1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
|
%-----------------------------------------------------------------------------%
% Copyright (C) 1996-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% This module defines the part of the HLDS that deals with issues related
% to data and its representation: function symbols, types, insts, modes.
% Main authors: fjh, conway.
:- module hlds_data.
:- interface.
:- import_module hlds_pred, llds, prog_data, (inst), term.
:- import_module bool, list, map, std_util.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% The symbol table for constructors.
% This table is used by the type-checker to look
% up the type of functors/constants.
:- type cons_table == map(cons_id, list(hlds_cons_defn)).
:- type cons_id ---> cons(sym_name, arity) % name, arity
; int_const(int)
; string_const(string)
; float_const(float)
; pred_const(pred_id, proc_id,
lambda_eval_method)
; code_addr_const(pred_id, proc_id)
% Used for constructing type_infos.
% Note that a pred_const is for a closure
% whereas a code_addr_const is just an address.
; type_ctor_info_const(module_name, string, int)
% module name, type name, type arity
; base_typeclass_info_const(module_name,
class_id, int, string)
% module name of instance declaration
% (not filled in so that link errors result
% from overlapping instances),
% class name and arity,
% class instance, a string encoding the type
% names and arities of the arguments to the
% instance declaration
; tabling_pointer_const(pred_id, proc_id)
% The address of the static variable
% that points to the table that implements
% memoization, loop checking or the minimal
% model semantics for the given procedure.
.
% A cons_defn is the definition of a constructor (i.e. a constant
% or a functor) for a particular type.
:- type hlds_cons_defn
---> hlds_cons_defn(
% maybe add tvarset here?
% you can get the tvarset from the hlds__type_defn.
existq_tvars, % existential type vars
list(class_constraint), % existential class constraints
list(type), % The types of the arguments
% of this functor (if any)
type_id, % The result type, i.e. the
% type to which this
% cons_defn belongs.
prog_context % The location of this
% ctor definition in the
% original source code
).
%-----------------------------------------------------------------------------%
% Various predicates for accessing the cons_id type.
% Given a cons_id and a list of argument terms, convert it into a
% term. Fails if the cons_id is a pred_const, code_addr_const or
% type_ctor_info_const.
:- pred cons_id_and_args_to_term(cons_id, list(term(T)), term(T)).
:- mode cons_id_and_args_to_term(in, in, out) is semidet.
% Get the arity of a cons_id, aborting on pred_const, code_addr_const
% and type_ctor_info_const.
:- pred cons_id_arity(cons_id, arity).
:- mode cons_id_arity(in, out) is det.
% The reverse conversion - make a cons_id for a functor.
% Given a const and an arity for the functor, create a cons_id.
:- pred make_functor_cons_id(const, arity, cons_id).
:- mode make_functor_cons_id(in, in, out) is det.
% Another way of making a cons_id from a functor.
% Given the name, argument types, and type_id of a functor,
% create a cons_id for that functor.
:- pred make_cons_id(sym_name, list(constructor_arg), type_id, cons_id).
:- mode make_cons_id(in, in, in, out) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module prog_util, varset.
:- import_module require.
cons_id_and_args_to_term(int_const(Int), [], Term) :-
term__context_init(Context),
Term = term__functor(term__integer(Int), [], Context).
cons_id_and_args_to_term(float_const(Float), [], Term) :-
term__context_init(Context),
Term = term__functor(term__float(Float), [], Context).
cons_id_and_args_to_term(string_const(String), [], Term) :-
term__context_init(Context),
Term = term__functor(term__string(String), [], Context).
cons_id_and_args_to_term(cons(SymName, _Arity), Args, Term) :-
construct_qualified_term(SymName, Args, Term).
cons_id_arity(cons(_, Arity), Arity).
cons_id_arity(int_const(_), 0).
cons_id_arity(string_const(_), 0).
cons_id_arity(float_const(_), 0).
cons_id_arity(pred_const(_, _, _), _) :-
error("cons_id_arity: can't get arity of pred_const").
cons_id_arity(code_addr_const(_, _), _) :-
error("cons_id_arity: can't get arity of code_addr_const").
cons_id_arity(type_ctor_info_const(_, _, _), _) :-
error("cons_id_arity: can't get arity of type_ctor_info_const").
cons_id_arity(base_typeclass_info_const(_, _, _, _), _) :-
error("cons_id_arity: can't get arity of base_typeclass_info_const").
cons_id_arity(tabling_pointer_const(_, _), _) :-
error("cons_id_arity: can't get arity of tabling_pointer_const").
make_functor_cons_id(term__atom(Name), Arity,
cons(unqualified(Name), Arity)).
make_functor_cons_id(term__integer(Int), _, int_const(Int)).
make_functor_cons_id(term__string(String), _, string_const(String)).
make_functor_cons_id(term__float(Float), _, float_const(Float)).
make_cons_id(SymName0, Args, TypeId, cons(SymName, Arity)) :-
% Use the module qualifier on the SymName, if there is one,
% otherwise use the module qualifier on the Type, if there is one,
% otherwise leave it unqualified.
% XXX is that the right thing to do?
(
SymName0 = qualified(_, _),
SymName = SymName0
;
SymName0 = unqualified(ConsName),
(
TypeId = unqualified(_) - _,
SymName = SymName0
;
TypeId = qualified(TypeModule, _) - _,
SymName = qualified(TypeModule, ConsName)
)
),
list__length(Args, Arity).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- interface.
% The symbol table for types.
:- type type_id == pair(sym_name, arity).
% name, arity
:- type type_table == map(type_id, hlds_type_defn).
% This is how type, modes and constructors are represented.
% The parts that are not defined here (i.e. type_param, constructor,
% type, inst, mode, condition) are represented in the same way as
% in prog_io.m, and are defined there.
% An hlds_type_defn holds the information about a type definition.
:- type hlds_type_defn.
:- pred hlds_data__set_type_defn(tvarset, list(type_param),
hlds_type_body, import_status, prog_context, hlds_type_defn).
:- mode hlds_data__set_type_defn(in, in, in, in, in, out) is det.
:- pred hlds_data__get_type_defn_tvarset(hlds_type_defn, tvarset).
:- mode hlds_data__get_type_defn_tvarset(in, out) is det.
:- pred hlds_data__get_type_defn_tparams(hlds_type_defn, list(type_param)).
:- mode hlds_data__get_type_defn_tparams(in, out) is det.
:- pred hlds_data__get_type_defn_body(hlds_type_defn, hlds_type_body).
:- mode hlds_data__get_type_defn_body(in, out) is det.
:- pred hlds_data__get_type_defn_status(hlds_type_defn, import_status).
:- mode hlds_data__get_type_defn_status(in, out) is det.
:- pred hlds_data__get_type_defn_context(hlds_type_defn, prog_context).
:- mode hlds_data__get_type_defn_context(in, out) is det.
:- pred hlds_data__set_type_defn_status(hlds_type_defn, import_status,
hlds_type_defn).
:- mode hlds_data__set_type_defn_status(in, in, out) is det.
% An `hlds_type_body' holds the body of a type definition:
% du = discriminated union, uu = undiscriminated union,
% eqv_type = equivalence type (a type defined to be equivalent
% to some other type)
:- type hlds_type_body
---> du_type(
list(constructor), % the ctors for this type
cons_tag_values, % their tag values
bool, % is this type an enumeration?
maybe(sym_name) % user-defined equality pred
)
; uu_type(list(type)) % not yet implemented!
; eqv_type(type)
; abstract_type.
% The `cons_tag_values' type stores the information on how
% a discriminated union type is represented.
% For each functor in the d.u. type, it gives a cons_tag
% which specifies how that functor and its arguments are represented.
:- type cons_tag_values == map(cons_id, cons_tag).
% A `cons_tag' specifies how a functor and its arguments (if any)
% are represented. Currently all values are represented as
% a single word; values which do not fit into a word are represented
% by a (possibly tagged) pointer to memory on the heap.
:- type cons_tag
---> string_constant(string)
% Strings are represented using the string_const()
% macro; in the current implementation, Mercury
% strings are represented just as C null-terminated
% strings.
; float_constant(float)
% Floats are represented using the float_to_word(),
% word_to_float(), and float_const() macros.
% The default implementation of these is to
% use boxed double-precision floats.
; int_constant(int)
% This means the constant is represented just as
% a word containing the specified integer value.
% This is used for enumerations and character
% constants as well as for int constants.
; pred_closure_tag(pred_id, proc_id, lambda_eval_method)
% Higher-order pred closures tags.
% These are represented as a pointer to
% an argument vector.
% For closures with lambda_eval_method `normal',
% the first two words of the argument vector
% hold the number of args and the address of
% the procedure respectively.
% The remaining words hold the arguments.
; code_addr_constant(pred_id, proc_id)
% Procedure address constants
% (used for constructing type_infos).
% The word just contains the address of the
% specified procedure.
; type_ctor_info_constant(module_name, string, arity)
% This is how we refer to type_ctor_info structures
% represented as global data. The args are
% the name of the module the type is defined in,
% and the name of the type, and its arity.
; base_typeclass_info_constant(module_name, class_id, string)
% This is how we refer to base_typeclass_info structures
% represented as global data. The first argument is the
% name of the module containing the instance declration,
% the second is the class name and arity, while the
% third is the string which uniquely identifies the
% instance declaration (it is made from the type of
% the arguments to the instance decl).
; tabling_pointer_constant(pred_id, proc_id)
% This is how we refer to tabling pointer variables
% represented as global data. The word just contains
% the address of the tabling pointer of the
% specified procedure.
; unshared_tag(tag_bits)
% This is for constants or functors which can be
% distinguished with just a primary tag.
% An "unshared" tag is one which fits on the
% bottom of a pointer (i.e. two bits for
% 32-bit architectures, or three bits for 64-bit
% architectures), and is used for just one
% functor.
% For constants we store a tagged zero, for functors
% we store a tagged pointer to the argument vector.
; shared_remote_tag(tag_bits, int)
% This is for functors or constants which
% require more than just a two-bit tag. In this case,
% we use both a primary and a secondary tag.
% Several functors share the primary tag and are
% distinguished by the secondary tag.
% The secondary tag is stored as the first word of
% the argument vector. (If it is a constant, then
% in this case there is an argument vector of size 1
% which just holds the secondary tag.)
; shared_local_tag(tag_bits, int)
% This is for constants which require more than a
% two-bit tag. In this case, we use both a primary
% and a secondary tag, but this time the secondary
% tag is stored in the rest of the main word rather
% than in the first word of the argument vector.
; no_tag.
% This is for types with a single functor of arity one.
% In this case, we don't need to store the functor,
% and instead we store the argument directly.
% The type `tag_bits' holds a primary tag value.
:- type tag_bits == int. % actually only 2 (or maybe 3) bits
:- implementation.
:- type hlds_type_defn
---> hlds_type_defn(
tvarset, % Names of type vars (empty
% except for polymorphic types)
list(type_param), % Formal type parameters
hlds_type_body, % The definition of the type
import_status, % Is the type defined in this
% module, and if yes, is it
% exported
% condition, % UNUSED
% % Reserved for holding a user-defined invariant
% % for the type, as in the NU-Prolog's type
% % checker, which allows `where' conditions on
% % type definitions. For example:
% % :- type sorted_list(T) == list(T)
% % where sorted.
prog_context % The location of this type
% definition in the original
% source code
).
hlds_data__set_type_defn(Tvarset, Params, Body, Status, Context, Defn) :-
Defn = hlds_type_defn(Tvarset, Params, Body, Status, Context).
hlds_data__get_type_defn_tvarset(hlds_type_defn(Tvarset, _, _, _, _), Tvarset).
hlds_data__get_type_defn_tparams(hlds_type_defn(_, Params, _, _, _), Params).
hlds_data__get_type_defn_body(hlds_type_defn(_, _, Body, _, _), Body).
hlds_data__get_type_defn_status(hlds_type_defn(_, _, _, Status, _), Status).
hlds_data__get_type_defn_context(hlds_type_defn(_, _, _, _, Context), Context).
hlds_data__set_type_defn_status(hlds_type_defn(A, B, C, _, E), Status,
hlds_type_defn(A, B, C, Status, E)).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- interface.
% The symbol table for insts.
:- type inst_id == pair(sym_name, arity).
% name, arity.
:- type inst_table.
:- type user_inst_table.
:- type user_inst_defns == map(inst_id, hlds_inst_defn).
:- type unify_inst_table == map(inst_name, maybe_inst_det).
:- type unify_inst_pair ---> unify_inst_pair(is_live, inst, inst,
unify_is_real).
:- type merge_inst_table == map(pair(inst), maybe_inst).
:- type ground_inst_table == map(inst_name, maybe_inst_det).
:- type any_inst_table == map(inst_name, maybe_inst_det).
:- type shared_inst_table == map(inst_name, maybe_inst).
:- type mostly_uniq_inst_table == map(inst_name, maybe_inst).
:- type maybe_inst ---> unknown
; known(inst).
:- type maybe_inst_det ---> unknown
; known(inst, determinism).
% An `hlds_inst_defn' holds the information we need to store
% about inst definitions such as
% :- inst list_skel(I) = bound([] ; [I | list_skel(I)].
:- type hlds_inst_defn
---> hlds_inst_defn(
inst_varset, % The names of the inst
% parameters (if any).
list(inst_param), % The inst parameters (if any).
% ([I] in the above example.)
hlds_inst_body, % The definition of this inst.
condition, % Unused (reserved for
% holding a user-defined
% invariant).
prog_context, % The location in the source
% code of this inst definition.
import_status % So intermod.m can tell
% whether to output this inst.
).
:- type hlds_inst_body
---> eqv_inst(inst) % This inst is equivalent to
% some other inst.
; abstract_inst. % This inst is just a forward
% declaration; the real
% definition will be filled in
% later. (XXX Abstract insts
% are not really supported.)
%-----------------------------------------------------------------------------%
:- pred inst_table_init(inst_table).
:- mode inst_table_init(out) is det.
:- pred inst_table_get_user_insts(inst_table, user_inst_table).
:- mode inst_table_get_user_insts(in, out) is det.
:- pred inst_table_get_unify_insts(inst_table, unify_inst_table).
:- mode inst_table_get_unify_insts(in, out) is det.
:- pred inst_table_get_merge_insts(inst_table, merge_inst_table).
:- mode inst_table_get_merge_insts(in, out) is det.
:- pred inst_table_get_ground_insts(inst_table, ground_inst_table).
:- mode inst_table_get_ground_insts(in, out) is det.
:- pred inst_table_get_any_insts(inst_table, any_inst_table).
:- mode inst_table_get_any_insts(in, out) is det.
:- pred inst_table_get_shared_insts(inst_table, shared_inst_table).
:- mode inst_table_get_shared_insts(in, out) is det.
:- pred inst_table_get_mostly_uniq_insts(inst_table, mostly_uniq_inst_table).
:- mode inst_table_get_mostly_uniq_insts(in, out) is det.
:- pred inst_table_set_user_insts(inst_table, user_inst_table, inst_table).
:- mode inst_table_set_user_insts(in, in, out) is det.
:- pred inst_table_set_unify_insts(inst_table, unify_inst_table, inst_table).
:- mode inst_table_set_unify_insts(in, in, out) is det.
:- pred inst_table_set_merge_insts(inst_table, merge_inst_table, inst_table).
:- mode inst_table_set_merge_insts(in, in, out) is det.
:- pred inst_table_set_ground_insts(inst_table, ground_inst_table, inst_table).
:- mode inst_table_set_ground_insts(in, in, out) is det.
:- pred inst_table_set_any_insts(inst_table, any_inst_table, inst_table).
:- mode inst_table_set_any_insts(in, in, out) is det.
:- pred inst_table_set_shared_insts(inst_table, shared_inst_table, inst_table).
:- mode inst_table_set_shared_insts(in, in, out) is det.
:- pred inst_table_set_mostly_uniq_insts(inst_table, mostly_uniq_inst_table,
inst_table).
:- mode inst_table_set_mostly_uniq_insts(in, in, out) is det.
:- pred user_inst_table_get_inst_defns(user_inst_table, user_inst_defns).
:- mode user_inst_table_get_inst_defns(in, out) is det.
:- pred user_inst_table_get_inst_ids(user_inst_table, list(inst_id)).
:- mode user_inst_table_get_inst_ids(in, out) is det.
:- pred user_inst_table_insert(user_inst_table, inst_id, hlds_inst_defn,
user_inst_table).
:- mode user_inst_table_insert(in, in, in, out) is semidet.
% Optimize the user_inst_table for lookups. This just sorts
% the cached list of inst_ids.
:- pred user_inst_table_optimize(user_inst_table, user_inst_table).
:- mode user_inst_table_optimize(in, out) is det.
:- implementation.
:- type inst_table
---> inst_table(
user_inst_table,
unify_inst_table,
merge_inst_table,
ground_inst_table,
any_inst_table,
shared_inst_table,
mostly_uniq_inst_table
).
:- type user_inst_defns.
:- type user_inst_table
---> user_inst_table(
user_inst_defns,
list(inst_id) % Cached for efficiency when module
% qualifying the modes of lambda expressions.
).
inst_table_init(inst_table(UserInsts, UnifyInsts, MergeInsts, GroundInsts,
AnyInsts, SharedInsts, NondetLiveInsts)) :-
map__init(UserInstDefns),
UserInsts = user_inst_table(UserInstDefns, []),
map__init(UnifyInsts),
map__init(MergeInsts),
map__init(GroundInsts),
map__init(SharedInsts),
map__init(AnyInsts),
map__init(NondetLiveInsts).
inst_table_get_user_insts(inst_table(UserInsts, _, _, _, _, _, _), UserInsts).
inst_table_get_unify_insts(inst_table(_, UnifyInsts, _, _, _, _, _),
UnifyInsts).
inst_table_get_merge_insts(inst_table(_, _, MergeInsts, _, _, _, _),
MergeInsts).
inst_table_get_ground_insts(inst_table(_, _, _, GroundInsts, _, _, _),
GroundInsts).
inst_table_get_any_insts(inst_table(_, _, _, _, AnyInsts, _, _), AnyInsts).
inst_table_get_shared_insts(inst_table(_, _, _, _, _, SharedInsts, _),
SharedInsts).
inst_table_get_mostly_uniq_insts(inst_table(_, _, _, _, _, _, NondetLiveInsts),
NondetLiveInsts).
inst_table_set_user_insts(inst_table(_, B, C, D, E, F, G), UserInsts,
inst_table(UserInsts, B, C, D, E, F, G)).
inst_table_set_unify_insts(inst_table(A, _, C, D, E, F, G), UnifyInsts,
inst_table(A, UnifyInsts, C, D, E, F, G)).
inst_table_set_merge_insts(inst_table(A, B, _, D, E, F, G), MergeInsts,
inst_table(A, B, MergeInsts, D, E, F, G)).
inst_table_set_ground_insts(inst_table(A, B, C, _, E, F, G), GroundInsts,
inst_table(A, B, C, GroundInsts, E, F, G)).
inst_table_set_any_insts(inst_table(A, B, C, D, _, F, G), AnyInsts,
inst_table(A, B, C, D, AnyInsts, F, G)).
inst_table_set_shared_insts(inst_table(A, B, C, D, E, _, G), SharedInsts,
inst_table(A, B, C, D, E, SharedInsts, G)).
inst_table_set_mostly_uniq_insts(inst_table(A, B, C, D, E, F, _),
NondetLiveInsts,
inst_table(A, B, C, D, E, F, NondetLiveInsts)).
user_inst_table_get_inst_defns(user_inst_table(InstDefns, _), InstDefns).
user_inst_table_get_inst_ids(user_inst_table(_, InstIds), InstIds).
user_inst_table_insert(user_inst_table(InstDefns0, InstIds0), InstId,
InstDefn, user_inst_table(InstDefns, InstIds)) :-
map__insert(InstDefns0, InstId, InstDefn, InstDefns),
InstIds = [InstId | InstIds0].
user_inst_table_optimize(user_inst_table(InstDefns0, InstIds0),
user_inst_table(InstDefns, InstIds)) :-
map__optimize(InstDefns0, InstDefns),
list__sort(InstIds0, InstIds).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- interface.
% The symbol table for modes.
:- type mode_id == pair(sym_name, arity).
% name, arity
:- type mode_table.
:- type mode_defns == map(mode_id, hlds_mode_defn).
% A hlds_mode_defn stores the information about a mode
% definition such as
% :- mode out :: free -> ground.
% or
% :- mode in(I) :: I -> I.
% or
% :- mode in_list_skel :: in(list_skel).
:- type hlds_mode_defn
---> hlds_mode_defn(
inst_varset, % The names of the inst
% parameters (if any).
list(inst_param), % The list of the inst
% parameters (if any).
% (e.g. [I] for the second
% example above.)
hlds_mode_body, % The definition of this mode.
condition, % Unused (reserved for
% holding a user-defined
% invariant).
prog_context, % The location of this mode
% definition in the original
% source code.
import_status % So intermod.m can tell
% whether to output this mode.
).
% The only sort of mode definitions allowed are equivalence modes.
:- type hlds_mode_body
---> eqv_mode(mode). % This mode is equivalent to some
% other mode.
% Given a mode table get the mode_id - hlds_mode_defn map.
:- pred mode_table_get_mode_defns(mode_table, mode_defns).
:- mode mode_table_get_mode_defns(in, out) is det.
% Get the list of defined mode_ids from the mode_table.
:- pred mode_table_get_mode_ids(mode_table, list(mode_id)).
:- mode mode_table_get_mode_ids(in, out) is det.
% Insert a mode_id and corresponding hlds_mode_defn into the
% mode_table. Fail if the mode_id is already present in the table.
:- pred mode_table_insert(mode_table, mode_id, hlds_mode_defn, mode_table).
:- mode mode_table_insert(in, in, in, out) is semidet.
:- pred mode_table_init(mode_table).
:- mode mode_table_init(out) is det.
% Optimize the mode table for lookups.
:- pred mode_table_optimize(mode_table, mode_table).
:- mode mode_table_optimize(in, out) is det.
:- implementation.
:- type mode_table
---> mode_table(
mode_defns,
list(mode_id) % Cached for efficiency
).
mode_table_get_mode_defns(mode_table(ModeDefns, _), ModeDefns).
mode_table_get_mode_ids(mode_table(_, ModeIds), ModeIds).
mode_table_insert(mode_table(ModeDefns0, ModeIds0), ModeId, ModeDefn,
mode_table(ModeDefns, ModeIds)) :-
map__insert(ModeDefns0, ModeId, ModeDefn, ModeDefns),
ModeIds = [ModeId | ModeIds0].
mode_table_init(mode_table(ModeDefns, [])) :-
map__init(ModeDefns).
mode_table_optimize(mode_table(ModeDefns0, ModeIds0),
mode_table(ModeDefns, ModeIds)) :-
map__optimize(ModeDefns0, ModeDefns), % NOP
list__sort(ModeIds0, ModeIds). % Sort the list of mode_ids
% for quick conversion to a set by module_qual
% when qualifying the modes of lambda expressions.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- interface.
%
% Types and procedures for decomposing and analysing determinism.
% The `determinism' type itself is defined in prog_data.m.
%
:- type can_fail ---> can_fail
; cannot_fail.
:- type soln_count
---> at_most_zero
; at_most_one
; at_most_many_cc
% "_cc" means "committed-choice": there is
% more than one logical solution, but
% the pred or goal is being used in a context
% where we are only looking for the first
% solution.
; at_most_many.
:- pred determinism_components(determinism, can_fail, soln_count).
:- mode determinism_components(in, out, out) is det.
:- mode determinism_components(out, in, in) is det.
:- pred determinism_to_code_model(determinism, code_model).
:- mode determinism_to_code_model(in, out) is det.
:- mode determinism_to_code_model(out, in) is multidet.
:- implementation.
determinism_components(det, cannot_fail, at_most_one).
determinism_components(semidet, can_fail, at_most_one).
determinism_components(multidet, cannot_fail, at_most_many).
determinism_components(nondet, can_fail, at_most_many).
determinism_components(cc_multidet, cannot_fail, at_most_many_cc).
determinism_components(cc_nondet, can_fail, at_most_many_cc).
determinism_components(erroneous, cannot_fail, at_most_zero).
determinism_components(failure, can_fail, at_most_zero).
determinism_to_code_model(det, model_det).
determinism_to_code_model(semidet, model_semi).
determinism_to_code_model(nondet, model_non).
determinism_to_code_model(multidet, model_non).
determinism_to_code_model(cc_nondet, model_semi).
determinism_to_code_model(cc_multidet, model_det).
determinism_to_code_model(erroneous, model_det).
determinism_to_code_model(failure, model_semi).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- interface.
:- type class_table == map(class_id, hlds_class_defn).
:- type class_id ---> class_id(sym_name, arity).
% Information about a single `typeclass' declaration
:- type hlds_class_defn
---> hlds_class_defn(
import_status,
list(class_constraint), % SuperClasses
list(tvar), % ClassVars
class_interface, % The interface from the
% original declaration,
% used by intermod.m to
% write out the interface
% for a local typeclass to
% the `.opt' file.
hlds_class_interface, % Methods
tvarset, % VarNames
prog_context % Location of declaration
).
:- type hlds_class_interface == list(hlds_class_proc).
:- type hlds_class_proc
---> hlds_class_proc(
pred_id,
proc_id
).
% For each class, we keep track of a list of its instances, since there
% can be more than one instance of each class.
:- type instance_table == map(class_id, list(hlds_instance_defn)).
% Information about a single `instance' declaration
:- type hlds_instance_defn
---> hlds_instance_defn(
import_status, % import status of the instance
% declaration
prog_context, % context of declaration
list(class_constraint), % Constraints
list(type), % ClassTypes
instance_body, % Methods
maybe(hlds_class_interface),
% After check_typeclass, we
% will know the pred_ids and
% proc_ids of all the methods
tvarset, % VarNames
map(class_constraint, constraint_proof)
% "Proofs" of how to build the
% typeclass_infos for the
% superclasses of this class,
% for this instance
).
% `Proof' of why a constraint is redundant
:- type constraint_proof
% Apply the instance decl with the given number.
% Note that we don't store the actual
% hlds_instance_defn for two reasons:
% - That would require storing a renamed version of
% the constraint_proofs for *every* use of an
% instance declaration. This would't even get GCed
% for a long time because it would be stored in
% the pred_info.
% - The superclass proofs stored in the
% hlds_instance_defn would need to store all the
% constraint_proofs for all its ancestors. This
% would require the class relation to be
% topologically sorted before checking the
% instance declarations.
---> apply_instance(int)
% The constraint is redundant because of the
% following class's superclass declaration
; superclass(class_constraint).
%-----------------------------------------------------------------------------%
:- type subclass_details
---> subclass_details(
list(tvar), % variables of the superclass
class_id, % name of the subclass
list(tvar), % variables of the subclass
tvarset % the names of these vars
).
:- import_module multi_map.
% I'm sure there's a very clever way of
% doing this with graphs or relations...
:- type superclass_table == multi_map(class_id, subclass_details).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- interface.
%
% A table that records all the assertions in the system.
% An assertion is a goal that will always evaluate to true,
% subject to the constraints imposed by the quantifiers.
%
% ie :- promise all [A] some [B] (B > A)
%
% The above assertion states that for all possible values of A,
% there will exist at least one value, B, such that B is greater
% then A.
%
:- type assert_id.
:- type assertion_table.
:- pred assertion_table_init(assertion_table::out) is det.
:- pred assertion_table_add_assertion(pred_id::in, assertion_table::in,
assert_id::out, assertion_table::out) is det.
:- pred assertion_table_lookup(assertion_table::in, assert_id::in,
pred_id::out) is det.
:- pred assertion_table_pred_ids(assertion_table::in,
list(pred_id)::out) is det.
:- implementation.
:- import_module int.
:- type assert_id == int.
:- type assertion_table
---> assertion_table(assert_id, map(assert_id, pred_id)).
assertion_table_init(assertion_table(0, AssertionMap)) :-
map__init(AssertionMap).
assertion_table_add_assertion(Assertion, AssertionTable0, Id, AssertionTable) :-
AssertionTable0 = assertion_table(Id, AssertionMap0),
map__det_insert(AssertionMap0, Id, Assertion, AssertionMap),
AssertionTable = assertion_table(Id + 1, AssertionMap).
assertion_table_lookup(AssertionTable, Id, Assertion) :-
AssertionTable = assertion_table(_MaxId, AssertionMap),
map__lookup(AssertionMap, Id, Assertion).
assertion_table_pred_ids(assertion_table(_, AssertionMap), PredIds) :-
map__values(AssertionMap, PredIds).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
|