File: module_system.html

package info (click to toggle)
mercury 0.9-1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 18,488 kB
  • ctags: 9,800
  • sloc: objc: 146,680; ansic: 51,418; sh: 6,436; lisp: 1,567; cpp: 1,040; perl: 854; makefile: 450; asm: 232; awk: 203; exp: 32; fortran: 3; csh: 1
file content (505 lines) | stat: -rw-r--r-- 13,789 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505


<html>
<head>
<title>
	Mercury Coding Standard for the Mercury Project
</title>
</head>

<body
	bgcolor="#ffffff"
	text="#000000"
>

<hr>
<!-------------------------->

This file contains some very old notes about the module system.

<hr>
<!-------------------------->

I've designed my module system.  It's based on a Prolog-syntax (but
not otherwise backwards compatible) strongly-typed logic programming
language.  I'd be interested in any comments people have about it.

<p>

Note: currently I don't allow nested modules.  I want that to change
eventually, but this will suffice for a first implementation.

<p>

<hr>
<!-------------------------->

<p>

The module system has two primary purposes: to prevent accidental name
clashes, and to enforce encapsulation.  (Although there are other benefits,
such as encouraging more well-structured software.)

<p>

Accidental name clashes are prevented by using a standard naming
convention where every symbol is prefixed by the name of the module in
which it is defined.  This module qualifier may be omitted for symbols
in the current namespace (i.e.  symbols in the current module, or
symbols which have been explicitly imported into the current namespace)
so long as no ambiguity results.

<p>

Encapsulation is enforced by only allowing symbols which have been
explicitly exported (eg. those in a module's interface section) to be
used by other modules.

<p>

<hr>
<!-------------------------->

Each module must consist of

<pre>
	:- module ModuleName.
	:- interface.
	...
	:- implementation.
	...
	:- end_module ModuleName.	% optional
</pre>

The semantics of these declarations is as follows.

<dl>
<dt> :- module ModuleName.

	<dd>
	Every module must start with a declaration of this form.
	(There is an implementation-dependant mapping from
	module names to filenames which must be adhered to.
	The mapping may be arbitrary complex - for example, the
	implementation may allow the user to list this mapping
	in a configuration file - but in general, the name of the
	file that a module resides in will be just the name
	of the module plus an appropriate extensions.
	The mapping is used by the implementation so that it
	can determine where to find the required modules.)

<dt> :- use_module Module1, Module2, ..., ModuleN.

	<dd>
	The exported symbols in the listed modules are made
	available for use in the current module.  These symbols must
	still be qualified with a module name, for example
		list:append(A,B,C)
	in order to be used.

<dt> :- import_module Module1, Module2, ..., ModuleN.
	
	<dd>
	As for `use_module', except that symbols are imported into the
	current namespace and do not need to be qualified with a module name
	except to avoid ambiguities.
	(Use of this declaration in large programs is probably a bad idea,
	but it may be useful for small programs. Also, it would probably
	not be a good idea to use this declaration together with low-level
	export directives [described below] that don't specify an
	explicit module qualifier, because it could cause accidental
	re-exporting of imported symbols.)

<dt> :- export_module Module1, Module2, ..., ModuleN.

	<dd>
	All exported symbols in the specified modules are re-exported
	from this module.  This declaration can only occur in the
	interface section.

<dt> :- interface.

	<dd>
	All exportable declarations (ie. all type, predicate, constructor, and
	operator declarations) in the interface section
	are automatically exported.

<dt> :- implementation.
	
	<dd>
	Declarations and definitions in the implementation section
	are by default private.

<dt> :- end_module ModuleName.

	<dd>
	Syntactic sugar.
	This declaration is optional, but if it occurs it must be the
	last declaration in the file and the ModuleName must match with 
	that specified in the `module' declaration.

</dl>


<hr>
<!-------------------------->

<p>

The module system also has the following lower-level declarations,
which allow you to import, use, or export individual symbols rather
than entire modules.
They can be used instead of (or in conjunction with) the higher-level
declarations.
All of the export declarations can only occur in the interface
section.

<pre>

:- export_sym Sym1, Sym2, ..., SumN.
	Sym1, Sym2, ..., SymN may be any symbol specifiers.
	All symbols matching those symbol specifiers are exported.

	A symbol specifier is one of
		SymbolNameSpecifier
			Matches any symbol matched by the SymbolNameSpecifier.
		TypedConstructorSpecifier
			Matches any constructors matched by the
			TypedConstructorSpecifier.
		cons(ConstructorSpecifier)
			Matches only constructors.
		pred(PredicateSpecifier)
			Matches only predicates.
		func(FunctionSpecifier)
			Matches only functions.
		adt(SymbolNameSpecifier)
			Matches only type names.
		type(SymbolNameSpecifier)
			Matches type names matched by the SymbolNameSpecifier,
			and also matches any constructors for the matched type
			names.
		op(OpSpecifier)
			Matches any operators matched by OpSpecifier.
		module(ModuleSpecifier)
			Matches all symbols exported from the specified module.
		module_ops(ModuleSpecifier)
			Matches all operators exported from the specified
			module.  (This includes any entity exported from
			the module which has the same name as an operator
			declared in the module.)

	A ConstructorSpecifier is one of
		SymbolSpecifier
		TypedConstructorSpecifier

	A TypedConstructorSpecifier is one of
		SymbolSpecifier::Type
			Matches only constructors with the specified result
			type.
		SymbolName(ArgType1, ..., ArgTypeN)
			Matches only constructors with the specified argument
			types.
		SymbolName(ArgType1, ..., ArgTypeN)::Type
			Matches only constructors with the specified argument
			and result types.
	
	A PredicateSpecifier is one of
		SymbolName(ArgType1, ..., ArgTypeN)
			Matches only predicates with the specified argument
			types.
		SymbolSpecifier

	A FunctionSpecifier is the same as a ConstructorSpecifier.

	An OpSpecifier is one of
		SymbolSpecifier
			Matches any operators matched by SymbolSpecifier
		infix(SymbolSpecifier)
			Matches only infix operators
		postfix(SymbolSpecifier)
			Matches only postfix operators
		prefix(SymbolSpecifier)
			Matches only prefix operators

	A SymbolSpecifier is one of
		SymbolName
		SymbolName/Arity
			Matches only symbols of the specified arity.
	
	A SymbolName is one of
		Name
			Matches symbols with the specified name in the
			current namespace.
		ModuleSpecifier:Name
			Matches symbols with the specified name exported
			by the specified module.

	A ModuleSpecifier is just an identifier.

:- export_pred Pred1, ..., PredN.
	This is just an abbreviation for
		:- export_sym pred(Pred1), ..., pred(PredN).
	All predicates matched by the listed PredicateSpecifiers are exported.
	If there is any ambiguity, *all* matching predicates are exported.

:- export_func Func1, ..., FuncN.
	This is just an abbreviation for
		:- export_sym func(Func1), ..., func(FuncN).
	All predicates matched by the listed FunctionSpecifiers are exported.
	If there is any ambiguity, *all* matching predicates are exported.

:- export_adt Type1, ..., TypeN.
	This is just an abbreviation for 
		:- export_sym adt(Type1), ..., adt(TypeN).
	The listed types are exported.  Constructors for these types
	are not exported, so this can be used to create abstract data types,
	hence the name. (However this declaration does not prevent
	the constructors from being exported by other declarations.)
	Type1, ..., TypeN can be any SymbolSpecifiers.
	
:- export_cons Cons1, ..., ConsN.
	This is just an abbreviation for
		:- export_sym cons(Cons1), ..., cons(ConsN).

:- export_op Op1, ..., OpN.
	This is just an abbreviation for
		:- export_sym op(Op1), ..., op(OpN).

:- export_type Type1, ..., TypeN.
	This is just an abbreviation for
		:- export_sym type(Type1), ..., type(TypeN).
	The listed types and all the constructors for the listed types
	are exported.

:- export_module_ops 
	This is just an abbreviation for
		:- export_sym module_ops(Op1), ..., op(OpN).

:- import_module_ops Module1, ..., ModuleN.
	This is just an abbreviation for
		:- export_sym module_ops(Module1), ..., module_ops(ModuleN).

:- export_module_ops Module1, Module2, ..., ModuleN.
	All exported operators in the specified modules are re-exported
	from this module.  This declaration can only occur in the
	interface section.


:- import_sym Sym1, Sym2, ..., SumN.
	The listed symbols are imported, ie. made available for use
	in the current module.
	Sym1, ..., SymN may be any symbol specifiers, but they
	should have explicit module qualifications.

:- import_pred Pred1, Pred2, ..., PredN.
:- import_func Func1, Func2, ..., FuncN.
:- import_type Type1, Type2, ..., TypeN.
:- import_adt  Type1, Type2, ..., TypeN.
:- import_cons Cons1, Cons2, ..., ConsN.
:- import_op   Op1, Op2, ..., OpN.
	Abbreviations for special cases of import_sym.

:- use_sym Sym1, Sym2, ..., SumN.
	The listed symbols are imported into the current namespace,
	i.e. made available for use without explicit module
	qualification, exactly as for `use_module'.
	Sym1, ..., SymN may be any symbol specifiers, but they should
	have explicit module qualifications.

:- use_pred Pred1, Pred2, ..., PredN.
:- use_func Func1, Func1, ..., Func1.
:- use_type Type1, Type2, ..., TypeN.
:- use_adt  Type1, Type2, ..., TypeN.
:- use_cons Cons1, Cons2, ..., ConsN.
:- use_op   Op1, Op2, ..., OpN.
	Abbreviations for special cases of use_sym.

</pre>

<p>

Note that although there are quite a few constructs, most of these
are syntactic sugar.  The first phase of processing fully qualifies
all symbols, and translates all the module system declarations into
just `module', `import_sym', and `export_sym'.

<p>

<pre>

%-----------------------------------------------------------------------------%
SOME EXAMPLE MODULES
%-----------------------------------------------------------------------------%

	% Version using explicit export declaration.

	% Bag ADT.
	% Implemented as unsorted lists.

:- module bag.
:- interface.
:- export_pred init, insert, contains.

:- implementation.
:- import_module list.
:- type bag(T) = list(T).

:- pred init(bag(_)).
init([]).

:- pred insert(bag(T), T, bag(T)).
insert(Bag0, Item, [Item|Bag0]).

:- pred contains(bag(T), T).
contains(Bag, Item) :-
	list:member(Item, Bag).

:- end_module bag.
%-----------------------------------------------------------------------------%

	% Version using pred declarations in the interface section.

	% Bag ADT.
	% Implemented as unsorted lists.

:- module bag.
:- interface.

:- pred init(bag(_)).
:- pred insert(bag(T), T, bag(T)).
:- pred contains(bag(T), T).

:- implementation.
:- import_module list.

:- type bag(T) = list(T).

init([]).

insert(Bag0, Item, [Item|Bag0]).

contains(Bag, Item) :-
	list:member(Item, Bag).

:- end_module bag.
%-----------------------------------------------------------------------------%

	% Version using type inference to avoid explicit type
	% declarations.  (Bad style, IMHO, but we allow for the
	% possibility in order to attract the Prolog die-hards.)

	% Bag ADT.
	% Implemented as unsorted lists.

:- module bag.
:- import_module list.

:- implementation.	% ensure that the bag/1 constructor is not exported

:- type bag(T) ---> bag(list(T)).	% define type bag(T) and 
					% constructor bag/1::list(T)->bag(T).

:- interface.

init(bag([])).

insert(bag(Bag0), Item, bag([Item|Bag0])).

contains(bag(Bag), Item) :-
	list:member(Item, Bag).

:- end_module bag.

%-----------------------------------------------------------------------------%

	% Version using type inference to avoid explicit type
	% declarations.  (This is speculative; type inference
	% is not high on the list of things to implement.)

	% Bag ADT.
	% Implemented as unsorted lists.

:- module bag.
:- import_module list.
:- export_pred init, insert, contains.

:- type bag(T) ---> bag(list(T)).	

init(bag([])).

insert(bag(Bag0), Item, bag([Item|Bag0])).

contains(bag(Bag), Item) :-
	list:member(Item, Bag).

:- end_module bag.

%-----------------------------------------------------------------------------%

</pre>

<p>

Here's a rough sketch of an algorithm (probably buggy) for handling these
things.

<ol>
<li>  Let S be the set of modules interfaces on which
    the current module (directly or indirectly) depends.
    For each module in S, read in the module and write out the
    full interface of that module (i.e. copy the type and mode
    declarations for the predicates into the interface and add
    `:- adt' declarations for types which are exported as
    opaque abstract data types.

<li>  For each module in S, read in the full interface
    and resolve all the types, insts, and modes in the bodies
    of the symbols defined in the interface (add explicit module
    qualifiers).  This gives us a "resolved full interface" file.
    Write this out.

<li>  Read in the resolved full interface files for each module in S.
    Resolve all the types, insts, and modes in the bodies
    of the symbols defined in the current module.
    Resolve all the preds and constructors in the current module.
    Generate code for the current module.

</ol>

<pre>

/* file t1.nl */

:- module t1.
:- use_module t2.
:- type t1 ---> g(t2) ; x.
:- export_type t1/0.
:- end_module t1.

/* full interface file for module t1 */
:- module t1.
:- use_module t2.
:- type t1 ---> g(t2:t2) ; x.
:- export_type t1/0.
:- export_adt t2/0.
:- end_module t1.

/* file t2.nl */

:- module t2.
:- use_module t1.
:- type t2 ---> f(t1:t1) ; y.
:- export_type t2/0.
:- end_module t2.

%-----------------------------------------------------------------------------%

</pre>


<hr>
<!-------------------------->

Last update was $Date: 1997/04/03 05:17:40 $ by $Author: aet $@cs.mu.oz.au. <br>
</body>
</html>