File: lp.m

package info (click to toggle)
mercury 0.9-1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 18,488 kB
  • ctags: 9,800
  • sloc: objc: 146,680; ansic: 51,418; sh: 6,436; lisp: 1,567; cpp: 1,040; perl: 854; makefile: 450; asm: 232; awk: 203; exp: 32; fortran: 3; csh: 1
file content (946 lines) | stat: -rw-r--r-- 26,589 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
%-----------------------------------------------------------------------------%
% Copyright (C) 1997 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% file: lp.m
% main author: conway,	Oct 1997
%
% This module implements a linear constraint solver that finds an
% optimal solution to a set of linear [in]equalities with respect
% to some objective function. It does this using the simplex method.
%
% The form of an [in]equation is
% 	a1.x1 + a2.x2 + ... + an.xn {=<,=,>=} b
% where all the numbers are floats, a variable xn may occur multiple
% times in an equation (or the objective function) - the solver simplifies
% all the inequations.
% By defaut, there is an additional constraint on each of the `xn's:
%	xn >= 0
% If you want xn to take on any value, you can include it in the list
% of URS (UnRestricted in Sign) variables.
%
% The objective function is simply a weighted sum of the variables.
%
% The `x's are represented by `term__var's. The varset from which
% they are allocated is passed to the solver because it needs to
% introduce new variables as part of the solving algorithm.
%
%------------------------------------------------------------------------------%
:- module lp.

:- interface.

%------------------------------------------------------------------------------%

:- import_module float, io, list, map, std_util, term, varset.

:- type coeff	==	pair(var, float).

:- type equation
	--->	eqn(list(coeff), operator, float).

:- type operator
	--->	(=<) ; (=) ; (>=) .

:- type equations	==	list(equation).

:- type objective	==	list(coeff).

:- type direction
	--->	max ; min .

:- type lp__result
	--->	unsatisfiable
	;	satisfiable(float, map(var, float))
	.

%------------------------------------------------------------------------------%

	% lp_solve(Inequations, MaxOrMin, Objective, Varset, URSVars,
	%		Result, IO0, IO)
	% maximize (or minimize - depending on `MaxOrMin') `Objective'
	% subject to the constraints `Inequations'. The variables in
	% the objective and inequations are from `Varset' which is passed
	% so that the solver can allocate fresh variables as required.
	% URSVars is the list of variable that are unrestricted in sign.
	% lp_solve binds Result either to `unsatisfiable' if the there
	% was no optimum value of the objective function (ie the
	% constraints were inconsistent, or the objective function
	% is unbounded by the constraints), or `satisfiable(ObjVal,
	% MapFromObjVarsToVals)'.

:- pred lp_solve(equations, direction, objective, varset, list(var),
		lp__result, io__state, io__state).
:- mode lp_solve(in, in, in, in, in, out, di, uo) is det.

%------------------------------------------------------------------------------%
%------------------------------------------------------------------------------%

:- implementation.

:- import_module bool, int, require, set, string.

:- type lp_info
	---> lp(
		varset,
		map(var, pair(var)),	% map from variables with URS to
					% the corresponding pair of variables
					% that represent that variable in
					% the standard form (x = x' - x'',
					% x', x'' >= 0).
		list(var),		% slack variables
		list(var)		% artificial variables
	).

lp_solve(Eqns, Dir, Obj, Varset0, URSVars, Result, IO0, IO) :-
	lp_info_init(Varset0, URSVars, Info0),
	lp_solve2(Eqns, Dir, Obj, Result, IO0, IO, Info0, _).

%
% lp_solve2(Eqns, Dir, Obj, Res, IO0, IO, LPInfo0, LPInfo) takes a list
% of inequations `Eqns', a direction for optimization `Dir', an objective
% function `Obj', an I/O state `IO0' and an lp_info structure `LPInfo0'.
% See inline comments for details on the algorithm.
%
:- pred lp_solve2(equations, direction, objective, lp__result,
		io__state, io__state, lp_info, lp_info).
:- mode lp_solve2(in, in, in, out, di, uo, in, out) is det.

lp_solve2(Eqns0, Dir, Obj0, Result, IO0, IO, Info0, Info) :-
		% simplify the inequations and convert them
		% to standard form by introducing slack/excess/
		% artificial variables. We also expand URS variables
		% by replacing them with the difference of two
		% fresh variables.
	standardize_equations(Eqns0, Eqns, Info0, Info1),

		% If we're maximizing the objective function then we need
		% to negate all the coefficients in the objective.w
	(
		Dir = max,
		negate_equation(eqn(Obj0, (=), 0.0), eqn(Obj1, _, _))
	;
		Dir = min,
		Obj1 = Obj0
	),
	simplify_coeffs(Obj1, Obj2),

	get_urs_vars(URS, Info1, _),
	expand_urs_vars(Obj2, URS, Obj),
	list__length(Eqns, Rows),
	collect_vars(Eqns, Obj, Vars),
	set__to_sorted_list(Vars, VarList),
	list__length(VarList, Cols),
	map__init(VarNums0),
	number_vars(VarList, 0, VarNums0, VarNums),
	get_art_vars(ArtVars, Info1, Info),
	init_tableau(Rows, Cols, VarNums, URS, Tableau0),
	insert_equations(Eqns, 1, Cols, VarNums,
		Tableau0, Tableau1),
	(
		ArtVars = [_|_],
		% There are one or more artificial variables, so we use
		% the two-phase method for solving the system.
		two_phase(Obj0, Obj, ArtVars, VarNums, Tableau1, Result0,
			IO0, IO)
	;
		ArtVars = [],
		one_phase(Obj0, Obj, VarNums, Tableau1, Result0, IO0, IO)
	),
	(
		Dir = max,
		Result = Result0
	;
		Dir = min,
		(
			Result0 = unsatisfiable,
			Result = Result0
		;
			Result0 = satisfiable(NOptVal, OptCoffs),
			OptVal is -NOptVal,
			Result = satisfiable(OptVal, OptCoffs)
		)
	).

%------------------------------------------------------------------------------%

:- pred one_phase(list(coeff), list(coeff), map(var, int), tableau,
		lp__result, io__state, io__state).
:- mode one_phase(in, in, in, in, out, di, uo) is det.

one_phase(Obj0, Obj, VarNums, Tableau0, Result, IO0, IO) :-
	insert_coeffs(Obj, 0, VarNums, Tableau0, Tableau1),
	GetObjVar = lambda([V::out] is nondet, (
		list__member(X, Obj0),
		X = V - _Cof
	)),
	solutions(GetObjVar, ObjVars),
	optimize(ObjVars, Tableau1, _, Result, IO0, IO).

%------------------------------------------------------------------------------%

:- pred two_phase(list(coeff), list(coeff), list(var), map(var, int),
		tableau, lp__result, io__state, io__state).
:- mode two_phase(in, in, in, in, in, out, di, uo) is det.

two_phase(Obj0, Obj, ArtVars, VarNums, Tableau0, Result, IO0, IO) :-
		% Do phase 1:
		%	minimize the sum of the artificial variables
	construct_art_objective(ArtVars, ArtObj),
	insert_coeffs(ArtObj, 0, VarNums, Tableau0, Tableau1a),
	ensure_zero_obj_coeffs(ArtVars, Tableau1a, Tableau1b),
	optimize(ArtVars, Tableau1b, Tableau1c,
		Res0, IO0, IO1),
	(
		Res0 = unsatisfiable,
		Result = unsatisfiable,
		IO = IO1
	;
		Res0 = satisfiable(Val, _ArtRes),
		( Val \= 0.0 ->
			Result = unsatisfiable,
			IO = IO1
		;
			fix_basis_and_rem_cols(ArtVars, Tableau1c, Tableau2),
				% Do phase 2:
				%	insert the real objective,
				%	zero the objective coefficients of the
				%	basis variables,
				%	optimize the objective.
			insert_coeffs(Obj, 0, VarNums, Tableau2, Tableau3),
			get_basis_vars(Tableau3, BasisVars),
			ensure_zero_obj_coeffs(BasisVars,
					Tableau3, Tableau4),
			GetObjVar = lambda([V::out] is nondet, (
				list__member(X, Obj0),
				X = V - _Cof
			)),
			solutions(GetObjVar, ObjVars),
			optimize(ObjVars, Tableau4, _, Result, IO1, IO)
		)
	).

%------------------------------------------------------------------------------%

:- pred construct_art_objective(list(var), list(coeff)).
:- mode construct_art_objective(in, out) is det.

construct_art_objective([], []).
construct_art_objective([V|Vs], [V - (1.0)|Rest]) :-
	construct_art_objective(Vs, Rest).

%------------------------------------------------------------------------------%

:- pred standardize_equations(equations, equations, lp_info, lp_info).
:- mode standardize_equations(in, out, in, out) is det.

standardize_equations(Eqns0, Eqns) -->
	list__map_foldl(standardize_equation, Eqns0, Eqns).

	% standardize_equation peforms the following operations on an
	% equation:
	%	- ensures the constant is >= 0 (multiplying by -1 if
	%		necessary)
	%	- introduces slack, excess and artificial variables
	%	- replace the URS variables with their corresponding
	%		difference pair
:- pred standardize_equation(equation, equation, lp_info, lp_info).
:- mode standardize_equation(in, out, in, out) is det.

standardize_equation(Eqn0, Eqn) -->
	{ Eqn0 = eqn(Coeffs0, (=<), Const0) },
	( { Const0 < 0.0 } ->
		{ negate_equation(Eqn0, Eqn1) },
		standardize_equation(Eqn1, Eqn) 
	;
		new_slack_var(Var),
		{ Coeffs = [Var - 1.0|Coeffs0] },
		{ simplify(eqn(Coeffs, (=<), Const0), Eqn1) },
		get_urs_vars(URS),
		{ expand_urs_vars_e(Eqn1, URS, Eqn) }
	).

standardize_equation(Eqn0, Eqn) -->
	{ Eqn0 = eqn(Coeffs0, (=), Const0) },
	( { Const0 < 0.0 } ->
		{ negate_equation(Eqn0, Eqn1) },
		standardize_equation(Eqn1, Eqn)
	;
		new_art_var(Var),
		{ Coeffs = [Var - 1.0|Coeffs0] },
		{ simplify(eqn(Coeffs, (=<), Const0), Eqn1) },
		get_urs_vars(URS),
		{ expand_urs_vars_e(Eqn1, URS, Eqn) }
	).

standardize_equation(Eqn0, Eqn) -->
	{ Eqn0 = eqn(Coeffs0, (>=), Const0) },
	( { Const0 < 0.0 } ->
		{ negate_equation(Eqn0, Eqn1) },
		standardize_equation(Eqn1, Eqn)
	;
		new_slack_var(SVar),
		new_art_var(AVar),
		{ Coeffs = [SVar - (-1.0), AVar - (1.0)|Coeffs0] },
		{ simplify(eqn(Coeffs, (>=), Const0), Eqn1) },
		get_urs_vars(URS),
		{ expand_urs_vars_e(Eqn1, URS, Eqn) }
	).

:- pred negate_equation(equation, equation).
:- mode negate_equation(in, out) is det.

negate_equation(eqn(Coeffs0, Op0, Const0), eqn(Coeffs, Op, Const)) :-
	(
		Op0 = (=<), Op = (>=)
	;
		Op0 = (=), Op = (=)
	;
		Op0 = (>=), Op = (=<)
	),
	Neg = lambda([Pair0::in, Pair::out] is det, (
		Pair0 = V - X0,
		X is -X0,
		Pair = V - X
	)),
	list__map(Neg, Coeffs0, Coeffs),
	Const is -Const0.

:- pred simplify(equation, equation).
:- mode simplify(in, out) is det.

simplify(eqn(Coeffs0, Op, Const), eqn(Coeffs, Op, Const)) :-
	simplify_coeffs(Coeffs0, Coeffs).

:- pred simplify_coeffs(list(coeff), list(coeff)).
:- mode simplify_coeffs(in, out) is det.

simplify_coeffs(Coeffs0, Coeffs) :-
	map__init(CoeffMap0),
	AddCoeff = lambda([Pair::in, Map0::in, Map::out] is det, (
		Pair = Var - Coeff,
		add_var(Map0, Var, Coeff, Map)
	)),
	list__foldl(AddCoeff, Coeffs0, CoeffMap0, CoeffMap),
	map__to_assoc_list(CoeffMap, Coeffs).

:- pred add_var(map(var, float), var, float, map(var, float)).
:- mode add_var(in, in, in, out) is det.

add_var(Map0, Var, Coeff, Map) :-
	( map__search(Map0, Var, Acc0) ->
		Acc1 = Acc0
	;
		Acc1 = 0.0
	),
	Acc is Acc1 + Coeff,
	map__set(Map0, Var, Acc, Map).

:- pred expand_urs_vars_e(equation, map(var, pair(var)), equation).
:- mode expand_urs_vars_e(in, in, out) is det.

expand_urs_vars_e(eqn(Coeffs0, Op, Const), Vars, eqn(Coeffs, Op, Const)) :-
	expand_urs_vars(Coeffs0, Vars, Coeffs).

:- pred expand_urs_vars(list(coeff), map(var, pair(var)), list(coeff)).
:- mode expand_urs_vars(in, in, out) is det.

expand_urs_vars(Coeffs0, Vars, Coeffs) :-
	expand_urs_vars(Coeffs0, Vars, [], Coeffs1),
	list__reverse(Coeffs1, Coeffs).

:- pred expand_urs_vars(list(coeff), map(var, pair(var)),
		list(coeff), list(coeff)).
:- mode expand_urs_vars(in, in, in, out) is det.

expand_urs_vars([], _Vars, Coeffs, Coeffs).
expand_urs_vars([Var - Coeff|Rest], Vars, Coeffs0, Coeffs) :-
	( map__search(Vars, Var, PVar - NVar) ->
		NCoeff is -Coeff,
		Coeffs1 = [NVar - NCoeff, PVar - Coeff|Coeffs0]
	;
		Coeffs1 = [Var - Coeff|Coeffs0]
	),
	expand_urs_vars(Rest, Vars, Coeffs1, Coeffs).

%------------------------------------------------------------------------------%

:- pred collect_vars(equations, objective, set(var)).
:- mode collect_vars(in, in, out) is det.

collect_vars(Eqns, Obj, Vars) :-
	GetVar = lambda([Var::out] is nondet, (
		(
			list__member(Eqn, Eqns),
			Eqn = eqn(Coeffs, _, _),
			list__member(Pair, Coeffs),
			Pair = Var - _
		;
			list__member(Pair, Obj),
			Pair = Var - _
		)
	)),
	solutions(GetVar, VarList),
	set__list_to_set(VarList, Vars).

:- pred number_vars(list(var), int, map(var, int), map(var, int)).
:- mode number_vars(in, in, in, out) is det.

number_vars([], _, VarNums, VarNums).
number_vars([Var|Vars], N, VarNums0, VarNums) :-
	map__det_insert(VarNums0, Var, N, VarNums1),
	N1 is N + 1,
	number_vars(Vars, N1, VarNums1, VarNums).

:- pred insert_equations(equations, int, int, map(var, int), tableau, tableau).
:- mode insert_equations(in, in, in, in, in, out) is det.

insert_equations([], _, _, _, Tableau, Tableau).
insert_equations([Eqn|Eqns], Row, ConstCol, VarNums, Tableau0, Tableau) :-
	Eqn = eqn(Coeffs, _Op, Const),
	insert_coeffs(Coeffs, Row, VarNums, Tableau0, Tableau1),
	set_index(Tableau1, Row, ConstCol, Const, Tableau2),
	Row1 is Row + 1,
	insert_equations(Eqns, Row1, ConstCol, VarNums, Tableau2, Tableau).

:- pred insert_coeffs(list(coeff), int, map(var, int), tableau, tableau).
:- mode insert_coeffs(in, in, in, in, out) is det.

insert_coeffs([], _Row, _VarNums, Tableau, Tableau).
insert_coeffs([Coeff|Coeffs], Row, VarNums, Tableau0, Tableau) :-
	Coeff = Var - Const,
	map__lookup(VarNums, Var, Col),
	set_index(Tableau0, Row, Col, Const, Tableau1),
	insert_coeffs(Coeffs, Row, VarNums, Tableau1, Tableau).

%------------------------------------------------------------------------------%

:- pred optimize(list(var), tableau, tableau, lp__result,
		io__state, io__state).
:- mode optimize(in, in, out, out, di, uo) is det.

optimize(ObjVars, A0, A, Result) -->
	simplex(A0, A, Res0),
	(
		{ Res0 = no },
		{ Result = unsatisfiable }
	;
		{ Res0 = yes },
		{ rhs_col(A, M) },
		{ index(A, 0, M, ObjVal) },
		{ extract_objective(ObjVars, A, ObjMap) },
		{ Result = satisfiable(ObjVal, ObjMap) }
	).

:- pred extract_objective(list(var), tableau, map(var, float)).
:- mode extract_objective(in, in, out) is det.

extract_objective(ObjVars, Tab, Res) :-
	map__init(Res0),
	list__foldl(extract_obj_var(Tab), ObjVars, Res0, Res).

:- pred extract_obj_var(tableau, var, map(var, float), map(var, float)).
:- mode extract_obj_var(in, in, in, out) is det.

extract_obj_var(Tab, Var, Map0, Map) :-
	urs_vars(Tab, Vars),
	( map__search(Vars, Var, Pos - Neg) ->
		extract_obj_var2(Tab, Pos, PosVal),
		extract_obj_var2(Tab, Neg, NegVal),
		Val is PosVal - NegVal
	;
		extract_obj_var2(Tab, Var, Val)
	),
	map__set(Map0, Var, Val, Map).

:- pred extract_obj_var2(tableau, var, float).
:- mode extract_obj_var2(in, in, out) is det.

extract_obj_var2(Tab, Var, Val) :-
	var_col(Tab, Var, Col),
	GetCell = lambda([Val0::out] is nondet, (
		all_rows(Tab, Row),
		index(Tab, Row, Col, 1.0),
		rhs_col(Tab, RHS),
		index(Tab, Row, RHS, Val0)
	)),
	solutions(GetCell, Solns),
	( Solns = [Val1] ->
		Val = Val1
	;
		Val = 0.0
	).

:- pred simplex(tableau, tableau, bool, io__state, io__state).
:- mode simplex(in, out, out, di, uo) is det.

simplex(A0, A, Result, IO0, IO) :-
	AllColumns = all_cols(A0),
	MinAgg = lambda([Col::in, Min0::in, Min::out] is det, (
		(
			Min0 = no,
			index(A0, 0, Col, MinVal),
			( MinVal < 0.0 ->
				Min = yes(Col - MinVal)
			;
				Min = no
			)
		;
			Min0 = yes(_ - MinVal0),
			index(A0, 0, Col, CellVal),
			( CellVal < MinVal0 ->
				Min = yes(Col - CellVal)
			;
				Min = Min0
			)
		)
	)),
	aggregate(AllColumns, MinAgg, no, MinResult),
	(
		MinResult = no,
		A = A0,
		IO = IO0,
		Result = yes
	;
		MinResult = yes(Q - _Val),
		AllRows = all_rows(A0),
		MaxAgg = lambda([Row::in, Max0::in, Max::out] is det, (
			(
				Max0 = no,
				index(A0, Row, Q, MaxVal),
				( MaxVal > 0.0 ->
					rhs_col(A0, RHSC),
					index(A0, Row, RHSC, MVal),
					CVal is MVal/MaxVal,
					Max = yes(Row - CVal)
				;
					Max = no
				)
			;
				Max0 = yes(_ - MaxVal0),
				index(A0, Row, Q, CellVal),
				rhs_col(A0, RHSC),
				index(A0, Row, RHSC, MVal),
				MaxVal1 is MVal/CellVal,
				( CellVal > 0.0, MaxVal1 =< MaxVal0 ->
					Max = yes(Row - MaxVal1)
				;
					Max = Max0
				)
			)
		)),
		aggregate(AllRows, MaxAgg, no, MaxResult),
		(
			MaxResult = no,
			A = A0,
			IO = IO0,
			Result = no
		;
			MaxResult = yes(P - _),
			pivot(P, Q, A0, A1),
			simplex(A1, A, Result, IO0, IO)
		)
	).

%------------------------------------------------------------------------------%

:- pred ensure_zero_obj_coeffs(list(var), tableau, tableau).
:- mode ensure_zero_obj_coeffs(in, in, out) is det.

ensure_zero_obj_coeffs([], Tableau, Tableau).
ensure_zero_obj_coeffs([V|Vs], Tableau0, Tableau) :-
	var_col(Tableau0, V, Col),
	index(Tableau0, 0, Col, Val),
	( Val = 0.0 ->
		ensure_zero_obj_coeffs(Vs, Tableau0, Tableau)
	;
		FindOne = lambda([P::out] is nondet, (
			all_rows(Tableau0, R),
			index(Tableau0, R, Col, ValF0),
			ValF0 \= 0.0,
			P = R - ValF0
		)),
		solutions(FindOne, Ones),
		(
			Ones = [Row - Fac0|_],
			Fac is -Val/Fac0,
			row_op(Fac, Row, 0, Tableau0, Tableau1),
			ensure_zero_obj_coeffs(Vs, Tableau1, Tableau)
		;
			Ones = [],
			error("problem with artificial variable")
		)
	).

:- pred fix_basis_and_rem_cols(list(var), tableau, tableau).
:- mode fix_basis_and_rem_cols(in, in, out) is det.

fix_basis_and_rem_cols([], Tab, Tab).
fix_basis_and_rem_cols([V|Vs], Tab0, Tab) :-
	var_col(Tab0, V, Col),
	BasisAgg = lambda([R::in, Ones0::in, Ones::out] is det, (
		index(Tab0, R, Col, Val),
		( Val = 0.0 ->
			Ones = Ones0
		;
			Ones = [Val - R|Ones0]
		)
	)),
	aggregate(all_rows(Tab0), BasisAgg, [], Res),
	(
		Res = [1.0 - Row]
	->
		PivGoal = lambda([Col1::out] is nondet, (
			all_cols(Tab0, Col1),
			Col \= Col1,
			index(Tab0, Row, Col1, Zz),
			Zz \= 0.0
		)),
		solutions(PivGoal, PivSolns),
		(
			PivSolns = [],
			remove_col(Col, Tab0, Tab0a),
			remove_row(Row, Tab0a, Tab1)
		;
			PivSolns = [Col2|_],
			pivot(Row, Col2, Tab0, Tab0a),
			remove_col(Col, Tab0a, Tab1)
		)
	;
		Tab1 = Tab0
	),
	remove_col(Col, Tab1, Tab2),
	fix_basis_and_rem_cols(Vs, Tab2, Tab).

%------------------------------------------------------------------------------%

:- type cell	--->	cell(int, int).

:- pred pivot(int, int, tableau, tableau).
:- mode pivot(in, in, in, out) is det.

pivot(P, Q, A0, A) :-
	index(A0, P, Q, Apq),
	MostCells = lambda([Cell::out] is nondet, (
		all_rows0(A0, J),
		J \= P,
		all_cols0(A0, K),
		K \= Q,
		Cell = cell(J, K)
	)),
	ScaleCell = lambda([Cell::in, T0::in, T::out] is det, (
		Cell = cell(J, K),
		index(T0, J, K, Ajk),
		index(T0, J, Q, Ajq),
		index(T0, P, K, Apk),
		NewAjk is Ajk - Apk * Ajq / Apq,
		set_index(T0, J, K, NewAjk, T)
	)),
	aggregate(MostCells, ScaleCell, A0, A1),
	QColumn = lambda([Cell::out] is nondet, (
		all_rows0(A1, J),
		Cell = cell(J, Q)
	)),
	Zero = lambda([Cell::in, T0::in, T::out] is det, (
		Cell = cell(J, K),
		set_index(T0, J, K, 0.0, T)
	)),
	aggregate(QColumn, Zero, A1, A2),
	PRow = all_cols0(A2),
	ScaleRow = lambda([K::in, T0::in, T::out] is det, (
		index(T0, P, K, Apk),
		NewApk is Apk / Apq,
		set_index(T0, P, K, NewApk, T)
	)),
	aggregate(PRow, ScaleRow, A2, A3),
	set_index(A3, P, Q, 1.0, A).

:- pred row_op(float, int, int, tableau, tableau).
:- mode row_op(in, in, in, in, out) is det.

row_op(Scale, From, To, A0, A) :-
	AllCols = all_cols0(A0),
	AddRow = lambda([Col::in, T0::in, T::out] is det, (
		index(T0, From, Col, X),
		index(T0, To, Col, Y),
		Z is Y + (Scale * X),
		set_index(T0, To, Col, Z, T)
	)),
	aggregate(AllCols, AddRow, A0, A).

%------------------------------------------------------------------------------%

:- type tableau
	---> tableau(
		int,
		int,
		map(var, int),
		map(var, pair(var)),
		list(int),	% shunned rows
		list(int),	% shunned cols
		map(pair(int), float)
	).

:- pred init_tableau(int::in, int::in, map(var, int)::in, 
		map(var, pair(var))::in, tableau::out) is det.

init_tableau(Rows, Cols, VarNums, URSVars, Tableau) :-
	map__init(Cells),
	Tableau = tableau(Rows, Cols, VarNums, URSVars, [], [], Cells).

:- pred index(tableau, int, int, float).
:- mode index(in, in, in, out) is det.

index(Tableau, J, K, R) :-
	Tableau = tableau(_, _, _, _, SR, SC, Cells),
	(
		( list__member(J, SR)
		; list__member(K, SC)
		)
	->
		error("attempt to address shunned row/col")
	;
		true
	),
	(
		map__search(Cells, J - K, R0)
	->
		R = R0
	;
		R = 0.0
	).

:- pred set_index(tableau, int, int, float, tableau).
:- mode set_index(in, in, in, in, out) is det.

set_index(Tableau0, J, K, R, Tableau) :-
	Tableau0 = tableau(Rows, Cols, VarNums, URS, SR, SC, Cells0),
	(
		( list__member(J, SR)
		; list__member(K, SC)
		)
	->
		error("attempt to write shunned row/col")
	;
		true
	),
	( R = 0.0 ->
		map__delete(Cells0, J - K, Cells)
	;
		map__set(Cells0, J - K, R, Cells)
	),
	Tableau = tableau(Rows, Cols, VarNums, URS, SR, SC, Cells).

:- pred rhs_col(tableau, int).
:- mode rhs_col(in, out) is det.

rhs_col(tableau(_, RHS, _, _, _, _, _), RHS).

:- pred all_rows0(tableau, int).
:- mode all_rows0(in, out) is nondet.

all_rows0(Tableau, Row) :-
	Tableau = tableau(Rows, _Cols, _, _, SR, _, _),
	between(0, Rows, Row),
	\+ list__member(Row, SR).

:- pred all_rows(tableau, int).
:- mode all_rows(in, out) is nondet.

all_rows(Tableau, Row) :-
	Tableau = tableau(Rows, _Cols, _, _, SR, _, _),
	between(1, Rows, Row),
	\+ list__member(Row, SR).

:- pred all_cols0(tableau, int).
:- mode all_cols0(in, out) is nondet.

all_cols0(Tableau, Col) :-
	Tableau = tableau(_Rows, Cols, _, _, _, SC, _),
	between(0, Cols, Col),
	\+ list__member(Col, SC).

:- pred all_cols(tableau, int).
:- mode all_cols(in, out) is nondet.

all_cols(Tableau, Col) :-
	Tableau = tableau(_Rows, Cols, _, _, _, SC, _),
	Cols1 is Cols - 1,
	between(0, Cols1, Col),
	\+ list__member(Col, SC).

:- pred var_col(tableau, var, int).
:- mode var_col(in, in, out) is det.

var_col(Tableau, Var, Col) :-
	Tableau = tableau(_, _, VarCols, _, _, _, _),
	map__lookup(VarCols, Var, Col).

:- pred urs_vars(tableau, map(var, pair(var))).
:- mode urs_vars(in, out) is det.

urs_vars(Tableau, URS) :-
	Tableau = tableau(_, _, _, URS, _, _, _).

:- pred remove_row(int, tableau, tableau).
:- mode remove_row(in, in, out) is det.

remove_row(R, Tableau0, Tableau) :-
	Tableau0 = tableau(Rows, Cols, VarNums, URS, SR, SC, Cells),
	Tableau = tableau(Rows, Cols, VarNums, URS, [R|SR], SC, Cells).

:- pred remove_col(int, tableau, tableau).
:- mode remove_col(in, in, out) is det.

remove_col(C, Tableau0, Tableau) :-
	Tableau0 = tableau(Rows, Cols, VarNums, URS, SR, SC, Cells),
	Tableau = tableau(Rows, Cols, VarNums, URS, SR, [C|SC], Cells).

:- pred get_basis_vars(tableau, list(var)).
:- mode get_basis_vars(in, out) is det.

get_basis_vars(Tab, Vars) :-
	BasisCol = lambda([C::out] is nondet, (
		all_cols(Tab, C),
		NonZeroGoal = lambda([P::out] is nondet, (
			all_rows(Tab, R),
			index(Tab, R, C, Z),
			Z \= 0.0,
			P = R - Z
		)),
		solutions(NonZeroGoal, Solns),
		Solns = [_ - 1.0]
	)),
	solutions(BasisCol, Cols),
	BasisVars = lambda([V::out] is nondet, (
		list__member(Col, Cols),
		Tab = tableau(_, _, VarCols, _, _, _, _),
		map__member(VarCols, V, Col)
	)),
	solutions(BasisVars, Vars).

%------------------------------------------------------------------------------%

	% For debugging ....

:- pred show_tableau(tableau, io__state, io__state).
:- mode show_tableau(in, di, uo) is det.

show_tableau(Tableau) -->
	{ Tableau = tableau(N, M, _, _, _, _, _) },
	{ string__format("Tableau (%d, %d):\n", [i(N), i(M)], Str) },
	io__write_string(Str),
	aggregate(all_rows0(Tableau), show_row(Tableau)).

:- pred show_row(tableau, int, io__state, io__state).
:- mode show_row(in, in, di, uo) is det.

show_row(Tableau, Row) -->
	aggregate(all_cols0(Tableau), show_cell(Tableau, Row)),
	io__write_string("\n").

:- pred show_cell(tableau, int, int, io__state, io__state).
:- mode show_cell(in, in, in, di, uo) is det.

show_cell(Tableau, Row, Col) -->
	{ index(Tableau, Row, Col, Val) },
	{ string__format("%2.2f\t", [f(Val)], Str) },
	io__write_string(Str).

%------------------------------------------------------------------------------%

:- pred lp_info_init(varset, list(var), lp_info).
:- mode lp_info_init(in, in, out) is det.

lp_info_init(Varset0, URSVars, LPInfo) :-
	Introduce = lambda([Orig::in, VP0::in, VP::out] is det, (
		VP0 = VS0 - VM0,
		varset__new_var(VS0, V1, VS1),
		varset__new_var(VS1, V2, VS),
		map__set(VM0, Orig, V1 - V2, VM),
		VP = VS - VM
	)),
	map__init(URSMap0),
	list__foldl(Introduce, URSVars, Varset0 - URSMap0, Varset - URSMap),
	LPInfo = lp(Varset, URSMap, [], []).

:- pred new_slack_var(var::out, lp_info::in, lp_info::out) is det.

new_slack_var(Var) -->
	get_varset(Varset0),
	{ varset__new_var(Varset0, Var, Varset) },
	set_varset(Varset),
	get_slack_vars(Vars),
	set_slack_vars([Var|Vars]).

:- pred new_art_var(var::out, lp_info::in, lp_info::out) is det.

new_art_var(Var) -->
	get_varset(Varset0),
	{ varset__new_var(Varset0, Var, Varset) },
	set_varset(Varset),
	get_art_vars(Vars),
	set_art_vars([Var|Vars]).

:- pred get_varset(varset::out, lp_info::in, lp_info::out) is det.

get_varset(Varset, Info, Info) :-
	Info = lp(Varset, _URSVars, _Slack, _Art).

:- pred set_varset(varset::in, lp_info::in, lp_info::out) is det.

set_varset(Varset, Info0, Info) :-
	Info0 = lp(_Varset, URSVars, Slack, Art),
	Info  = lp(Varset, URSVars, Slack, Art).

:- pred get_urs_vars(map(var, pair(var))::out, lp_info::in, lp_info::out) is det.

get_urs_vars(URSVars, Info, Info) :-
	Info = lp(_Varset, URSVars, _Slack, _Art).

:- pred set_urs_vars(map(var, pair(var))::in, lp_info::in, lp_info::out) is det.

set_urs_vars(URSVars, Info0, Info) :-
	Info0 = lp(Varset, _URSVars, Slack, Art),
	Info  = lp(Varset, URSVars, Slack, Art).

:- pred get_slack_vars(list(var)::out, lp_info::in, lp_info::out) is det.

get_slack_vars(Slack, Info, Info) :-
	Info = lp(_Varset, _URSVars, Slack, _Art).

:- pred set_slack_vars(list(var)::in, lp_info::in, lp_info::out) is det.

set_slack_vars(Slack, Info0, Info) :-
	Info0 = lp(Varset, URSVars, _Slack, Art),
	Info  = lp(Varset, URSVars, Slack, Art).

:- pred get_art_vars(list(var)::out, lp_info::in, lp_info::out) is det.

get_art_vars(Art, Info, Info) :-
	Info = lp(_Varset, _URSVars, _Slack, Art).

:- pred set_art_vars(list(var)::in, lp_info::in, lp_info::out) is det.

set_art_vars(Art, Info0, Info) :-
	Info0 = lp(Varset, URSVars, Slack, _Art),
	Info  = lp(Varset, URSVars, Slack, Art).

%------------------------------------------------------------------------------%

:- pred between(int, int, int).
:- mode between(in, in, out) is nondet.

between(Min, Max, I) :-
	Min =< Max,
	(
		I = Min
	;
		Min1 is Min + 1,
		between(Min1, Max, I)
	).

%------------------------------------------------------------------------------%
%------------------------------------------------------------------------------%