File: lambda.m

package info (click to toggle)
mercury 0.9-1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 18,488 kB
  • ctags: 9,800
  • sloc: objc: 146,680; ansic: 51,418; sh: 6,436; lisp: 1,567; cpp: 1,040; perl: 854; makefile: 450; asm: 232; awk: 203; exp: 32; fortran: 3; csh: 1
file content (550 lines) | stat: -rw-r--r-- 21,067 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
%-----------------------------------------------------------------------------%
% Copyright (C) 1995-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%

% file: lambda.m
% main author: fjh

% This module is a pass over the HLDS to deal with lambda expressions.
%
% Lambda expressions are converted into separate predicates, so for
% example we translate
%
%	:- pred p(int::in) is det.
%	p(X) :-
%		V__1 = lambda([Y::out] is nondet, q(Y, X))),
%		solutions(V__1, List),
%		...
%	:- pred q(int::out, int::in) is nondet.
%
% into
%
%	p(X) :-
%		V__1 = '__LambdaGoal__1'(X)
%		solutions(V__1, List),
%		...
%
%	:- pred '__LambdaGoal__1'(int::in, int::out) is nondet.
%	'__LambdaGoal__1'(X, Y) :- q(Y, X).
%
%
% Note that the mode checker requires that a lambda expression
% not bind any of the non-local variables such as `X' in the above
% example.
%
% Similarly, a lambda expression may not bind any of the type_infos for
% those variables; that is, none of the non-local variables
% should be existentially typed (from the perspective of the lambda goal).
% When we run the polymorphism.m pass before mode checking, this will
% be checked by mode analysis.  XXX But currently it is not checked.
%
% It might be OK to allow the parameters of the lambda goal to be
% existentially typed, but currently that is not supported.
% One difficulty is that it's hard to determine here which type variables
% should be existentially quantified.  The information is readily
% available during type inference, and really type inference should save
% that information in a field in the lambda_goal struct, but currently it
% doesn't; it saves the head_type_params field in the pred_info, which
% tells us which type variables where produced by the body, but for
% any given lambda goal we don't know whether the type variable was
% produced by something outside the lambda goal or by something inside
% the lambda goal (only in the latter case should it be existentially
% quantified).
% The other difficulty is that taking the address of a predicate with an
% existential type would require second-order polymorphism:  for a predicate
% declared as `:- some [T] pred p(int, T)', the expression `p' must have
% type `some [T] pred(int, T)', which is quite a different thing to saying
% that there is some type `T' for which `p' has type `pred(int, T)' --
% we don't know what `T' is until the predicate is called, and it might
% be different for each call.
% Currently we don't support second-order polymorphism, so we
% don't support existentially typed lambda expressions either.
% 

%-----------------------------------------------------------------------------%

:- module (lambda).

:- interface. 

:- import_module hlds_module, hlds_pred.

:- pred lambda__process_module(module_info, module_info).
:- mode lambda__process_module(in, out) is det.

:- pred lambda__process_pred(pred_id, module_info, module_info).
:- mode lambda__process_pred(in, in, out) is det.

%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%

:- implementation.

:- import_module hlds_goal, prog_data.
:- import_module hlds_data, make_hlds, globals, options, type_util.
:- import_module goal_util, prog_util, mode_util, inst_match, llds, arg_info.

:- import_module list, map, set.
:- import_module term, varset, bool, string, std_util, require.

:- type lambda_info --->
		lambda_info(
			prog_varset,		% from the proc_info
			map(prog_var, type),	% from the proc_info
			class_constraints,	% from the pred_info
			tvarset,		% from the proc_info
			map(tvar, type_info_locn),	
						% from the proc_info 
						% (typeinfos)
			map(class_constraint, prog_var),
						% from the proc_info
						% (typeclass_infos)
			pred_markers,		% from the pred_info
			pred_or_func,
			string,			% pred/func name
			aditi_owner,
			module_info
		).

%-----------------------------------------------------------------------------%

	% This whole section just traverses the module structure.

lambda__process_module(ModuleInfo0, ModuleInfo) :-
	module_info_predids(ModuleInfo0, PredIds),
	lambda__process_preds(PredIds, ModuleInfo0, ModuleInfo1),
	% Need update the dependency graph to include the lambda predicates. 
	module_info_clobber_dependency_info(ModuleInfo1, ModuleInfo).

:- pred lambda__process_preds(list(pred_id), module_info, module_info).
:- mode lambda__process_preds(in, in, out) is det.

lambda__process_preds([], ModuleInfo, ModuleInfo).
lambda__process_preds([PredId | PredIds], ModuleInfo0, ModuleInfo) :-
	lambda__process_pred(PredId, ModuleInfo0, ModuleInfo1),
	lambda__process_preds(PredIds, ModuleInfo1, ModuleInfo).

lambda__process_pred(PredId, ModuleInfo0, ModuleInfo) :-
	module_info_pred_info(ModuleInfo0, PredId, PredInfo),
	pred_info_procids(PredInfo, ProcIds),
	lambda__process_procs(PredId, ProcIds, ModuleInfo0, ModuleInfo).

:- pred lambda__process_procs(pred_id, list(proc_id), module_info, module_info).
:- mode lambda__process_procs(in, in, in, out) is det.

lambda__process_procs(_PredId, [], ModuleInfo, ModuleInfo).
lambda__process_procs(PredId, [ProcId | ProcIds], ModuleInfo0, ModuleInfo) :-
	lambda__process_proc(PredId, ProcId, ModuleInfo0, ModuleInfo1),
	lambda__process_procs(PredId, ProcIds, ModuleInfo1, ModuleInfo).

:- pred lambda__process_proc(pred_id, proc_id, module_info, module_info).
:- mode lambda__process_proc(in, in, in, out) is det.

lambda__process_proc(PredId, ProcId, ModuleInfo0, ModuleInfo) :-
	module_info_preds(ModuleInfo0, PredTable0),
	map__lookup(PredTable0, PredId, PredInfo0),
	pred_info_procedures(PredInfo0, ProcTable0),
	map__lookup(ProcTable0, ProcId, ProcInfo0),

	lambda__process_proc_2(ProcInfo0, PredInfo0, ModuleInfo0,
					ProcInfo, PredInfo1, ModuleInfo1),

	pred_info_procedures(PredInfo1, ProcTable1),
	map__det_update(ProcTable1, ProcId, ProcInfo, ProcTable),
	pred_info_set_procedures(PredInfo1, ProcTable, PredInfo),
	module_info_preds(ModuleInfo1, PredTable1),
	map__det_update(PredTable1, PredId, PredInfo, PredTable),
	module_info_set_preds(ModuleInfo1, PredTable, ModuleInfo).

:- pred lambda__process_proc_2(proc_info, pred_info, module_info,
				proc_info, pred_info, module_info).
:- mode lambda__process_proc_2(in, in, in, out, out, out) is det.

lambda__process_proc_2(ProcInfo0, PredInfo0, ModuleInfo0,
				ProcInfo, PredInfo, ModuleInfo) :-
	% grab the appropriate fields from the pred_info and proc_info
	pred_info_name(PredInfo0, PredName),
	pred_info_get_is_pred_or_func(PredInfo0, PredOrFunc),
	pred_info_typevarset(PredInfo0, TypeVarSet0),
	pred_info_get_markers(PredInfo0, Markers),
	pred_info_get_class_context(PredInfo0, Constraints0),
	pred_info_get_aditi_owner(PredInfo0, Owner),
	proc_info_varset(ProcInfo0, VarSet0),
	proc_info_vartypes(ProcInfo0, VarTypes0),
	proc_info_goal(ProcInfo0, Goal0),
	proc_info_typeinfo_varmap(ProcInfo0, TVarMap0),
	proc_info_typeclass_info_varmap(ProcInfo0, TCVarMap0),

	% process the goal
	Info0 = lambda_info(VarSet0, VarTypes0, Constraints0, TypeVarSet0,
		TVarMap0, TCVarMap0, Markers, PredOrFunc, 
		PredName, Owner, ModuleInfo0),
	lambda__process_goal(Goal0, Goal, Info0, Info),
	Info = lambda_info(VarSet, VarTypes, Constraints, TypeVarSet, 
		TVarMap, TCVarMap, _, _, _, _, ModuleInfo),

	% set the new values of the fields in proc_info and pred_info
	proc_info_set_goal(ProcInfo0, Goal, ProcInfo1),
	proc_info_set_varset(ProcInfo1, VarSet, ProcInfo2),
	proc_info_set_vartypes(ProcInfo2, VarTypes, ProcInfo3),
	proc_info_set_typeinfo_varmap(ProcInfo3, TVarMap, ProcInfo4),
	proc_info_set_typeclass_info_varmap(ProcInfo4, TCVarMap, ProcInfo),
	pred_info_set_typevarset(PredInfo0, TypeVarSet, PredInfo1),
	pred_info_set_class_context(PredInfo1, Constraints, PredInfo).

:- pred lambda__process_goal(hlds_goal, hlds_goal,
					lambda_info, lambda_info).
:- mode lambda__process_goal(in, out, in, out) is det.

lambda__process_goal(Goal0 - GoalInfo0, Goal) -->
	lambda__process_goal_2(Goal0, GoalInfo0, Goal).

:- pred lambda__process_goal_2(hlds_goal_expr, hlds_goal_info,
					hlds_goal, lambda_info, lambda_info).
:- mode lambda__process_goal_2(in, in, out, in, out) is det.

lambda__process_goal_2(unify(XVar, Y, Mode, Unification, Context), GoalInfo,
			Unify - GoalInfo) -->
	( { Y = lambda_goal(PredOrFunc, EvalMethod, _, NonLocalVars, Vars, 
			Modes, Det, LambdaGoal0) } ->
		% first, process the lambda goal recursively, in case it
		% contains some nested lambda expressions.
		lambda__process_goal(LambdaGoal0, LambdaGoal1),

		% then, convert the lambda expression into a new predicate
		lambda__process_lambda(PredOrFunc, EvalMethod, Vars,
			Modes, Det, NonLocalVars, LambdaGoal1, 
			Unification, Y1, Unification1),
		{ Unify = unify(XVar, Y1, Mode, Unification1, Context) }
	;
		% ordinary unifications are left unchanged
		{ Unify = unify(XVar, Y, Mode, Unification, Context) }
	).

	% the rest of the clauses just process goals recursively

lambda__process_goal_2(conj(Goals0), GoalInfo, conj(Goals) - GoalInfo) -->
	lambda__process_goal_list(Goals0, Goals).
lambda__process_goal_2(par_conj(Goals0, SM), GoalInfo,
		par_conj(Goals, SM) - GoalInfo) -->
	lambda__process_goal_list(Goals0, Goals).
lambda__process_goal_2(disj(Goals0, SM), GoalInfo, disj(Goals, SM) - GoalInfo)
		-->
	lambda__process_goal_list(Goals0, Goals).
lambda__process_goal_2(not(Goal0), GoalInfo, not(Goal) - GoalInfo) -->
	lambda__process_goal(Goal0, Goal).
lambda__process_goal_2(switch(Var, CanFail, Cases0, SM), GoalInfo, 
			switch(Var, CanFail, Cases, SM) - GoalInfo) -->
	lambda__process_cases(Cases0, Cases).
lambda__process_goal_2(some(Vars, CanRemove, Goal0), GoalInfo,
			some(Vars, CanRemove, Goal) - GoalInfo) -->
	lambda__process_goal(Goal0, Goal).
lambda__process_goal_2(if_then_else(Vars, A0, B0, C0, SM), GoalInfo,
			if_then_else(Vars, A, B, C, SM) - GoalInfo) -->
	lambda__process_goal(A0, A),
	lambda__process_goal(B0, B),
	lambda__process_goal(C0, C).
lambda__process_goal_2(generic_call(A,B,C,D), GoalInfo,
			generic_call(A,B,C,D) - GoalInfo) -->
	[].
lambda__process_goal_2(call(A,B,C,D,E,F), GoalInfo,
			call(A,B,C,D,E,F) - GoalInfo) -->
	[].
lambda__process_goal_2(pragma_c_code(A,B,C,D,E,F,G), GoalInfo,
			pragma_c_code(A,B,C,D,E,F,G) - GoalInfo) -->
	[].
lambda__process_goal_2(bi_implication(_, _), _, _) -->
	% these should have been expanded out by now
	{ error("lambda__process_goal_2: unexpected bi_implication") }.

:- pred lambda__process_goal_list(list(hlds_goal), list(hlds_goal),
					lambda_info, lambda_info).
:- mode lambda__process_goal_list(in, out, in, out) is det.

lambda__process_goal_list([], []) --> [].
lambda__process_goal_list([Goal0 | Goals0], [Goal | Goals]) -->
	lambda__process_goal(Goal0, Goal),
	lambda__process_goal_list(Goals0, Goals).

:- pred lambda__process_cases(list(case), list(case),
					lambda_info, lambda_info).
:- mode lambda__process_cases(in, out, in, out) is det.

lambda__process_cases([], []) --> [].
lambda__process_cases([case(ConsId, Goal0) | Cases0],
		[case(ConsId, Goal) | Cases]) -->
	lambda__process_goal(Goal0, Goal),
	lambda__process_cases(Cases0, Cases).

:- pred lambda__process_lambda(pred_or_func, lambda_eval_method,
		list(prog_var), list(mode), determinism, list(prog_var),
		hlds_goal, unification, unify_rhs, unification,
		lambda_info, lambda_info).
:- mode lambda__process_lambda(in, in, in, in, in, in, in, in, out, out,
		in, out) is det.

lambda__process_lambda(PredOrFunc, EvalMethod, Vars, Modes, Detism,
		OrigNonLocals0, LambdaGoal, Unification0, Functor,
		Unification, LambdaInfo0, LambdaInfo) :-
	LambdaInfo0 = lambda_info(VarSet, VarTypes, _PredConstraints, TVarSet,
		TVarMap, TCVarMap, Markers, POF, OrigPredName, Owner,
		ModuleInfo0),

		% Calculate the constraints which apply to this lambda
		% expression. 
		% Note currently we only allow lambda expressions
		% to have universally quantified constraints.
	map__keys(TCVarMap, AllConstraints),
	map__apply_to_list(Vars, VarTypes, LambdaVarTypes),
	list__map(type_util__vars, LambdaVarTypes, LambdaTypeVarsList),
	list__condense(LambdaTypeVarsList, LambdaTypeVars),
	list__filter(lambda__constraint_contains_vars(LambdaTypeVars), 
		AllConstraints, UnivConstraints),
	Constraints = constraints(UnivConstraints, []),

	% existentially typed lambda expressions are not yet supported
	% (see the documentation at top of this file)
	ExistQVars = [],
	LambdaGoal = _ - LambdaGoalInfo,
	goal_info_get_nonlocals(LambdaGoalInfo, LambdaGoalNonLocals),
	set__insert_list(LambdaGoalNonLocals, Vars, LambdaNonLocals),
	goal_util__extra_nonlocal_typeinfos(TVarMap, TCVarMap, VarTypes,
		ExistQVars, LambdaNonLocals, ExtraTypeInfos),
	OrigVars = OrigNonLocals0,

	(
		Unification0 = construct(Var0, _, _, UniModes0, _, _, _)
	->
		Var = Var0,
		UniModes1 = UniModes0
	;
		error("lambda__transform_lambda: weird unification")
	),

	set__delete_list(LambdaGoalNonLocals, Vars, NonLocals1),

	% We need all the typeinfos, including the ones that are not used,
	% for the layout structure describing the closure.
	set__union(NonLocals1, ExtraTypeInfos, NonLocals),

	set__to_sorted_list(NonLocals, ArgVars1),

	( 
		% Optimize a special case: replace
		%	`lambda([Y1, Y2, ...] is Detism,
		%		p(X1, X2, ..., Y1, Y2, ...))'
		% where `p' has determinism `Detism' with
		%	`p(X1, X2, ...)'
		%
		% This optimization is only valid if the modes of the Xi are
		% input, since only input arguments can be curried.
		% It's also only valid if all the inputs in the Yi precede the
		% outputs.  It's also not valid if any of the Xi are in the Yi.

		LambdaGoal = call(PredId0, ProcId0, CallVars,
					_, _, PredName0) - _,
		module_info_pred_proc_info(ModuleInfo0, PredId0, ProcId0,
			Call_PredInfo, Call_ProcInfo),

		(
			EvalMethod = (aditi_top_down),
			pred_info_get_markers(Call_PredInfo, Call_Markers),
			check_marker(Call_Markers, (aditi_top_down))
		;
			EvalMethod = (aditi_bottom_up),
			pred_info_get_markers(Call_PredInfo, Call_Markers),
			check_marker(Call_Markers, aditi)
		;
			EvalMethod = normal
		),
		list__remove_suffix(CallVars, Vars, InitialVars),
	
		% check that none of the variables that we're trying to
		% use as curried arguments are lambda-bound variables
		\+ (
			list__member(InitialVar, InitialVars),
			list__member(InitialVar, Vars)
		),

		proc_info_interface_code_model(Call_ProcInfo, Call_CodeModel),
		determinism_to_code_model(Detism, CodeModel),
			% Check that the code models are compatible.
			% Note that det is not compatible with semidet,
			% and semidet is not compatible with nondet,
			% since the arguments go in different registers.
			% But det is compatible with nondet.
		( CodeModel = Call_CodeModel
		; CodeModel = model_non, Call_CodeModel = model_det
		),
			% check that the curried arguments are all input
		proc_info_argmodes(Call_ProcInfo, Call_ArgModes),
		list__length(InitialVars, NumInitialVars),
		list__take(NumInitialVars, Call_ArgModes, CurriedArgModes),
		\+ (	list__member(Mode, CurriedArgModes), 
			\+ mode_is_input(ModuleInfo0, Mode)
		)
	->
		ArgVars = InitialVars,
		PredId = PredId0,
		ProcId = ProcId0,
		PredName = PredName0,
		ModuleInfo = ModuleInfo0,
		NumArgVars = NumInitialVars,
		mode_util__modes_to_uni_modes(CurriedArgModes, CurriedArgModes,
			ModuleInfo0, UniModes)
	;
		% Prepare to create a new predicate for the lambda
		% expression: work out the arguments, module name, predicate
		% name, arity, arg types, determinism,
		% context, status, etc. for the new predicate.

		ArgVars = ArgVars1,
		list__append(ArgVars, Vars, AllArgVars),

		module_info_name(ModuleInfo0, ModuleName),
		module_info_next_lambda_count(ModuleInfo0, LambdaCount,
					ModuleInfo1),
		goal_info_get_context(LambdaGoalInfo, OrigContext),
		term__context_line(OrigContext, OrigLine),
		make_pred_name_with_context(ModuleName, "IntroducedFrom",
			PredOrFunc, OrigPredName, OrigLine,
			LambdaCount, PredName),
		goal_info_get_context(LambdaGoalInfo, LambdaContext),
		% The TVarSet is a superset of what it really ought be,
		% but that shouldn't matter.
		% Existentially typed lambda expressions are not
		% yet supported (see the documentation at top of this file)
		ExistQVars = [],
		lambda__uni_modes_to_modes(UniModes1, OrigArgModes),

		% We have to jump through hoops to work out the mode
		% of the lambda predicate. For introduced
		% type_info arguments, we use the mode "in".  For the original
		% non-local vars, we use the modes from `UniModes1'.
		% For the lambda var arguments at the end,
		% we use the mode in the lambda expression. 

		list__length(ArgVars, NumArgVars),
		in_mode(In),
		list__duplicate(NumArgVars, In, InModes),
		map__from_corresponding_lists(ArgVars, InModes,
			ArgModesMap),

		map__from_corresponding_lists(OrigVars, OrigArgModes,
			OrigArgModesMap),
		map__overlay(ArgModesMap, OrigArgModesMap, ArgModesMap1),
		map__apply_to_list(ArgVars, ArgModesMap1, ArgModes1),

		% Recompute the uni_modes. 
		mode_util__modes_to_uni_modes(ArgModes1, ArgModes1, 
			ModuleInfo1, UniModes),

		list__append(ArgModes1, Modes, AllArgModes),
		map__apply_to_list(AllArgVars, VarTypes, ArgTypes),

		( 
			% Pass through the aditi markers for 
			% aggregate query closures.
			% XXX we should differentiate between normal
			% top-down closures and aggregate query closures,
			% possibly by using a different type for aggregate
			% queries. Currently all nondet lambda expressions
			% within Aditi predicates are treated as aggregate
			% inputs.
			% EvalMethod = (aditi_bottom_up),
			determinism_components(Detism, _, at_most_many),
			check_marker(Markers, aditi)
		->
			markers_to_marker_list(Markers, MarkerList0),
			list__filter(
			    lambda([Marker::in] is semidet, 
				% Pass through only Aditi markers.
				% Don't pass through `context' markers, since
				% they are useless for non-recursive predicates
				% such as the created predicate.
				( Marker = aditi
				; Marker = dnf
				; Marker = psn
				; Marker = naive
				; Marker = supp_magic
				; Marker = aditi_memo
				; Marker = aditi_no_memo
				)),
				MarkerList0, MarkerList),
			marker_list_to_markers(MarkerList, LambdaMarkers)
		;
			EvalMethod = (aditi_bottom_up)
		->
			marker_list_to_markers([aditi], LambdaMarkers)
		;
			EvalMethod = (aditi_top_down)
		->
			marker_list_to_markers([(aditi_top_down)],
				LambdaMarkers)
		; 
			init_markers(LambdaMarkers)
		),

		% Now construct the proc_info and pred_info for the new
		% single-mode predicate, using the information computed above

		proc_info_create(VarSet, VarTypes, AllArgVars,
			AllArgModes, Detism, LambdaGoal, LambdaContext,
			TVarMap, TCVarMap, address_is_taken, ProcInfo),

		set__init(Assertions),

		pred_info_create(ModuleName, PredName, TVarSet, ExistQVars,
			ArgTypes, true, LambdaContext, local, LambdaMarkers,
			PredOrFunc, Constraints, Owner, Assertions, ProcInfo,
			ProcId, PredInfo),

		% save the new predicate in the predicate table

		module_info_get_predicate_table(ModuleInfo1, PredicateTable0),
		predicate_table_insert(PredicateTable0, PredInfo,
			PredId, PredicateTable),
		module_info_set_predicate_table(ModuleInfo1, PredicateTable,
			ModuleInfo)
	),
	Functor = functor(cons(PredName, NumArgVars), ArgVars),
	ConsId = pred_const(PredId, ProcId, EvalMethod),

	VarToReuse = no,
	RLExprnId = no,
	Unification = construct(Var, ConsId, ArgVars, UniModes,
		VarToReuse, cell_is_unique, RLExprnId),
	LambdaInfo = lambda_info(VarSet, VarTypes, Constraints, TVarSet,
		TVarMap, TCVarMap, Markers, POF, OrigPredName, Owner,
		ModuleInfo).

:- pred lambda__constraint_contains_vars(list(tvar), class_constraint).
:- mode lambda__constraint_contains_vars(in, in) is semidet.

lambda__constraint_contains_vars(LambdaVars, ClassConstraint) :-
	ClassConstraint = constraint(_, ConstraintTypes),
	list__map(type_util__vars, ConstraintTypes, ConstraintVarsList),
	list__condense(ConstraintVarsList, ConstraintVars),
		% Probably not the most efficient way of doing it, but I
		% wouldn't think that it matters.
	set__list_to_set(LambdaVars, LambdaVarsSet),
	set__list_to_set(ConstraintVars, ConstraintVarsSet),
	set__subset(ConstraintVarsSet, LambdaVarsSet).

:- pred lambda__uni_modes_to_modes(list(uni_mode), list(mode)).
:- mode lambda__uni_modes_to_modes(in, out) is det.

	% This predicate works out the modes of the original non-local
	% variables of a lambda expression based on the list of uni_mode
	% in the unify_info for the lambda unification.

lambda__uni_modes_to_modes([], []).
lambda__uni_modes_to_modes([UniMode | UniModes], [Mode | Modes]) :-
	UniMode = ((_Initial0 - Initial1) -> (_Final0 - _Final1)),
	Mode = (Initial1 -> Initial1),
	lambda__uni_modes_to_modes(UniModes, Modes).

%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%