in, in, out) is semidet.
det_find_matching_non_cc_mode(DetInfo, PredId, ProcId0, ProcId) :-
det_info_get_module_info(DetInfo, ModuleInfo),
module_info_preds(ModuleInfo, PredTable),
map__lookup(PredTable, PredId, PredInfo),
pred_info_procedures(PredInfo, ProcTable),
map__to_assoc_list(ProcTable, ProcList),
det_find_matching_non_cc_mode_2(ProcList, ModuleInfo, PredInfo,
ProcId0, ProcId).
:- pred det_find_matching_non_cc_mode_2(assoc_list(proc_id, proc_info),
module_info, pred_info, proc_id, proc_id).
:- mode det_find_matching_non_cc_mode_2(in, in, in, in, out) is semidet.
det_find_matching_non_cc_mode_2([ProcId1 - ProcInfo | Rest],
ModuleInfo, PredInfo, ProcId0, ProcId) :-
(
ProcId1 \= ProcId0,
proc_info_interface_determinism(ProcInfo, Detism),
determinism_components(Detism, _CanFail, MaxSoln),
MaxSoln = at_most_many,
modes_are_identical_bar_cc(ProcId0, ProcId1, PredInfo,
ModuleInfo)
->
ProcId = ProcId1
;
det_find_matching_non_cc_mode_2(Rest, ModuleInfo, PredInfo,
ProcId0, ProcId)
).
%-----------------------------------------------------------------------------%
:- pred det_check_for_noncanonical_type(prog_var, bool, can_fail, soln_context,
hlds_goal_info, cc_unify_context, det_info, list(det_msg),
soln_count, list(det_msg)).
:- mode det_check_for_noncanonical_type(in, in, in, in,
in, in, in, in, out, out) is det.
det_check_for_noncanonical_type(Var, ExaminesRepresentation, CanFail,
SolnContext, GoalInfo, GoalContext, DetInfo, Msgs0,
NumSolns, Msgs) :-
(
%
% check for unifications that attempt to examine
% the representation of a type that does not have
% a single representation for each abstract value
%
ExaminesRepresentation = yes,
det_get_proc_info(DetInfo, ProcInfo),
proc_info_vartypes(ProcInfo, VarTypes),
map__lookup(VarTypes, Var, Type),
det_type_has_user_defined_equality_pred(DetInfo, Type)
->
( CanFail = can_fail ->
proc_info_varset(ProcInfo, VarSet),
Msgs = [cc_unify_can_fail(GoalInfo, Var, Type,
VarSet, GoalContext) | Msgs0]
; SolnContext \= first_soln ->
proc_info_varset(ProcInfo, VarSet),
Msgs = [cc_unify_in_wrong_context(GoalInfo, Var,
Type, VarSet, GoalContext) | Msgs0]
;
Msgs = Msgs0
),
( SolnContext = first_soln ->
NumSolns = at_most_many_cc
;
NumSolns = at_most_many
)
;
NumSolns = at_most_one,
Msgs = Msgs0
).
% return true iff there was a `where equality is <predname>' declaration
% for the specified type.
:- pred det_type_has_user_defined_equality_pred(det_info::in,
(type)::in) is semidet.
det_type_has_user_defined_equality_pred(DetInfo, Type) :-
det_info_get_module_info(DetInfo, ModuleInfo),
type_has_user_defined_equality_pred(ModuleInfo, Type, _).
% return yes iff the results of the specified unification might depend on
% the concrete representation of the abstract values involved.
:- pred det_infer_unify_examines_rep(unification::in, bool::out) is det.
det_infer_unify_examines_rep(assign(_, _), no).
det_infer_unify_examines_rep(construct(_, _, _, _, _, _, _), no).
det_infer_unify_examines_rep(deconstruct(_, _, _, _, _), yes).
det_infer_unify_examines_rep(simple_test(_, _), yes).
det_infer_unify_examines_rep(complicated_unify(_, _, _), no).
% Some complicated modes of complicated unifications _do_
% examine the representation...
% but we will catch those by reporting errors in the
% compiler-generated code for the complicated unification.
% Deconstruction unifications cannot fail if the type
% only has one constructor, or if the variable is known to be
% already bound to the appropriate functor.
%
% This is handled (modulo bugs) by modes.m, which sets
% the appropriate field in the deconstruct(...) to can_fail for
% those deconstruction unifications which might fail.
% But switch_detection.m may set it back to cannot_fail again,
% if it moves the functor test into a switch instead.
:- pred det_infer_unify_canfail(unification, can_fail).
:- mode det_infer_unify_canfail(in, out) is det.
det_infer_unify_canfail(deconstruct(_, _, _, _, CanFail), CanFail).
det_infer_unify_canfail(assign(_, _), cannot_fail).
det_infer_unify_canfail(construct(_, _, _, _, _, _, _), cannot_fail).
det_infer_unify_canfail(simple_test(_, _), can_fail).
det_infer_unify_canfail(complicated_unify(_, CanFail, _), CanFail).
%-----------------------------------------------------------------------------%
det_get_soln_context(DeclaredDetism, SolnContext) :-
(
determinism_components(DeclaredDetism, _, at_most_many_cc)
->
SolnContext = first_soln
;
SolnContext = all_solns
).
% When figuring out the determinism of a conjunction,
% if the second goal is unreachable, then then the
% determinism of the conjunction is just the determinism
% of the first goal.
det_conjunction_detism(DetismA, DetismB, Detism) :-
determinism_components(DetismA, CanFailA, MaxSolnA),
( MaxSolnA = at_most_zero ->
Detism = DetismA
;
determinism_components(DetismB, CanFailB, MaxSolnB),
det_conjunction_canfail(CanFailA, CanFailB, CanFail),
det_conjunction_maxsoln(MaxSolnA, MaxSolnB, MaxSoln),
determinism_components(Detism, CanFail, MaxSoln)
).
% Figuring out the determinism of a parallel conjunction is much
% easier than for a sequential conjunction, since you simply
% ignore the case where the second goal is unreachable. Just do
% a normal solution count.
det_par_conjunction_detism(DetismA, DetismB, Detism) :-
determinism_components(DetismA, CanFailA, MaxSolnA),
determinism_components(DetismB, CanFailB, MaxSolnB),
det_conjunction_canfail(CanFailA, CanFailB, CanFail),
det_conjunction_maxsoln(MaxSolnA, MaxSolnB, MaxSoln),
determinism_components(Detism, CanFail, MaxSoln).
% For the at_most_zero, at_most_one, at_most_many,
% we're just doing abstract interpretation to count
% the number of solutions. Similarly, for the can_fail
% and cannot_fail components, we're doing abstract
% interpretation to count the possible number of failures.
% If the num_solns is at_most_many_cc, this means that
% the goal might have many logical solutions if there were no
% pruning, but that the goal occurs in a single-solution
% context, so only the first solution will be returned.
:- pred det_conjunction_maxsoln(soln_count, soln_count, soln_count).
:- mode det_conjunction_maxsoln(in, in, out) is det.
det_conjunction_maxsoln(at_most_zero, at_most_zero, at_most_zero).
det_conjunction_maxsoln(at_most_zero, at_most_one, at_most_zero).
det_conjunction_maxsoln(at_most_zero, at_most_many_cc, at_most_zero).
det_conjunction_maxsoln(at_most_zero, at_most_many, at_most_zero).
det_conjunction_maxsoln(at_most_one, at_most_zero, at_most_zero).
det_conjunction_maxsoln(at_most_one, at_most_one, at_most_one).
det_conjunction_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
det_conjunction_maxsoln(at_most_one, at_most_many, at_most_many).
det_conjunction_maxsoln(at_most_many_cc, at_most_zero, at_most_zero).
det_conjunction_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
det_conjunction_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
det_conjunction_maxsoln(at_most_many_cc, at_most_many, _) :-
% if the first conjunct could be cc pruned,
% the second conj ought to have been cc pruned too
error("det_conjunction_maxsoln: many_cc , many").
det_conjunction_maxsoln(at_most_many, at_most_zero, at_most_zero).
det_conjunction_maxsoln(at_most_many, at_most_one, at_most_many).
det_conjunction_maxsoln(at_most_many, at_most_many_cc, at_most_many).
det_conjunction_maxsoln(at_most_many, at_most_many, at_most_many).
:- pred det_conjunction_canfail(can_fail, can_fail, can_fail).
:- mode det_conjunction_canfail(in, in, out) is det.
det_conjunction_canfail(can_fail, can_fail, can_fail).
det_conjunction_canfail(can_fail, cannot_fail, can_fail).
det_conjunction_canfail(cannot_fail, can_fail, can_fail).
det_conjunction_canfail(cannot_fail, cannot_fail, cannot_fail).
det_disjunction_maxsoln(at_most_zero, at_most_zero, at_most_zero).
det_disjunction_maxsoln(at_most_zero, at_most_one, at_most_one).
det_disjunction_maxsoln(at_most_zero, at_most_many_cc, at_most_many_cc).
det_disjunction_maxsoln(at_most_zero, at_most_many, at_most_many).
det_disjunction_maxsoln(at_most_one, at_most_zero, at_most_one).
det_disjunction_maxsoln(at_most_one, at_most_one, at_most_many).
det_disjunction_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
det_disjunction_maxsoln(at_most_one, at_most_many, at_most_many).
det_disjunction_maxsoln(at_most_many_cc, at_most_zero, at_most_many_cc).
det_disjunction_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
det_disjunction_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
det_disjunction_maxsoln(at_most_many_cc, at_most_many, _) :-
% if the first disjunct could be cc pruned,
% the second disjunct ought to have been cc pruned too
error("det_disjunction_maxsoln: cc in first case, not cc in second case").
det_disjunction_maxsoln(at_most_many, at_most_zero, at_most_many).
det_disjunction_maxsoln(at_most_many, at_most_one, at_most_many).
det_disjunction_maxsoln(at_most_many, at_most_many_cc, _) :-
% if the first disjunct could be cc pruned,
% the second disjunct ought to have been cc pruned too
error("det_disjunction_maxsoln: cc in second case, not cc in first case").
det_disjunction_maxsoln(at_most_many, at_most_many, at_most_many).
det_disjunction_canfail(can_fail, can_fail, can_fail).
det_disjunction_canfail(can_fail, cannot_fail, cannot_fail).
det_disjunction_canfail(cannot_fail, can_fail, cannot_fail).
det_disjunction_canfail(cannot_fail, cannot_fail, cannot_fail).
det_switch_maxsoln(at_most_zero, at_most_zero, at_most_zero).
det_switch_maxsoln(at_most_zero, at_most_one, at_most_one).
det_switch_maxsoln(at_most_zero, at_most_many_cc, at_most_many_cc).
det_switch_maxsoln(at_most_zero, at_most_many, at_most_many).
det_switch_maxsoln(at_most_one, at_most_zero, at_most_one).
det_switch_maxsoln(at_most_one, at_most_one, at_most_one).
det_switch_maxsoln(at_most_one, at_most_many_cc, at_most_many_cc).
det_switch_maxsoln(at_most_one, at_most_many, at_most_many).
det_switch_maxsoln(at_most_many_cc, at_most_zero, at_most_many_cc).
det_switch_maxsoln(at_most_many_cc, at_most_one, at_most_many_cc).
det_switch_maxsoln(at_most_many_cc, at_most_many_cc, at_most_many_cc).
det_switch_maxsoln(at_most_many_cc, at_most_many, _) :-
% if the first case could be cc pruned,
% the second case ought to have been cc pruned too
error("det_switch_maxsoln: cc in first case, not cc in second case").
det_switch_maxsoln(at_most_many, at_most_zero, at_most_many).
det_switch_maxsoln(at_most_many, at_most_one, at_most_many).
det_switch_maxsoln(at_most_many, at_most_many_cc, _) :-
% if the first case could be cc pruned,
% the second case ought to have been cc pruned too
error("det_switch_maxsoln: cc in second case, not cc in first case").
det_switch_maxsoln(at_most_many, at_most_many, at_most_many).
det_switch_canfail(can_fail, can_fail, can_fail).
det_switch_canfail(can_fail, cannot_fail, can_fail).
det_switch_canfail(cannot_fail, can_fail, can_fail).
det_switch_canfail(cannot_fail, cannot_fail, cannot_fail).
det_negation_det(det, yes(failure)).
det_negation_det(semidet, yes(semidet)).
det_negation_det(multidet, no).
det_negation_det(nondet, no).
det_negation_det(cc_multidet, no).
det_negation_det(cc_nondet, no).
det_negation_det(erroneous, yes(erroneous)).
det_negation_det(failure, yes(det)).
%-----------------------------------------------------------------------------%
% determinism_declarations takes a module_info as input and
% returns two lists of procedure ids, the first being those
% with determinism declarations, and the second being those without.
:- pred determinism_declarations(module_info, pred_proc_list,
pred_proc_list, pred_proc_list).
:- mode determinism_declarations(in, out, out, out) is det.
determinism_declarations(ModuleInfo, DeclaredProcs,
UndeclaredProcs, NoInferProcs) :-
get_all_pred_procs(ModuleInfo, PredProcs),
segregate_procs(ModuleInfo, PredProcs, DeclaredProcs,
UndeclaredProcs, NoInferProcs).
% get_all_pred_procs takes a module_info and returns a list
% of all the procedures ids for that module (except class methods,
% which do not need to be checked since we generate the code ourselves).
:- pred get_all_pred_procs(module_info, pred_proc_list).
:- mode get_all_pred_procs(in, out) is det.
get_all_pred_procs(ModuleInfo, PredProcs) :-
module_info_predids(ModuleInfo, PredIds),
module_info_preds(ModuleInfo, Preds),
get_all_pred_procs_2(Preds, PredIds, [], PredProcs).
:- pred get_all_pred_procs_2(pred_table, list(pred_id),
pred_proc_list, pred_proc_list).
:- mode get_all_pred_procs_2(in, in, in, out) is det.
get_all_pred_procs_2(_Preds, [], PredProcs, PredProcs).
get_all_pred_procs_2(Preds, [PredId|PredIds], PredProcs0, PredProcs) :-
map__lookup(Preds, PredId, Pred),
pred_info_procids(Pred, ProcIds),
fold_pred_modes(PredId, ProcIds, PredProcs0, PredProcs1),
get_all_pred_procs_2(Preds, PredIds, PredProcs1, PredProcs).
:- pred fold_pred_modes(pred_id, list(proc_id), pred_proc_list, pred_proc_list).
:- mode fold_pred_modes(in, in, in, out) is det.
fold_pred_modes(_PredId, [], PredProcs, PredProcs).
fold_pred_modes(PredId, [ProcId|ProcIds], PredProcs0, PredProcs) :-
fold_pred_modes(PredId, ProcIds, [proc(PredId, ProcId) | PredProcs0],
PredProcs).
% segregate_procs(ModuleInfo, PredProcs, DeclaredProcs, UndeclaredProcs)
% splits the list of procedures PredProcs into DeclaredProcs and
% UndeclaredProcs.
:- pred segregate_procs(module_info, pred_proc_list, pred_proc_list,
pred_proc_list, pred_proc_list).
:- mode segregate_procs(in, in, out, out, out) is det.
segregate_procs(ModuleInfo, PredProcs, DeclaredProcs,
UndeclaredProcs, NoInferProcs) :-
segregate_procs_2(ModuleInfo, PredProcs, [], DeclaredProcs,
[], UndeclaredProcs, [], NoInferProcs).
:- pred segregate_procs_2(module_info, pred_proc_list, pred_proc_list,
pred_proc_list, pred_proc_list, pred_proc_list,
pred_proc_list, pred_proc_list).
:- mode segregate_procs_2(in, in, in, out, in, out, in, out) is det.
segregate_procs_2(_ModuleInfo, [], DeclaredProcs, DeclaredProcs,
UndeclaredProcs, UndeclaredProcs, NoInferProcs, NoInferProcs).
segregate_procs_2(ModuleInfo, [proc(PredId, ProcId) | PredProcs],
DeclaredProcs0, DeclaredProcs,
UndeclaredProcs0, UndeclaredProcs,
NoInferProcs0, NoInferProcs) :-
module_info_preds(ModuleInfo, Preds),
map__lookup(Preds, PredId, Pred),
(
(
pred_info_is_imported(Pred)
;
pred_info_is_pseudo_imported(Pred),
hlds_pred__in_in_unification_proc_id(ProcId)
;
pred_info_get_markers(Pred, Markers),
check_marker(Markers, class_method)
)
->
UndeclaredProcs1 = UndeclaredProcs0,
DeclaredProcs1 = DeclaredProcs0,
NoInferProcs1 = [proc(PredId, ProcId) | NoInferProcs0]
;
pred_info_procedures(Pred, Procs),
map__lookup(Procs, ProcId, Proc),
proc_info_declared_determinism(Proc, MaybeDetism),
(
MaybeDetism = no,
UndeclaredProcs1 =
[proc(PredId, ProcId) | UndeclaredProcs0],
DeclaredProcs1 = DeclaredProcs0
;
MaybeDetism = yes(_),
DeclaredProcs1 =
[proc(PredId, ProcId) | DeclaredProcs0],
UndeclaredProcs1 = UndeclaredProcs0
),
NoInferProcs1 = NoInferProcs0
),
segregate_procs_2(ModuleInfo, PredProcs, DeclaredProcs1, DeclaredProcs,
UndeclaredProcs1, UndeclaredProcs,
NoInferProcs1, NoInferProcs).
% We can't infer a tighter determinism for imported procedures or
% for class methods, so set the inferred determinism to be the
% same as the declared determinism. This can't be done easily in
% make_hlds.m since inter-module optimization means that the
% import_status of procedures isn't determined until after all
% items are processed.
:- pred set_non_inferred_proc_determinism(pred_proc_id,
module_info, module_info).
:- mode set_non_inferred_proc_determinism(in, in, out) is det.
set_non_inferred_proc_determinism(proc(PredId, ProcId),
ModuleInfo0, ModuleInfo) :-
module_info_pred_info(ModuleInfo0, PredId, PredInfo0),
pred_info_procedures(PredInfo0, Procs0),
map__lookup(Procs0, ProcId, ProcInfo0),
proc_info_declared_determinism(ProcInfo0, MaybeDet),
( MaybeDet = yes(Det) ->
proc_info_set_inferred_determinism(ProcInfo0, Det, ProcInfo),
map__det_update(Procs0, ProcId, ProcInfo, Procs),
pred_info_set_procedures(PredInfo0, Procs, PredInfo),
module_info_set_pred_info(ModuleInfo0,
PredId, PredInfo, ModuleInfo)
;
ModuleInfo = ModuleInfo0
).
%-----------------------------------------------------------------------------%
|