1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
%-----------------------------------------------------------------------------%
% Copyright (C) 1995-1996 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% file: graph_colour.m
% main author: conway.
%
% This file contains functionality to find a 'good' colouring of a graph.
% The predicate graph_colour__group_elements(set(set(T)), set(set(T))),
% takes a set of sets each containing elements that touch, and returns
% a set of sets each containing elements that can be assigned the same
% colour, ensuring that touching elements have different colours.
% ("Good" means using as few colours as possible.)
%
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module graph_colour.
:- interface.
:- import_module set.
:- pred graph_colour__group_elements(set(set(T)), set(set(T))).
:- mode graph_colour__group_elements(in, out) is det.
:- implementation.
:- import_module list, require.
graph_colour__group_elements(Constraints, Colours) :-
set__power_union(Constraints, AllVars),
set__init(EmptySet),
set__delete(Constraints, EmptySet, Constraints1),
set__to_sorted_list(Constraints1, ConstraintList),
graph_colour__find_all_colours(ConstraintList, AllVars, ColourList),
set__list_to_set(ColourList, Colours),
true.
% % performance reducing sanity check....
% (
% set__power_union(Colours, AllColours),
% (set__member(Var, AllVars) => set__member(Var, AllColours))
% ->
% error("graph_colour__group_elements: sanity check failed")
% ;
% true
% ).
%------------------------------------------------------------------------------%
:- pred graph_colour__find_all_colours(list(set(T)), set(T), list(set(T))).
:- mode graph_colour__find_all_colours(in, in, out) is det.
% Iterate the assignment of a new colour untill all constraints
% are satisfied.
graph_colour__find_all_colours(ConstraintList, Vars, ColourList) :-
(
ConstraintList = []
->
ColourList = []
;
graph_colour__next_colour(Vars, ConstraintList,
RemainingConstraints, Colour),
set__difference(Vars, Colour, RestVars),
graph_colour__find_all_colours(RemainingConstraints, RestVars,
ColourList0),
ColourList = [Colour|ColourList0]
).
%------------------------------------------------------------------------------%
:- pred graph_colour__next_colour(set(T), list(set(T)), list(set(T)), set(T)).
:- mode graph_colour__next_colour(in, in, out, out) is det.
graph_colour__next_colour(Vars, ConstraintList, Remainder, SameColour) :-
(
% If there are any constraints left to be
% satisfied,
ConstraintList \= []
->
% Select a variable to assign a colour,
graph_colour__choose_var(Vars, Var, Vars1),
% and divide the constraints into those that
% may be the same colour as that var and those
% that may not.
graph_colour__divide_constraints(Var, ConstraintList,
WereContaining, NotContaining, Vars1, RestVars),
(
% if there are sets that can
% share a colour with the selected var,
NotContaining \= []
->
(
% and if there is at least
% one variable that can share
% a colour with the selected
% variable,
\+ set__empty(RestVars)
->
% then recusively use the remaining
% constraints to assign a colour
% to one of the remaining vars,
% and assemble the constraint
% residues.
graph_colour__next_colour(RestVars,
NotContaining, ResidueSets,
SameColour0),
% add this variable to the
% variables of the current
% colour.
set__insert(SameColour0, Var, SameColour)
;
% There were no variables left
% that could share a colour, so
% create a singleton set containing
% this variable.
set__singleton_set(SameColour, Var),
ResidueSets = NotContaining
)
;
% There were no more constraints
% which could be satisfied by assigning
% any variable a colour the same as the
% current variable, so create a signleton
% set with the current var, and assign
% the residue to the empty set.
set__singleton_set(SameColour, Var),
ResidueSets = []
),
% The remaining constraints are the residue
% sets that could not be satisfied by assigning
% any variable to the current colour, and the
% constraints that were already satisfied by
% the assignment of the current variable to
% this colour.
list__append(ResidueSets, WereContaining, Remainder)
;
% If there were no constraints, then no colours
% were needed.
Remainder = [],
set__init(SameColour)
).
%------------------------------------------------------------------------------%
:- pred graph_colour__divide_constraints(T, list(set(T)), list(set(T)),
list(set(T)), set(T), set(T)).
:- mode graph_colour__divide_constraints(in, in, out, out, in, out) is det.
% graph_colour__divide_constraints takes a var and a list of sets of var,
% and divides the list into two lists: a list of sets containing the
% given variable and a list of sets not containing that variable. The
% sets in the list containing the variable have that variable removed.
% Additionally, a set of variables is threaded through the computation,
% and any variables that were in sets that also contained the given
% variables are removed from the threaded set.
graph_colour__divide_constraints(_Var, [], [], [], Vars, Vars).
graph_colour__divide_constraints(Var, [S|Ss], C, NC, Vars0, Vars) :-
graph_colour__divide_constraints(Var, Ss, C0, NC0, Vars0, Vars1),
(
set__member(Var, S)
->
set__delete(S, Var, T),
(
set__empty(T)
->
C = C0
;
C = [T|C0]
),
NC = NC0,
set__difference(Vars1, T, Vars)
;
C = C0,
NC = [S|NC0],
Vars = Vars1
).
%------------------------------------------------------------------------------%
:- pred graph_colour__choose_var(set(T), T, set(T)).
:- mode graph_colour__choose_var(in, out, out) is det.
% graph_colour__choose_var/3, given a set of variables, chooses
% one, returns it and the set with that variable removed. The
% use of higher order preds could be used to make the heuristic
% for which variable to choose user-defined.
graph_colour__choose_var(Vars, Var, Vars1) :-
set__to_sorted_list(Vars, VarList),
(
VarList = [VarA|Vars1A]
->
Var = VarA,
set__list_to_set(Vars1A, Vars1)
;
error("graph_colour__choose_var: no vars!")
).
%------------------------------------------------------------------------------%
%------------------------------------------------------------------------------%
|