1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
|
%-----------------------------------------------------------------------------%
% Copyright (C) 1996-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: modecheck_unify.m.
% Main author: fjh.
%
% This module contains the code to modecheck a unification.
%
% Check that the unification doesn't attempt to unify two free variables
% (or in general two free sub-terms) unless one of them is dead. (Also we
% ought to split unifications up if necessary to avoid complicated
% sub-unifications.)
%
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- module modecheck_unify.
:- interface.
:- import_module hlds_goal, prog_data, mode_info.
% Modecheck a unification
:- pred modecheck_unification(prog_var, unify_rhs, unification, unify_context,
hlds_goal_info, hlds_goal_expr, mode_info, mode_info).
:- mode modecheck_unification(in, in, in, in, in, out,
mode_info_di, mode_info_uo) is det.
% Create a unification between the two given variables.
% The goal's mode and determinism information is not filled in.
:- pred modecheck_unify__create_var_var_unification(prog_var, prog_var, type,
mode_info, hlds_goal).
:- mode modecheck_unify__create_var_var_unification(in, in, in,
mode_info_ui, out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module llds, prog_util, type_util, module_qual, instmap.
:- import_module hlds_module, hlds_goal, hlds_pred, hlds_data, hlds_out.
:- import_module mode_debug, mode_util, mode_info, modes, mode_errors.
:- import_module inst_match, inst_util, unify_proc, code_util, unique_modes.
:- import_module typecheck, modecheck_call, (inst), quantification, make_hlds.
:- import_module polymorphism.
:- import_module bool, list, map, std_util, int, set, require.
:- import_module string, assoc_list.
:- import_module term, varset.
%-----------------------------------------------------------------------------%
modecheck_unification(X, var(Y), Unification0, UnifyContext, _GoalInfo,
Unify, ModeInfo0, ModeInfo) :-
mode_info_get_module_info(ModeInfo0, ModuleInfo0),
mode_info_get_instmap(ModeInfo0, InstMap0),
instmap__lookup_var(InstMap0, X, InstOfX),
instmap__lookup_var(InstMap0, Y, InstOfY),
mode_info_var_is_live(ModeInfo0, X, LiveX),
mode_info_var_is_live(ModeInfo0, Y, LiveY),
(
( LiveX = live, LiveY = live ->
BothLive = live
;
BothLive = dead
),
abstractly_unify_inst(BothLive, InstOfX, InstOfY,
real_unify, ModuleInfo0, UnifyInst, Det1, ModuleInfo1)
->
Inst = UnifyInst,
Det = Det1,
mode_info_set_module_info(ModeInfo0, ModuleInfo1, ModeInfo1),
modecheck_set_var_inst(X, Inst, ModeInfo1, ModeInfo2),
modecheck_set_var_inst(Y, Inst, ModeInfo2, ModeInfo3),
ModeOfX = (InstOfX -> Inst),
ModeOfY = (InstOfY -> Inst),
mode_info_get_var_types(ModeInfo3, VarTypes),
categorize_unify_var_var(ModeOfX, ModeOfY, LiveX, LiveY, X, Y,
Det, UnifyContext, VarTypes, Unification0, ModeInfo3,
Unify, ModeInfo)
;
set__list_to_set([X, Y], WaitingVars),
mode_info_error(WaitingVars, mode_error_unify_var_var(X, Y,
InstOfX, InstOfY), ModeInfo0, ModeInfo1),
% If we get an error, set the inst to not_reached
% to suppress follow-on errors
% But don't call categorize_unification, because
% that could cause an invalid call to
% `unify_proc__request_unify'
Inst = not_reached,
modecheck_set_var_inst(X, Inst, ModeInfo1, ModeInfo2),
modecheck_set_var_inst(Y, Inst, ModeInfo2, ModeInfo),
% return any old garbage
Unification = assign(X, Y),
ModeOfX = (InstOfX -> Inst),
ModeOfY = (InstOfY -> Inst),
Modes = ModeOfX - ModeOfY,
Unify = unify(X, var(Y), Modes, Unification, UnifyContext)
).
modecheck_unification(X0, functor(ConsId0, ArgVars0), Unification0,
UnifyContext, GoalInfo0, Goal, ModeInfo0, ModeInfo) :-
mode_info_get_module_info(ModeInfo0, ModuleInfo0),
mode_info_get_var_types(ModeInfo0, VarTypes0),
map__lookup(VarTypes0, X0, TypeOfX),
%
% We replace any unifications with higher-order pred constants
% by lambda expressions. For example, we replace
%
% X = list__append(Y) % Y::in, X::out
%
% with
%
% X = lambda [A1::in, A2::out] (list__append(Y, A1, A2))
%
% Normally this is done by polymorphism__process_unify_functor,
% but if we're re-modechecking goals after lambda.m has been run
% (e.g. for deforestation), then we may need to do it again here.
% Note that any changes to this code here will probably need to be
% duplicated there too.
%
(
% check if variable has a higher-order type
type_is_higher_order(TypeOfX, PredOrFunc, EvalMethod,
PredArgTypes),
ConsId0 = cons(PName, _),
% but in case we are redoing mode analysis, make sure
% we don't mess with the address constants for type_info
% fields created by polymorphism.m
Unification0 \= construct(_, code_addr_const(_, _),
_, _, _, _, _),
Unification0 \= deconstruct(_, code_addr_const(_, _), _, _, _)
->
%
% convert the pred term to a lambda expression
%
mode_info_get_varset(ModeInfo0, VarSet0),
mode_info_get_context(ModeInfo0, Context),
mode_info_get_predid(ModeInfo0, ThisPredId),
module_info_pred_info(ModuleInfo0, ThisPredId, ThisPredInfo),
pred_info_typevarset(ThisPredInfo, TVarSet),
convert_pred_to_lambda_goal(PredOrFunc, EvalMethod,
X0, ConsId0, PName, ArgVars0, PredArgTypes, TVarSet,
Unification0, UnifyContext, GoalInfo0, Context,
ModuleInfo0, VarSet0, VarTypes0,
Functor0, VarSet, VarTypes),
mode_info_set_varset(VarSet, ModeInfo0, ModeInfo1),
mode_info_set_var_types(VarTypes, ModeInfo1, ModeInfo2),
%
% modecheck this unification in its new form
%
modecheck_unification(X0, Functor0, Unification0, UnifyContext,
GoalInfo0, Goal, ModeInfo2, ModeInfo)
;
%
% It's not a higher-order pred unification - just
% call modecheck_unify_functor to do the ordinary thing.
%
modecheck_unify_functor(X0, TypeOfX,
ConsId0, ArgVars0, Unification0, UnifyContext,
GoalInfo0, Goal, ModeInfo0, ModeInfo)
).
modecheck_unification(X,
lambda_goal(PredOrFunc, EvalMethod, _, ArgVars,
Vars, Modes0, Det, Goal0),
Unification0, UnifyContext, _GoalInfo,
unify(X, RHS, Mode, Unification, UnifyContext),
ModeInfo0, ModeInfo) :-
%
% First modecheck the lambda goal itself:
%
% initialize the initial insts of the lambda variables,
% check that the non-local vars are ground (XXX or any),
% mark the non-local vars as shared,
% lock the non-local vars,
% mark the non-clobbered lambda variables as live,
% modecheck the goal,
% check that the final insts are correct,
% unmark the live vars,
% unlock the non-local vars,
% restore the original instmap.
%
% XXX or should we merge the original and the final instmaps???
%
% The reason that we need to merge the original and final instmaps
% is as follows. The lambda goal will not have bound any variables
% (since they were locked), but it may have added some information
% or lost some uniqueness. We cannot use the final instmap,
% because that may have too much information. If we use the
% initial instmap, variables will be considered as unique
% even if they become shared or clobbered in the lambda goal!
%
% However even this may not be enough. If a unique non-local
% variable is used in its unique inst (e.g. it's used in a ui
% mode) and then shared within the lambda body, this is unsound.
% This variable should be marked as shared at the _top_ of the
% lambda goal. As for implementing this, it probably means that
% the lambda goal should be re-modechecked, or even modechecked
% to a fixpoint.
%
% For the moment, since doing all that properly seems too hard,
% we just share all non-local variables at the top of the lambda goal.
% This is safe, but perhaps too conservative.
%
mode_info_get_module_info(ModeInfo0, ModuleInfo0),
mode_info_get_how_to_check(ModeInfo0, HowToCheckGoal),
( HowToCheckGoal = check_modes ->
% This only needs to be done once.
mode_info_get_types_of_vars(ModeInfo0, Vars, VarTypes),
propagate_types_into_mode_list(VarTypes, ModuleInfo0,
Modes0, Modes)
;
Modes = Modes0
),
% initialize the initial insts of the lambda variables
mode_list_get_initial_insts(Modes, ModuleInfo0, VarInitialInsts),
assoc_list__from_corresponding_lists(Vars, VarInitialInsts, VarInstAL),
instmap_delta_from_assoc_list(VarInstAL, VarInstMapDelta),
mode_info_get_instmap(ModeInfo0, InstMap0),
instmap__apply_instmap_delta(InstMap0, VarInstMapDelta, InstMap1),
mode_info_set_instmap(InstMap1, ModeInfo0, ModeInfo1),
% mark the non-clobbered lambda variables as live
get_arg_lives(Modes, ModuleInfo0, ArgLives),
get_live_vars(Vars, ArgLives, LiveVarsList),
set__list_to_set(LiveVarsList, LiveVars),
mode_info_add_live_vars(LiveVars, ModeInfo1, ModeInfo2),
% lock the non-locals
% (a lambda goal is not allowed to bind any of the non-local
% variables, since it could get called more than once, or
% from inside a negation)
Goal0 = _ - GoalInfo0,
goal_info_get_nonlocals(GoalInfo0, NonLocals0),
set__delete_list(NonLocals0, Vars, NonLocals),
set__to_sorted_list(NonLocals, NonLocalsList),
instmap__lookup_vars(NonLocalsList, InstMap1, NonLocalInsts),
mode_info_get_module_info(ModeInfo2, ModuleInfo2),
(
% XXX This test is too conservative.
%
% We should allow non-local variables to be non-ground
% sometimes, possibly dependent on whether or not they
% are dead after this unification. In addition, we
% should not "share" a unique non-local variable if
% these two conditions hold:
%
% - It is dead after this unification.
% - It is not shared within the lambda body.
%
% Unfortunately, we can't test the latter condition
% until after we've mode-checked the lambda body.
% (See the above comment on merging the initial and
% final instmaps.)
% XXX This test is also not conservative enough!
%
% We should not allow non-local vars to have inst `any';
% because that can lead to unsoundness.
% However, disallowing that idiom would break
% extras/trailed_update/samples/vqueens.m, and
% would make freeze/3 basically useless...
% so for now at least, let's not disallow it,
% even though it is unsafe.
inst_list_is_ground_or_any(NonLocalInsts, ModuleInfo2)
->
make_shared_inst_list(NonLocalInsts, ModuleInfo2,
SharedNonLocalInsts, ModuleInfo3),
instmap__set_vars(InstMap1, NonLocalsList, SharedNonLocalInsts,
InstMap2),
mode_info_set_module_info(ModeInfo2, ModuleInfo3, ModeInfo3),
mode_info_set_instmap(InstMap2, ModeInfo3, ModeInfo4),
mode_info_lock_vars(lambda(PredOrFunc), NonLocals,
ModeInfo4, ModeInfo5),
mode_checkpoint(enter, "lambda goal", ModeInfo5, ModeInfo6),
% if we're being called from unique_modes.m, then we need to
% call unique_modes__check_goal rather than modecheck_goal.
(
HowToCheckGoal = check_unique_modes
->
unique_modes__check_goal(Goal0, Goal, ModeInfo6,
ModeInfo7)
;
modecheck_goal(Goal0, Goal, ModeInfo6, ModeInfo7)
),
mode_list_get_final_insts(Modes, ModuleInfo0, FinalInsts),
modecheck_final_insts(Vars, FinalInsts, ModeInfo7, ModeInfo8),
mode_checkpoint(exit, "lambda goal", ModeInfo8, ModeInfo9),
mode_info_remove_live_vars(LiveVars, ModeInfo9, ModeInfo10),
mode_info_unlock_vars(lambda(PredOrFunc), NonLocals,
ModeInfo10, ModeInfo11),
%
% Ensure that the non-local vars are shared OUTSIDE the
% lambda unification as well as inside.
%
instmap__set_vars(InstMap0, NonLocalsList, SharedNonLocalInsts,
InstMap11),
mode_info_set_instmap(InstMap11, ModeInfo11, ModeInfo12),
%
% Now modecheck the unification of X with the lambda-expression.
%
RHS0 = lambda_goal(PredOrFunc, EvalMethod, modes_are_ok,
ArgVars, Vars, Modes, Det, Goal),
modecheck_unify_lambda(X, PredOrFunc, ArgVars, Modes,
Det, RHS0, Unification0, Mode,
RHS, Unification, ModeInfo12, ModeInfo)
;
list__filter(lambda([Var :: in] is semidet,
( instmap__lookup_var(InstMap1, Var, Inst),
\+ inst_is_ground(ModuleInfo2, Inst)
)),
NonLocalsList, NonGroundNonLocals),
( NonGroundNonLocals = [BadVar | _] ->
instmap__lookup_var(InstMap1, BadVar, BadInst),
set__singleton_set(WaitingVars, BadVar),
mode_info_error(WaitingVars,
mode_error_non_local_lambda_var(BadVar,
BadInst),
ModeInfo2, ModeInfo)
;
error("modecheck_unification(lambda): very strange var")
),
% return any old garbage
RHS = lambda_goal(PredOrFunc, EvalMethod, modes_are_ok,
ArgVars, Vars, Modes0, Det, Goal0),
Mode = (free -> free) - (free -> free),
Unification = Unification0
).
:- pred modecheck_unify_lambda(prog_var, pred_or_func, list(prog_var),
list(mode), determinism, unify_rhs, unification,
pair(mode), unify_rhs, unification, mode_info, mode_info).
:- mode modecheck_unify_lambda(in, in, in, in, in, in, in,
out, out, out, mode_info_di, mode_info_uo) is det.
modecheck_unify_lambda(X, PredOrFunc, ArgVars, LambdaModes,
LambdaDet, RHS0, Unification0, Mode, RHS, Unification,
ModeInfo0, ModeInfo) :-
mode_info_get_module_info(ModeInfo0, ModuleInfo0),
mode_info_get_instmap(ModeInfo0, InstMap0),
instmap__lookup_var(InstMap0, X, InstOfX),
InstOfY = ground(unique, yes(LambdaPredInfo)),
LambdaPredInfo = pred_inst_info(PredOrFunc, LambdaModes, LambdaDet),
(
abstractly_unify_inst(dead, InstOfX, InstOfY, real_unify,
ModuleInfo0, UnifyInst, _Det, ModuleInfo1)
->
Inst = UnifyInst,
mode_info_set_module_info(ModeInfo0, ModuleInfo1, ModeInfo1),
ModeOfX = (InstOfX -> Inst),
ModeOfY = (InstOfY -> Inst),
Mode = ModeOfX - ModeOfY,
% the lambda expression just maps its argument variables
% from their current insts to the same inst
instmap__lookup_vars(ArgVars, InstMap0, ArgInsts),
inst_lists_to_mode_list(ArgInsts, ArgInsts, ArgModes),
categorize_unify_var_lambda(ModeOfX, ArgModes,
X, ArgVars, PredOrFunc,
RHS0, Unification0, ModeInfo1,
RHS, Unification, ModeInfo2),
modecheck_set_var_inst(X, Inst, ModeInfo2, ModeInfo)
;
set__list_to_set([X], WaitingVars),
mode_info_error(WaitingVars,
mode_error_unify_var_lambda(X, InstOfX, InstOfY),
ModeInfo0, ModeInfo1
),
% If we get an error, set the inst to not_reached
% to avoid cascading errors
% But don't call categorize_unification, because
% that could cause an invalid call to
% `unify_proc__request_unify'
Inst = not_reached,
modecheck_set_var_inst(X, Inst, ModeInfo1, ModeInfo),
ModeOfX = (InstOfX -> Inst),
ModeOfY = (InstOfY -> Inst),
Mode = ModeOfX - ModeOfY,
% return any old garbage
Unification = Unification0,
RHS = RHS0
).
:- pred modecheck_unify_functor(prog_var, (type), cons_id, list(prog_var),
unification, unify_context, hlds_goal_info, hlds_goal_expr,
mode_info, mode_info).
:- mode modecheck_unify_functor(in, in, in, in, in, in, in,
out, mode_info_di, mode_info_uo) is det.
modecheck_unify_functor(X, TypeOfX, ConsId0, ArgVars0, Unification0,
UnifyContext, GoalInfo0, Goal, ModeInfo0,
FinalModeInfo) :-
mode_info_get_module_info(ModeInfo0, ModuleInfo0),
mode_info_get_how_to_check(ModeInfo0, HowToCheckGoal),
%
% Fully module qualify all cons_ids
% (except for builtins such as ints and characters).
%
(
ConsId0 = cons(Name0, OrigArity),
type_to_type_id(TypeOfX, TypeId, _),
TypeId = qualified(TypeModule, _) - _
->
unqualify_name(Name0, UnqualName),
Name = qualified(TypeModule, UnqualName),
ConsId = cons(Name, OrigArity),
%
% Fix up the cons_id arity for type(class)_info constructions.
% The cons_id for type(class)_info constructions always has
% arity 1, to match the arity in the declaration in
% library/private_builtin.m,
% but for the inst we need the arity of the cons_id
% to match the number of arguments.
%
(
mercury_private_builtin_module(TypeModule),
( UnqualName = "typeclass_info"
; UnqualName = "type_info"
)
->
list__length(ArgVars0, InstArity),
InstConsId = cons(Name, InstArity)
;
InstConsId = ConsId
)
;
ConsId = ConsId0,
InstConsId = ConsId
),
mode_info_get_instmap(ModeInfo0, InstMap0),
instmap__lookup_var(InstMap0, X, InstOfX),
instmap__lookup_vars(ArgVars0, InstMap0, InstArgs),
mode_info_var_is_live(ModeInfo0, X, LiveX),
mode_info_var_list_is_live(ArgVars0, ModeInfo0, LiveArgs),
InstOfY = bound(unique, [functor(InstConsId, InstArgs)]),
(
% The occur check: X = f(X) is considered a mode error
% unless X is ground. (Actually it wouldn't be that
% hard to generate code for it - it always fails! -
% but it's most likely to be a programming error,
% so it's better to report it.)
list__member(X, ArgVars0),
\+ inst_is_ground(ModuleInfo0, InstOfX)
->
set__list_to_set([X], WaitingVars),
mode_info_error(WaitingVars,
mode_error_unify_var_functor(X, InstConsId, ArgVars0,
InstOfX, InstArgs),
ModeInfo0, ModeInfo1
),
Inst = not_reached,
Det = erroneous,
% If we get an error, set the inst to not_reached
% to avoid cascading errors
% But don't call categorize_unification, because
% that could cause an invalid call to
% `unify_proc__request_unify'
ModeOfX = (InstOfX -> Inst),
ModeOfY = (InstOfY -> Inst),
Mode = ModeOfX - ModeOfY,
modecheck_set_var_inst(X, Inst, ModeInfo1, ModeInfo2),
( bind_args(Inst, ArgVars0, ModeInfo2, ModeInfo3) ->
ModeInfo = ModeInfo3
;
error("bind_args failed")
),
% return any old garbage
Unification = Unification0,
ArgVars = ArgVars0,
ExtraGoals = no_extra_goals
;
abstractly_unify_inst_functor(LiveX, InstOfX, InstConsId,
InstArgs, LiveArgs, real_unify, ModuleInfo0,
UnifyInst, Det1, ModuleInfo1)
->
Inst = UnifyInst,
Det = Det1,
mode_info_set_module_info(ModeInfo0, ModuleInfo1, ModeInfo1),
ModeOfX = (InstOfX -> Inst),
ModeOfY = (InstOfY -> Inst),
Mode = ModeOfX - ModeOfY,
( get_mode_of_args(Inst, InstArgs, ModeArgs0) ->
ModeArgs = ModeArgs0
;
error("get_mode_of_args failed")
),
(
inst_expand(ModuleInfo1, InstOfX, InstOfX1),
list__length(ArgVars0, Arity),
get_arg_insts(InstOfX1, InstConsId, Arity, InstOfXArgs),
get_mode_of_args(Inst, InstOfXArgs, ModeOfXArgs0)
->
ModeOfXArgs = ModeOfXArgs0
;
error("get_(inst/mode)_of_args failed")
),
mode_info_get_var_types(ModeInfo1, VarTypes),
categorize_unify_var_functor(ModeOfX, ModeOfXArgs, ModeArgs,
X, ConsId, ArgVars0, VarTypes, UnifyContext,
Unification0, ModeInfo1,
Unification1, ModeInfo2),
split_complicated_subunifies(Unification1, ArgVars0,
Unification, ArgVars, ExtraGoals,
ModeInfo2, ModeInfo3),
modecheck_set_var_inst(X, Inst, ModeInfo3, ModeInfo4),
( bind_args(Inst, ArgVars, ModeInfo4, ModeInfo5) ->
ModeInfo = ModeInfo5
;
error("bind_args failed")
)
;
set__list_to_set([X | ArgVars0], WaitingVars), % conservative
mode_info_error(WaitingVars,
mode_error_unify_var_functor(X, InstConsId, ArgVars0,
InstOfX, InstArgs),
ModeInfo0, ModeInfo1
),
% If we get an error, set the inst to not_reached
% to avoid cascading errors
% But don't call categorize_unification, because
% that could cause an invalid call to
% `unify_proc__request_unify'
Inst = not_reached,
Det = erroneous,
ModeOfX = (InstOfX -> Inst),
ModeOfY = (InstOfY -> Inst),
Mode = ModeOfX - ModeOfY,
modecheck_set_var_inst(X, Inst, ModeInfo1, ModeInfo2),
( bind_args(Inst, ArgVars0, ModeInfo2, ModeInfo3) ->
ModeInfo = ModeInfo3
;
error("bind_args failed")
),
% return any old garbage
Unification = Unification0,
ArgVars = ArgVars0,
ExtraGoals = no_extra_goals
),
%
% Optimize away construction of unused terms by
% replacing the unification with `true'. Optimize
% away unifications which always fail by replacing
% them with `fail'.
%
(
Unification = construct(ConstructTarget, _, _, _, _, _, _),
mode_info_var_is_live(ModeInfo, ConstructTarget, dead)
->
Goal = conj([]),
FinalModeInfo = ModeInfo
;
Det = failure
->
% This optimisation is safe because the only way that
% we can analyse a unification as having no solutions
% is that the unification always fails.
%,
% Unifying two preds is not erroneous as far as the
% mode checker is concerned, but a mode _error_.
map__init(Empty),
Goal = disj([], Empty),
FinalModeInfo = ModeInfo
;
Functor = functor(ConsId, ArgVars),
Unify = unify(X, Functor, Mode, Unification,
UnifyContext),
X = X0,
%
% modecheck_unification sometimes needs to introduce
% new goals to handle complicated sub-unifications
% in deconstructions. The only time this can happen
% during unique mode analysis is if the instmap is
% unreachable, since inst_is_bound succeeds for not_reached.
% (If it did in other cases, the code would be wrong since it
% wouldn't have the correct determinism annotations.)
%
(
HowToCheckGoal = check_unique_modes,
ExtraGoals \= no_extra_goals,
instmap__is_reachable(InstMap0)
->
error("unique_modes.m: re-modecheck of unification encountered complicated sub-unifies")
;
true
),
handle_extra_goals(Unify, ExtraGoals, GoalInfo0,
[X0|ArgVars0], [X|ArgVars],
InstMap0, Goal, ModeInfo, FinalModeInfo)
).
%-----------------------------------------------------------------------------%
% The argument unifications in a construction or deconstruction
% unification must be simple assignments, they cannot be
% complicated unifications. If they are, we split them out
% into separate unifications by introducing fresh variables here.
:- pred split_complicated_subunifies(unification, list(prog_var),
unification, list(prog_var), extra_goals,
mode_info, mode_info).
:- mode split_complicated_subunifies(in, in, out, out, out,
mode_info_di, mode_info_uo) is det.
split_complicated_subunifies(Unification0, ArgVars0,
Unification, ArgVars, ExtraGoals) -->
(
{ Unification0 = deconstruct(X, ConsId, ArgVars0, ArgModes0,
Det) }
->
(
split_complicated_subunifies_2(ArgVars0, ArgModes0,
ArgVars1, ExtraGoals1)
->
{ ExtraGoals = ExtraGoals1 },
{ ArgVars = ArgVars1 },
{ Unification = deconstruct(X, ConsId, ArgVars,
ArgModes0, Det) }
;
{ error("split_complicated_subunifies_2 failed") }
)
;
{ Unification = Unification0 },
{ ArgVars = ArgVars0 },
{ ExtraGoals = no_extra_goals }
).
:- pred split_complicated_subunifies_2(list(prog_var), list(uni_mode),
list(prog_var), extra_goals, mode_info, mode_info).
:- mode split_complicated_subunifies_2(in, in, out, out,
mode_info_di, mode_info_uo) is semidet.
split_complicated_subunifies_2([], [], [], no_extra_goals) --> [].
split_complicated_subunifies_2([Var0 | Vars0], [UniMode0 | UniModes0],
Vars, ExtraGoals, ModeInfo0, ModeInfo) :-
mode_info_get_module_info(ModeInfo0, ModuleInfo),
UniMode0 = (InitialInstX - InitialInstY -> FinalInstX - FinalInstY),
ModeX = (InitialInstX -> FinalInstX),
ModeY = (InitialInstY -> FinalInstY),
mode_info_get_var_types(ModeInfo0, VarTypes0),
map__lookup(VarTypes0, Var0, VarType),
(
mode_to_arg_mode(ModuleInfo, ModeX, VarType, top_in),
mode_to_arg_mode(ModuleInfo, ModeY, VarType, top_in)
->
% introduce a new variable `Var'
mode_info_get_varset(ModeInfo0, VarSet0),
mode_info_get_var_types(ModeInfo0, VarTypes0),
varset__new_var(VarSet0, Var, VarSet),
map__set(VarTypes0, Var, VarType, VarTypes),
mode_info_set_varset(VarSet, ModeInfo0, ModeInfo1),
mode_info_set_var_types(VarTypes, ModeInfo1, ModeInfo2),
modecheck_unify__create_var_var_unification(Var0, Var,
VarType, ModeInfo2, ExtraGoal),
% insert the new unification at
% the start of the extra goals
ExtraGoals0 = extra_goals([], [ExtraGoal]),
% recursive call to handle the remaining variables...
split_complicated_subunifies_2(Vars0, UniModes0,
Vars1, ExtraGoals1, ModeInfo2, ModeInfo),
Vars = [Var | Vars1],
append_extra_goals(ExtraGoals0, ExtraGoals1, ExtraGoals)
;
split_complicated_subunifies_2(Vars0, UniModes0,
Vars1, ExtraGoals, ModeInfo0, ModeInfo),
Vars = [Var0 | Vars1]
).
modecheck_unify__create_var_var_unification(Var0, Var, Type, ModeInfo,
Goal - GoalInfo) :-
mode_info_get_context(ModeInfo, Context),
mode_info_get_mode_context(ModeInfo, ModeContext),
mode_context_to_unify_context(ModeContext, ModeInfo, UnifyContext),
UnifyContext = unify_context(MainContext, SubContexts),
create_atomic_unification(Var0, var(Var), Context,
MainContext, SubContexts, Goal0 - GoalInfo0),
%
% compute the goal_info nonlocal vars for the newly created goal
% (excluding the type_info vars -- they are added below).
% N.B. This may overestimate the set of non-locals,
% but that shouldn't cause any problems.
%
set__list_to_set([Var0, Var], NonLocals),
goal_info_set_nonlocals(GoalInfo0, NonLocals, GoalInfo1),
goal_info_set_context(GoalInfo1, Context, GoalInfo2),
%
% Look up the map(tvar, type_info_locn) in the proc_info,
% since it is needed by polymorphism__unification_typeinfos
%
mode_info_get_module_info(ModeInfo, ModuleInfo),
mode_info_get_predid(ModeInfo, PredId),
mode_info_get_procid(ModeInfo, ProcId),
module_info_pred_proc_info(ModuleInfo, PredId, ProcId,
_PredInfo, ProcInfo),
proc_info_typeinfo_varmap(ProcInfo, TypeInfoVarMap),
%
% Call polymorphism__unification_typeinfos to add the appropriate
% type-info and type-class-info variables to the nonlocals
% and to the unification.
%
(
Goal0 = unify(X, Y, Mode, Unification0, FinalUnifyContext)
->
polymorphism__unification_typeinfos(Type, TypeInfoVarMap,
Unification0, GoalInfo2, Unification, GoalInfo),
Goal = unify(X, Y, Mode, Unification, FinalUnifyContext)
;
error("modecheck_unify__create_var_var_unification")
).
%-----------------------------------------------------------------------------%
% Work out what kind of unification a var-var unification is.
:- pred categorize_unify_var_var(mode, mode, is_live, is_live, prog_var,
prog_var, determinism, unify_context, map(prog_var, type),
unification, mode_info, hlds_goal_expr, mode_info).
:- mode categorize_unify_var_var(in, in, in, in, in, in, in, in, in, in,
mode_info_di, out, mode_info_uo) is det.
% categorize_unify_var_var works out which category a unification
% between a variable and another variable expression is - whether it is
% an assignment, a simple test or a complicated unify.
categorize_unify_var_var(ModeOfX, ModeOfY, LiveX, LiveY, X, Y, Det,
UnifyContext, VarTypes, Unification0, ModeInfo0,
Unify, ModeInfo) :-
mode_info_get_module_info(ModeInfo0, ModuleInfo0),
(
mode_is_output(ModuleInfo0, ModeOfX)
->
Unification = assign(X, Y),
ModeInfo = ModeInfo0
;
mode_is_output(ModuleInfo0, ModeOfY)
->
Unification = assign(Y, X),
ModeInfo = ModeInfo0
;
mode_is_unused(ModuleInfo0, ModeOfX),
mode_is_unused(ModuleInfo0, ModeOfY)
->
% For free-free unifications, we pretend for a moment that they
% are an assignment to the dead variable - they will then
% be optimized away.
( LiveX = dead ->
Unification = assign(X, Y)
; LiveY = dead ->
Unification = assign(Y, X)
;
error("categorize_unify_var_var: free-free unify!")
),
ModeInfo = ModeInfo0
;
%
% Check for unreachable unifications
%
( mode_get_insts(ModuleInfo0, ModeOfX, not_reached, _)
; mode_get_insts(ModuleInfo0, ModeOfY, not_reached, _)
)
->
%
% For these, we can generate any old junk here --
% we just need to avoid calling modecheck_complicated_unify,
% since that might abort.
%
Unification = simple_test(X, Y),
ModeInfo = ModeInfo0
;
map__lookup(VarTypes, X, Type),
(
type_is_atomic(Type, ModuleInfo0)
->
Unification = simple_test(X, Y),
ModeInfo = ModeInfo0
;
modecheck_complicated_unify(X, Y,
Type, ModeOfX, ModeOfY, Det, UnifyContext,
Unification0, ModeInfo0,
Unification, ModeInfo)
)
),
%
% Optimize away unifications with dead variables
% and simple tests that cannot fail
% by replacing them with `true'.
% (The optimization of simple tests is necessary
% because otherwise determinism analysis assumes they can fail.
% The optimization of assignments to dead variables may be
% necessary to stop the code generator from getting confused.)
% Optimize away unifications which always fail by replacing
% them with `fail'.
%
(
Unification = assign(AssignTarget, _),
mode_info_var_is_live(ModeInfo, AssignTarget, dead)
->
Unify = conj([])
;
Unification = simple_test(_, _),
Det = det
->
Unify = conj([])
;
Det = failure
->
% This optimisation is safe because the only way that
% we can analyse a unification as having no solutions
% is that the unification always fails.
%
% Unifying two preds is not erroneous as far as the
% mode checker is concerned, but a mode _error_.
map__init(Empty),
Unify = disj([], Empty)
;
Unify = unify(X, var(Y), ModeOfX - ModeOfY, Unification,
UnifyContext)
).
%
% modecheck_complicated_unify does some extra checks that are needed
% for mode-checking complicated unifications.
%
:- pred modecheck_complicated_unify(prog_var, prog_var,
type, mode, mode, determinism, unify_context,
unification, mode_info, unification, mode_info).
:- mode modecheck_complicated_unify(in, in, in, in, in, in, in,
in, mode_info_di, out, mode_info_uo) is det.
modecheck_complicated_unify(X, Y, Type, ModeOfX, ModeOfY, Det, UnifyContext,
Unification0, ModeInfo0, Unification, ModeInfo) :-
%
% Build up the unification
%
mode_info_get_module_info(ModeInfo0, ModuleInfo0),
mode_get_insts(ModuleInfo0, ModeOfX, InitialInstX, FinalInstX),
mode_get_insts(ModuleInfo0, ModeOfY, InitialInstY, FinalInstY),
UniMode = ((InitialInstX - InitialInstY) -> (FinalInstX - FinalInstY)),
determinism_components(Det, CanFail, _),
( Unification0 = complicated_unify(_, _, UnifyTypeInfoVars0) ->
UnifyTypeInfoVars = UnifyTypeInfoVars0
;
error("modecheck_complicated_unify")
),
Unification = complicated_unify(UniMode, CanFail, UnifyTypeInfoVars),
%
% check that all the type_info or type_class_info variables used
% by the polymorphic unification are ground.
%
( UnifyTypeInfoVars = [] ->
% optimize common case
ModeInfo2 = ModeInfo0
;
list__length(UnifyTypeInfoVars, NumTypeInfoVars),
list__duplicate(NumTypeInfoVars, ground(shared, no),
ExpectedInsts),
mode_info_set_call_context(unify(UnifyContext),
ModeInfo0, ModeInfo1),
InitialArgNum = 0,
modecheck_var_has_inst_list(UnifyTypeInfoVars, ExpectedInsts,
InitialArgNum, ModeInfo1, ModeInfo2)
),
mode_info_get_module_info(ModeInfo2, ModuleInfo2),
(
mode_info_get_errors(ModeInfo2, Errors),
Errors \= []
->
ModeInfo = ModeInfo2
;
%
% Check that we're not trying to do a polymorphic unification
% in a mode other than (in, in).
% [Actually we also allow `any' insts, since the (in, in)
% mode of unification for types which have `any' insts must
% also be able to handle (in(any), in(any)) unifications.]
%
Type = term__variable(_),
\+ inst_is_ground_or_any(ModuleInfo2, InitialInstX)
->
set__singleton_set(WaitingVars, X),
mode_info_error(WaitingVars,
mode_error_poly_unify(X, InitialInstX),
ModeInfo2, ModeInfo)
;
Type = term__variable(_),
\+ inst_is_ground_or_any(ModuleInfo2, InitialInstY)
->
set__singleton_set(WaitingVars, Y),
mode_info_error(WaitingVars,
mode_error_poly_unify(Y, InitialInstY),
ModeInfo2, ModeInfo)
;
%
% check that we're not trying to do a higher-order unification
%
type_is_higher_order(Type, PredOrFunc, _, _)
->
% We do not want to report this as an error
% if it occurs in a compiler-generated
% predicate - instead, we delay the error
% until runtime so that it only occurs if
% the compiler-generated predicate gets called.
% not_reached is considered bound, so the
% error message would be spurious if the
% instmap is unreachable.
mode_info_get_predid(ModeInfo2, PredId),
module_info_pred_info(ModuleInfo2, PredId,
PredInfo),
mode_info_get_instmap(ModeInfo2, InstMap0),
(
( code_util__compiler_generated(PredInfo)
; instmap__is_unreachable(InstMap0)
)
->
ModeInfo = ModeInfo2
;
set__init(WaitingVars),
mode_info_error(WaitingVars,
mode_error_unify_pred(X, error_at_var(Y),
Type, PredOrFunc),
ModeInfo2, ModeInfo)
)
;
%
% Ensure that we will generate code for the unification
% procedure that will be used to implement this complicated
% unification.
%
type_to_type_id(Type, TypeId, _)
->
mode_info_get_context(ModeInfo2, Context),
unify_proc__request_unify(TypeId - UniMode,
Det, Context, ModuleInfo2, ModuleInfo),
mode_info_set_module_info(ModeInfo2, ModuleInfo,
ModeInfo)
;
ModeInfo = ModeInfo2
).
% categorize_unify_var_lambda works out which category a unification
% between a variable and a lambda expression is - whether it is a construction
% unification or a deconstruction. It also works out whether it will
% be deterministic or semideterministic.
:- pred categorize_unify_var_lambda(mode, list(mode),
prog_var, list(prog_var), pred_or_func, unify_rhs, unification,
mode_info, unify_rhs, unification, mode_info).
:- mode categorize_unify_var_lambda(in, in, in, in, in, in,
in, mode_info_di, out, out, mode_info_uo) is det.
categorize_unify_var_lambda(ModeOfX, ArgModes0, X, ArgVars,
PredOrFunc, RHS0, Unification0, ModeInfo0, RHS,
Unification, ModeInfo) :-
% if we are re-doing mode analysis, preserve the existing cons_id
list__length(ArgVars, Arity),
( Unification0 = construct(_, ConsId0, _, _, _, _, AditiInfo0) ->
AditiInfo = AditiInfo0,
ConsId = ConsId0
; Unification0 = deconstruct(_, ConsId1, _, _, _) ->
AditiInfo = no,
ConsId = ConsId1
;
% the real cons_id will be computed by lambda.m;
% we just put in a dummy one for now
AditiInfo = no,
ConsId = cons(unqualified("__LambdaGoal__"), Arity)
),
mode_info_get_module_info(ModeInfo0, ModuleInfo),
mode_util__modes_to_uni_modes(ArgModes0, ArgModes0,
ModuleInfo, ArgModes),
mode_info_get_instmap(ModeInfo0, InstMap),
(
mode_is_output(ModuleInfo, ModeOfX)
->
(
% If pred_consts are present, lambda expansion
% has already been done. Rerunning mode analysis
% should not produce a lambda_goal which cannot
% be directly converted back into a higher-order
% predicate constant.
% If the instmap is not reachable, the call
% may have been handled as an implied mode,
% since not_reached is considered to be bound.
% In this case the lambda_goal may not be
% converted back to a predicate constant, but
% that doesn't matter since the code will be
% pruned away later by simplify.m.
ConsId = pred_const(PredId, ProcId, EvalMethod),
instmap__is_reachable(InstMap)
->
(
RHS0 = lambda_goal(_, EvalMethod, _,
_, _, _, _, Goal),
Goal = call(PredId, ProcId, _, _, _, _) - _
->
module_info_pred_info(ModuleInfo,
PredId, PredInfo),
pred_info_module(PredInfo, PredModule),
pred_info_name(PredInfo, PredName),
RHS = functor(
cons(qualified(PredModule, PredName),
Arity),
ArgVars)
;
error("categorize_unify_var_lambda - \
reintroduced lambda goal")
)
;
RHS = RHS0
),
Unification = construct(X, ConsId, ArgVars, ArgModes,
no, cell_is_unique, AditiInfo),
ModeInfo = ModeInfo0
;
instmap__is_reachable(InstMap)
->
% If it's a deconstruction, it is a mode error.
% The error message would be incorrect in unreachable
% code, since not_reached is considered bound.
set__init(WaitingVars),
mode_info_get_var_types(ModeInfo0, VarTypes0),
map__lookup(VarTypes0, X, Type),
mode_info_error(WaitingVars,
mode_error_unify_pred(X,
error_at_lambda(ArgVars, ArgModes0),
Type, PredOrFunc),
ModeInfo0, ModeInfo),
% return any old garbage
Unification = Unification0,
RHS = RHS0
;
ModeInfo = ModeInfo0,
Unification = Unification0,
RHS = RHS0
).
% categorize_unify_var_functor works out which category a unification
% between a variable and a functor is - whether it is a construction
% unification or a deconstruction. It also works out whether it will
% be deterministic or semideterministic.
:- pred categorize_unify_var_functor(mode, list(mode), list(mode), prog_var,
cons_id, list(prog_var), map(prog_var, type), unify_context,
unification, mode_info, unification, mode_info).
:- mode categorize_unify_var_functor(in, in, in, in, in, in, in, in, in,
mode_info_di, out, mode_info_uo) is det.
categorize_unify_var_functor(ModeOfX, ModeOfXArgs, ArgModes0,
X, NewConsId, ArgVars, VarTypes, UnifyContext,
Unification0, ModeInfo0, Unification, ModeInfo) :-
mode_info_get_module_info(ModeInfo0, ModuleInfo),
map__lookup(VarTypes, X, TypeOfX),
% if we are re-doing mode analysis, preserve the existing cons_id
( Unification0 = construct(_, ConsId0, _, _, _, _, _) ->
ConsId = ConsId0
; Unification0 = deconstruct(_, ConsId1, _, _, _) ->
ConsId = ConsId1
;
ConsId = NewConsId
),
mode_util__modes_to_uni_modes(ModeOfXArgs, ArgModes0,
ModuleInfo, ArgModes),
(
mode_is_output(ModuleInfo, ModeOfX)
->
% It's a construction.
ReuseVar = no,
RLExprnId = no,
Unification = construct(X, ConsId, ArgVars, ArgModes,
ReuseVar, cell_is_unique, RLExprnId),
% For existentially quantified data types,
% check that any type_info or type_class_info variables in the
% construction are ground.
check_type_info_args_are_ground(ArgVars, VarTypes,
UnifyContext, ModeInfo0, ModeInfo)
;
% It's a deconstruction.
(
% If the variable was already known to be bound
% to a single particular functor, then the
% unification either always succeeds or always
% fails. In the latter case, the final inst will
% be `not_reached' or `bound([])'. So if both
% the initial and final inst are `bound([_])',
% then the unification must be deterministic.
mode_get_insts(ModuleInfo, ModeOfX,
InitialInst0, FinalInst0),
inst_expand(ModuleInfo, InitialInst0, InitialInst),
inst_expand(ModuleInfo, FinalInst0, FinalInst),
InitialInst = bound(_, [_]),
FinalInst = bound(_, [_])
->
CanFail = cannot_fail,
ModeInfo = ModeInfo0
;
% If the type has only one constructor,
% then the unification cannot fail
type_constructors(TypeOfX, ModuleInfo, Constructors),
Constructors = [_]
->
CanFail = cannot_fail,
ModeInfo = ModeInfo0
;
% Otherwise, it can fail
CanFail = can_fail,
mode_info_get_instmap(ModeInfo0, InstMap0),
(
type_is_higher_order(TypeOfX, PredOrFunc,
_, _),
instmap__is_reachable(InstMap0)
->
set__init(WaitingVars),
mode_info_error(WaitingVars,
mode_error_unify_pred(X,
error_at_functor(ConsId, ArgVars),
TypeOfX, PredOrFunc),
ModeInfo0, ModeInfo)
;
ModeInfo = ModeInfo0
)
),
Unification = deconstruct(X, ConsId, ArgVars, ArgModes, CanFail)
).
% Check that any type_info or type_class_info variables
% in the argument list are ground.
:- pred check_type_info_args_are_ground(list(prog_var), map(prog_var, type),
unify_context, mode_info, mode_info).
:- mode check_type_info_args_are_ground(in, in, in,
mode_info_di, mode_info_uo) is det.
check_type_info_args_are_ground([], _VarTypes, _UnifyContext) --> [].
check_type_info_args_are_ground([ArgVar | ArgVars], VarTypes, UnifyContext)
-->
(
{ map__lookup(VarTypes, ArgVar, ArgType) },
{ is_introduced_type_info_type(ArgType) }
->
mode_info_set_call_context(unify(UnifyContext)),
{ InitialArgNum = 0 },
modecheck_var_has_inst_list([ArgVar], [ground(shared, no)],
InitialArgNum),
check_type_info_args_are_ground(ArgVars, VarTypes,
UnifyContext)
;
[]
).
%-----------------------------------------------------------------------------%
:- pred bind_args(inst, list(prog_var), mode_info, mode_info).
:- mode bind_args(in, in, mode_info_di, mode_info_uo) is semidet.
bind_args(not_reached, _) -->
{ instmap__init_unreachable(InstMap) },
mode_info_set_instmap(InstMap).
bind_args(ground(Uniq, no), Args) -->
ground_args(Uniq, Args).
bind_args(bound(_Uniq, List), Args) -->
( { List = [] } ->
% the code is unreachable
{ instmap__init_unreachable(InstMap) },
mode_info_set_instmap(InstMap)
;
{ List = [functor(_, InstList)] },
bind_args_2(Args, InstList)
).
:- pred bind_args_2(list(prog_var), list(inst), mode_info, mode_info).
:- mode bind_args_2(in, in, mode_info_di, mode_info_uo) is semidet.
bind_args_2([], []) --> [].
bind_args_2([Arg | Args], [Inst | Insts]) -->
modecheck_set_var_inst(Arg, Inst),
bind_args_2(Args, Insts).
:- pred ground_args(uniqueness, list(prog_var), mode_info, mode_info).
:- mode ground_args(in, in, mode_info_di, mode_info_uo) is det.
ground_args(_Uniq, []) --> [].
ground_args(Uniq, [Arg | Args]) -->
modecheck_set_var_inst(Arg, ground(Uniq, no)),
ground_args(Uniq, Args).
%-----------------------------------------------------------------------------%
% get_mode_of_args(FinalInst, InitialArgInsts, ArgModes):
% for a var-functor unification,
% given the final inst of the var
% and the initial insts of the functor arguments,
% compute the modes of the functor arguments
:- pred get_mode_of_args(inst, list(inst), list(mode)).
:- mode get_mode_of_args(in, in, out) is semidet.
get_mode_of_args(not_reached, ArgInsts, ArgModes) :-
mode_set_args(ArgInsts, not_reached, ArgModes).
get_mode_of_args(any(Uniq), ArgInsts, ArgModes) :-
mode_set_args(ArgInsts, any(Uniq), ArgModes).
get_mode_of_args(ground(Uniq, no), ArgInsts, ArgModes) :-
mode_set_args(ArgInsts, ground(Uniq, no), ArgModes).
get_mode_of_args(bound(_Uniq, List), ArgInstsA, ArgModes) :-
( List = [] ->
% the code is unreachable
mode_set_args(ArgInstsA, not_reached, ArgModes)
;
List = [functor(_Name, ArgInstsB)],
get_mode_of_args_2(ArgInstsA, ArgInstsB, ArgModes)
).
:- pred get_mode_of_args_2(list(inst), list(inst), list(mode)).
:- mode get_mode_of_args_2(in, in, out) is semidet.
get_mode_of_args_2([], [], []).
get_mode_of_args_2([InstA | InstsA], [InstB | InstsB], [Mode | Modes]) :-
Mode = (InstA -> InstB),
get_mode_of_args_2(InstsA, InstsB, Modes).
:- pred mode_set_args(list(inst), inst, list(mode)).
:- mode mode_set_args(in, in, out) is det.
mode_set_args([], _, []).
mode_set_args([Inst | Insts], FinalInst, [Mode | Modes]) :-
Mode = (Inst -> FinalInst),
mode_set_args(Insts, FinalInst, Modes).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
|