File: prog_io.m

package info (click to toggle)
mercury 0.9-1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 18,488 kB
  • ctags: 9,800
  • sloc: objc: 146,680; ansic: 51,418; sh: 6,436; lisp: 1,567; cpp: 1,040; perl: 854; makefile: 450; asm: 232; awk: 203; exp: 32; fortran: 3; csh: 1
file content (2877 lines) | stat: -rw-r--r-- 102,069 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
%-----------------------------------------------------------------------------%
% Copyright (C) 1993-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: prog_io.m.
% Main author: fjh.
%
% This module defines predicates for parsing Mercury programs.
%
% In some ways the representation of programs here is considerably
% more complex than is necessary for the compiler.
% The basic reason for this is that it was designed to preserve
% as much information about the source code as possible, so that
% this representation could also be used for other tools such
% as Mercury-to-Goedel converters, pretty-printers, etc.
% Currently the only information that is lost is that comments and
% whitespace are stripped, any redundant parenthesization
% are lost, distinctions between different spellings of the same
% operator (eg "\+" vs "not") are lost, and DCG clauses get expanded.
% It would be a good idea to preserve all those too (well, maybe not
% the redundant parentheses), but right now it's not worth the effort.
%
% So that means that this phase of compilation is purely parsing.
% No simplifications are done (other than DCG expansion). 
% The results of this phase specify
% basically the same information as is contained in the source code,
% but in a parse tree rather than a flat file.
% Simplifications are done only by make_hlds.m, which transforms
% the parse tree which we built here into the HLDS.
%
% Some of this code is a rather bad example of cut-and-paste style reuse.
% It should be cleaned up to eliminate most of the duplication.
% But that task really needs to wait until we implement higher-order
% predicates.  For the moment, just be careful that any changes
% you make are reflected correctly in all similar parts of this
% file.
%
% Implication and equivalence implemented by squirrel, who would also
% like to get her hands on this file and give it a good clean up and
% put it into good clean "mercury" style!

% Wishlist:
%
% 1.  implement importing/exporting operators with a particular fixity
%     eg. :- import_op prefix(+). % only prefix +, not infix
%     (not important, but should be there for reasons of symmetry.)
% 2.  improve the handling of type and inst parameters 
% 3.  improve the error reporting (most of the semidet preds should
%     be det and should return a meaningful indication of where an
%     error occured).

:- module prog_io.

:- interface.

:- import_module prog_data, prog_io_util.
:- import_module bool, varset, term, list, io. 

%-----------------------------------------------------------------------------%

% This module (prog_io) exports the following predicates:

	% prog_io__read_module(FileName, DefaultModuleName, Search, Error,
	%				ActualModuleName, Messages, Program)
	% Reads and parses the module in file `FileName',
	% using the default module name `DefaultModuleName'.
	% If Search is yes, search directories given by the option
	% search_directories.
	% Error is `fatal' if the file coudn't be opened, `yes'
	% if a syntax error was detected, and `no' otherwise.
	% ActualModuleName is the module name specified in the
	% `:- module' declaration, if any, or the DefaultModuleName
	% if there is no `:- module' declaration.
	% Messages is a list of warning/error messages.
	% Program is the parse tree.

:- type module_error
	--->	no	% no errors
	;	yes	% some syntax errors
	;	fatal.	% couldn't open the file

:- type file_name == string.
:- type dir_name == string.

:- pred prog_io__read_module(file_name, module_name, bool,
		module_error, module_name, message_list, item_list,
		io__state, io__state).
:- mode prog_io__read_module(in, in, in, out, out, out, out, di, uo) is det.

	% Same as prog_io__read_module, but use intermod_directories
	% instead of search_directories when searching for the file.
	% Also report an error if the actual module name doesn't match
	% the expected module name.
:- pred prog_io__read_opt_file(file_name, module_name, bool,
		module_error, message_list, item_list, io__state, io__state).
:- mode prog_io__read_opt_file(in, in, in, out, out, out, di, uo) is det.

	% check_module_has_expected_name(FileName, ExpectedName, ActualName):
	%	Check that two module names are equal,
	%	and report an error if they aren't.
:- pred check_module_has_expected_name(file_name, module_name, module_name,
		io__state, io__state).
:- mode check_module_has_expected_name(in, in, in, di, uo) is det.

	% search_for_file(Dirs, FileName, Found, IO0, IO)
	%
	% Search Dirs for FileName, opening the file if it is found.
:- pred search_for_file(list(dir_name), file_name, bool, io__state, io__state).
:- mode search_for_file(in, in, out, di, uo) is det.

	% parse_item(ModuleName, VarSet, Term, MaybeItem)
	%
	% parse Term. If successful, MaybeItem is bound to the parsed item,
	% otherwise it is bound to an appropriate error message.
	% Qualify appropriate parts of the item, with ModuleName as the
	% module name.
:- pred parse_item(module_name, varset, term, maybe_item_and_context). 
:- mode parse_item(in, in, in, out) is det.

	% parse_decl(ModuleName, VarSet, Term, Result)
	%
	% parse Term as a declaration. If successful, Result is bound to the
	% parsed item, otherwise it is bound to an appropriate error message.
	% Qualify appropriate parts of the item, with ModuleName as the module
	% name.
:- pred parse_decl(module_name, varset, term, maybe_item_and_context).
:- mode parse_decl(in, in, in, out) is det.

%-----------------------------------------------------------------------------%

	%	A QualifiedTerm is one of
	%		Name(Args)
	%		Module:Name(Args)
	%	(or if Args is empty, one of
	%		Name
	%		Module:Name)
	%	where Module is a SymName.
	%	For backwards compatibility, we allow `__'
	%	as an alternative to `:'.

	% sym_name_and_args takes a term and returns a sym_name and a list of
	% argument terms.
	% It fails if the input is not valid syntax for a QualifiedTerm.
:- pred sym_name_and_args(term(T), sym_name, list(term(T))).
:- mode sym_name_and_args(in, out, out) is semidet.

	% parse_qualified_term/4 takes a term (and also the containing
	% term, and a string describing the context from which it
	% was called [e.g. "clause head"] and the containing term)
	% and returns a sym_name and a list of argument terms.
	% Returns an error on ill-formed input.
	% See also parse_implicitly_qualified_term/5 (below).
:- pred parse_qualified_term(term(T), term(T), string, maybe_functor(T)).
:- mode parse_qualified_term(in, in, in, out) is det.

	% parse_implicitly_qualified_term(DefaultModName, Term,
	%	ContainingTerm, Msg, Result):
	%
	% parse_implicitly_qualified_term/5 takes a default module name
	% and a term,
	% (and also the containing term, and a string describing
	% the context from which it was called (e.g. "clause head"),
	% and returns a sym_name and a list of argument terms.
	% Returns an error on ill-formed input or a module qualifier that
	% doesn't match the DefaultModName.
	%
	% Note: parse_qualified_term/4 is used for places where a symbol
	% is _used_, in which case no default module name exists, whereas
	% parse_implicitly_qualified_term/5 is used for places where a symbol
	% is _defined_; in that case, there is a default module name (the
	% name of the current module) -- specifying a module qualifier
	% explicitly is redundant, but it is allowed, so long as the
	% module qualifier specified matches the default.
:- pred parse_implicitly_qualified_term(module_name, term(T), term(T), string,
					maybe_functor(T)).
:- mode parse_implicitly_qualified_term(in, in, in, in, out) is det.

%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%

:- implementation.

:- import_module prog_io_goal, prog_io_dcg, prog_io_pragma, prog_io_util.
:- import_module prog_io_typeclass.
:- import_module hlds_data, hlds_pred, prog_util, prog_out.
:- import_module globals, options, (inst).

:- import_module int, string, std_util, parser, term_io, dir, require.
:- import_module assoc_list.

%-----------------------------------------------------------------------------%

prog_io__read_module(FileName, DefaultModuleName, Search,
		Error, ModuleName, Messages, Items) -->
	prog_io__read_module_2(FileName, DefaultModuleName, Search,
		search_directories, Error, ModuleName, Messages, Items).

prog_io__read_opt_file(FileName, DefaultModuleName, Search, 
		Error, Messages, Items) -->
	prog_io__read_module_2(FileName, DefaultModuleName, Search, 
		intermod_directories, Error, ModuleName, Messages, Items),
	check_module_has_expected_name(FileName,
		DefaultModuleName, ModuleName).

check_module_has_expected_name(FileName, ExpectedName, ActualName) -->
	( { ActualName \= ExpectedName } ->
		{ prog_out__sym_name_to_string(ActualName, ActualString) },
		{ prog_out__sym_name_to_string(ExpectedName, ExpectedString) },
		io__stderr_stream(ErrStream),
		io__write_strings(ErrStream, [
			"Error: file `", FileName,
				"' contains the wrong module.\n",
			"Expected module `", ExpectedString,
				"', found module `", ActualString, "'.\n"
		]),
		io__set_exit_status(1)
	;
		[]
	).

		
% This implementation uses io__read_term to read in the program
% term at a time, and then converts those terms into clauses and
% declarations, checking for errors as it goes.
% Note that rather than using difference lists, we just
% build up the lists of items and messages in reverse order
% and then reverse them afterwards.  (Using difference lists would require
% late-input modes.)

:- pred prog_io__read_module_2(file_name, module_name, bool, option,
		module_error, module_name, message_list, item_list,
		io__state, io__state).
:- mode prog_io__read_module_2(in, in, in, in, out, out, out, out,
		di, uo) is det.

prog_io__read_module_2(FileName, DefaultModuleName, Search,
		SearchOpt, Error, ModuleName, Messages, Items) -->
	( 
		{ Search = yes }
	->
		globals__io_lookup_accumulating_option(SearchOpt, 
			Dirs)
	;
		{ dir__this_directory(CurrentDir) },
		{ Dirs = [CurrentDir] }
	),
	search_for_file(Dirs, FileName, R),
	( { R = yes } ->
		read_all_items(DefaultModuleName, ModuleName,
			Messages, Items, Error),
		io__seen
	;
		io__progname_base("prog_io.m", Progname),
		{
		  string__append(Progname, ": can't open file `", Message1),
		  string__append(Message1, FileName, Message2),
		  string__append(Message2, "'", Message),
		  dummy_term(Term),
		  Messages = [Message - Term],
		  Error = fatal,
		  Items = [],
		  ModuleName = DefaultModuleName
		}
	).

search_for_file([], _, no) --> [].
search_for_file([Dir | Dirs], FileName, R) -->
	{ dir__this_directory(Dir) ->
		ThisFileName = FileName
	;
		dir__directory_separator(Separator),
		string__first_char(Tmp1, Separator, FileName),
		string__append(Dir, Tmp1, ThisFileName)
	},
	io__see(ThisFileName, R0),
	( { R0 = ok } ->
		{ R = yes }
	;
		search_for_file(Dirs, FileName, R)
	).

%-----------------------------------------------------------------------------%

	% extract the final `:- end_module' declaration if any

:- type module_end ---> no ; yes(module_name, prog_context).

:- pred get_end_module(item_list, module_name, item_list, module_end).
:- mode get_end_module(in, in, out, out) is det.

get_end_module(RevItems0, ModuleName, RevItems, EndModule) :-
	(
		%
		% Note: if the module name in the end_module declaration
		% does not match what we expect, given the source file name,
		% then we assume that it is for a nested module, and so
		% we leave it alone.  If it is not for a nested module,
		% the error will be caught by make_hlds.m.
		%
		RevItems0 = [
			module_defn(_VarSet, end_module(ModuleName)) - Context
			    | RevItems1]
	->
		RevItems = RevItems1,
		EndModule = yes(ModuleName, Context)
	;
		RevItems = RevItems0,
		EndModule = no
	).

%-----------------------------------------------------------------------------%

	% check that the module starts with a :- module declaration,
	% and that the end_module declaration (if any) is correct,
	% and construct the final parsing result.

:- pred check_end_module(module_end, message_list, item_list, module_error,
		message_list, item_list, module_error, io__state, io__state).
:- mode check_end_module(in, in, in, in, out, out, out, di, uo) is det.

check_end_module(EndModule, Messages0, Items0, Error0,
		Messages, Items, Error) -->
    %
    % double-check that the first item is a `:- module ModuleName'
    % declaration, and remove it from the front of the item list
    %
    {
        Items0 = [module_defn(_VarSet, module(ModuleName1)) - _Context1
		| Items1]
    ->
	Items = Items1,
	%
        % check that the end module declaration (if any)
        % matches the begin module declaration 
	%
        (
            EndModule = yes(ModuleName2, Context2),
            ModuleName1 \= ModuleName2
        ->
	    dummy_term_with_context(Context2, Term),
            add_error(
"`:- end_module' declaration doesn't match `:- module' declaration",
			Term, Messages0, Messages),
	    Error = yes
        ;
	    Messages = Messages0,
	    Error = Error0
        )
    ;
	% if there's no `:- module' declaration at this point, it is
	% an internal error -- read_first_item should have inserted one
	error("check_end_module: no `:- module' declaration")
    }.

%-----------------------------------------------------------------------------%

	% Create a dummy term.
	% Used for error messages that are not associated with any
	% particular term or context.
:- pred dummy_term(term).
:- mode dummy_term(out) is det.
dummy_term(Term) :-
	term__context_init(Context),
	dummy_term_with_context(Context, Term).

	% Create a dummy term with the specified context.
	% Used for error messages that are associated with some specific
	% context, but for which we don't want to print out the term
	% (or for which the term isn't available to be printed out).

:- pred dummy_term_with_context(term__context, term).
:- mode dummy_term_with_context(in, out) is det.
dummy_term_with_context(Context, Term) :-
	Term = term__functor(term__atom(""), [], Context).

%-----------------------------------------------------------------------------%

 	% Read a source file from standard in, first reading in
	% the input term by term and then parsing those terms and producing
	% a high-level representation.
	% Parsing is actually a 3-stage process instead of the
	% normal two-stage process:
	%	lexical analysis (chars -> tokens),
	% 	parsing stage 1 (tokens -> terms),
	%	parsing stage 2 (terms -> items).
	% The final stage produces a list of program items, each of
	% which may be a declaration or a clause.
	%
	% We use a continuation-passing style here.

:- pred read_all_items(module_name, module_name,
			message_list, item_list, module_error,
			io__state, io__state).
:- mode read_all_items(in, out, out, out, out, di, uo) is det.

read_all_items(DefaultModuleName, ModuleName, Messages, Items, Error) -->
	%
	% read all the items (the first one is handled specially)
	%
	io__input_stream(Stream),
	io__input_stream_name(Stream, SourceFileName),
	read_first_item(DefaultModuleName, SourceFileName, ModuleName,
		RevMessages, RevItems0, Error0),

	%
	% get the end_module declaration (if any),
	% check that it matches the initial module declaration (if any),
	% and remove both of them from the final item list.
	%
	{ get_end_module(RevItems0, ModuleName, RevItems, EndModule) },
	{ list__reverse(RevMessages, Messages0) },
	{ list__reverse(RevItems, Items0) },
	check_end_module(EndModule,
			Messages0, Items0, Error0,
			Messages, Items, Error).

%
% We need to jump through a few hoops when reading the first item,
% to allow the initial `:- module' declaration to be optional.
% The reason is that in order to parse an item, we need to know
% which module it is defined in (because we do some module
% qualification and checking of module qualifiers at parse time),
% but the initial `:- module' declaration and the declaration
% that follows it occur in different scopes, so we need to know
% what it is that we're parsing before we can parse it!
% We solve this dilemma by first parsing it in the root scope,
% and then if it turns out to not be a `:- module' declaration
% we reparse it in the default module scope.  Blecchh.
%
:- pred read_first_item(module_name, file_name, module_name,
		message_list, item_list, module_error, io__state, io__state).
:- mode read_first_item(in, in, out, out, out, out, di, uo) is det.

read_first_item(DefaultModuleName, SourceFileName, ModuleName,
	Messages, Items, Error) -->

	globals__io_lookup_bool_option(warn_missing_module_name, WarnMissing),
	globals__io_lookup_bool_option(warn_wrong_module_name, WarnWrong),
    
	%
	% parse the first term, treating it as occurring
	% within the scope of the special "root" module
	% (so that any `:- module' declaration is taken to
	% be a non-nested module unless explicitly qualified).
	%
	parser__read_term(SourceFileName, MaybeFirstTerm),
	{ root_module_name(RootModuleName) },
	{ process_read_term(RootModuleName, MaybeFirstTerm, MaybeFirstItem) },
	(
	    %
	    % apply and then skip `pragma source_file' decls,
	    % by calling ourselves recursively with the new source
	    % file name
	    %
	    { MaybeFirstItem = ok(FirstItem, _) },
	    { FirstItem = pragma(source_file(NewSourceFileName)) }
	->
	    read_first_item(DefaultModuleName, NewSourceFileName,
	    	ModuleName, Messages, Items, Error)
	;
	    %
	    % check if the first term was a `:- module' decl
	    %
	    { MaybeFirstItem = ok(FirstItem, FirstContext) },
	    { FirstItem = module_defn(_VarSet, ModuleDefn) },
	    { ModuleDefn = module(StartModuleName) }
	->
	    
	    %
	    % if so, then check that it matches the expected
	    % module name, and if not, report a warning
	    %
	    {
		match_sym_name(StartModuleName, DefaultModuleName)
	    ->
		ModuleName = DefaultModuleName,
		Messages0 = []
	    ;
		match_sym_name(DefaultModuleName, StartModuleName)
	    ->
		ModuleName = StartModuleName,
		Messages0 = []
	    ;
	    	prog_out__sym_name_to_string(StartModuleName,
			StartModuleNameString),
	    	string__append_list(["source file `", SourceFileName,
			"' contains module named `", StartModuleNameString,
			"'"], WrongModuleWarning),
	        maybe_add_warning(WarnWrong, MaybeFirstTerm, FirstContext,
			WrongModuleWarning, [], Messages0),

		% Which one should we use here?
		% We used to use the default module name
		% (computed from the filename)
		% but now we use the declared one.
		ModuleName = StartModuleName
	    },
	    { make_module_decl(ModuleName, FirstContext, FixedFirstItem) },
	    { Items0 = [FixedFirstItem] },
	    { Error0 = no },
	    read_items_loop(ModuleName, SourceFileName,
			Messages0, Items0, Error0,
			Messages, Items, Error)
	;
	    %
	    % if the first term was not a `:- module' decl,
	    % then issue a warning (if warning enabled), and
	    % insert an implicit `:- module ModuleName' decl.
	    %
	    { MaybeFirstItem = ok(_FirstItem, FirstContext0) ->
		FirstContext = FirstContext0
	    ;
	        term__context_init(SourceFileName, 1, FirstContext)
	    },
	    { WarnMissing = yes ->
		dummy_term_with_context(FirstContext, FirstTerm),
		add_warning(
			"module should start with a `:- module' declaration",
			FirstTerm, [], Messages0)
	    ;
		Messages0 = []
	    },
	    { ModuleName = DefaultModuleName },
	    { make_module_decl(ModuleName, FirstContext, FixedFirstItem) },
    
	    %
	    % reparse the first term, this time treating it as
	    % occuring within the scope of the implicit
	    % `:- module' decl rather than in the root module.
	    % 
	    { MaybeSecondTerm = MaybeFirstTerm },
	    { process_read_term(ModuleName, MaybeSecondTerm,
		MaybeSecondItem) },

	    { Items0 = [FixedFirstItem] },
	    { Error0 = no },
	    read_items_loop_2(MaybeSecondItem, ModuleName, SourceFileName,
		Messages0, Items0, Error0,
		Messages, Items, Error)
	).

:- pred make_module_decl(module_name, term__context, item_and_context).
:- mode make_module_decl(in, in, out) is det.

make_module_decl(ModuleName, Context, Item - Context) :-
	varset__init(EmptyVarSet),
	ModuleDefn = module(ModuleName),
	Item = module_defn(EmptyVarSet, ModuleDefn).

:- pred maybe_add_warning(bool, read_term, term__context, string,
		message_list, message_list).
:- mode maybe_add_warning(in, in, in, in, in, out) is det.

maybe_add_warning(DoWarn, MaybeTerm, Context, Warning, Messages0, Messages) :-
	( DoWarn = yes ->
		( MaybeTerm = term(_VarSet, Term) ->
			WarningTerm = Term
		;
			dummy_term_with_context(Context, WarningTerm)
		),
		add_warning(Warning, WarningTerm, Messages0, Messages)
	;
		Messages = Messages0
	).

%-----------------------------------------------------------------------------%

	% The code below was carefully optimized to run efficiently
	% in NU-Prolog.  We used to call read_item(MaybeItem) -
	% which does all the work for a single item -
	% via io__gc_call/1, which called the goal with garbage collection.
	% But optimizing for NU-Prolog is no longer a big priority...

:- pred read_items_loop(module_name, file_name,
			message_list, item_list, module_error, 
			message_list, item_list, module_error, 
			io__state, io__state).
:- mode read_items_loop(in, in, in, in, in, out, out, out, di, uo) is det.

read_items_loop(ModuleName, SourceFileName, Msgs1, Items1, Error1,
		Msgs, Items, Error) -->
	read_item(ModuleName, SourceFileName, MaybeItem),
 	read_items_loop_2(MaybeItem, ModuleName, SourceFileName,
			Msgs1, Items1, Error1, Msgs, Items, Error).

%-----------------------------------------------------------------------------%

:- pred read_items_loop_2(maybe_item_or_eof, module_name, file_name,
			message_list, item_list, module_error,
			message_list, item_list, module_error,
			io__state, io__state).
:- mode read_items_loop_2(in, in, in, in, in, in, out, out, out, di, uo) is det.

% do a switch on the type of the next item

read_items_loop_2(eof, _ModuleName, _SourceFileName, Msgs, Items, Error,
		Msgs, Items, Error) --> []. 
	% if the next item was end-of-file, then we're done.

read_items_loop_2(syntax_error(ErrorMsg, LineNumber), ModuleName,
		SourceFileName, Msgs0, Items0, _Error0, Msgs, Items, Error) -->
	% if the next item was a syntax error, then insert it in
	% the list of messages and continue looping
	{
	  term__context_init(SourceFileName, LineNumber, Context),
	  dummy_term_with_context(Context, Term),
	  ThisError = ErrorMsg - Term,
	  Msgs1 = [ThisError | Msgs0],
	  Items1 = Items0,
	  Error1 = yes
	},
	read_items_loop(ModuleName, SourceFileName, Msgs1, Items1, Error1,
		Msgs, Items, Error).

read_items_loop_2(error(M, T), ModuleName, SourceFileName,
		Msgs0, Items0, _Error0, Msgs, Items, Error) -->
	% if the next item was a semantic error, then insert it in
	% the list of messages and continue looping
	{
	  add_error(M, T, Msgs0, Msgs1),
	  Items1 = Items0,
	  Error1 = yes
	},
 	read_items_loop(ModuleName, SourceFileName, Msgs1, Items1, Error1,
			Msgs, Items, Error).

read_items_loop_2(ok(Item, Context), ModuleName0, SourceFileName0,
			Msgs0, Items0, Error0, Msgs, Items, Error) -->
	% if the next item was a valid item, check whether it was
	% a declaration that affects the current parsing context --
	% i.e. either a `module'/`end_module' declaration or a
	% `pragma source_file' declaration.  If so, set the new
	% parsing context according.  Next, unless the item is a
	% `pragma source_file' declaration, insert it into the item list.
	% Then continue looping.
	{ Item = pragma(source_file(NewSourceFileName)) ->
		SourceFileName = NewSourceFileName,
		ModuleName = ModuleName0,
		Items1 = Items0
	; Item = module_defn(_VarSet, module(NestedModuleName)) ->
		ModuleName = NestedModuleName,
		SourceFileName = SourceFileName0,
		Items1 = [Item - Context | Items0]
	; Item = module_defn(_VarSet, end_module(NestedModuleName)) ->
		root_module_name(RootModuleName),
		sym_name_get_module_name(NestedModuleName, RootModuleName,
			ParentModuleName),
		ModuleName = ParentModuleName,
		SourceFileName = SourceFileName0,
		Items1 = [Item - Context | Items0]
	;
		SourceFileName = SourceFileName0,
		ModuleName = ModuleName0,
		Items1 = [Item - Context | Items0]
	},
 	read_items_loop(ModuleName, SourceFileName, Msgs0, Items1, Error0,
			Msgs, Items, Error).

%-----------------------------------------------------------------------------%

	% read_item/1 reads a single item, and if it is a valid term
	% parses it.

:- type maybe_item_or_eof --->	eof
			;	syntax_error(file_name, int)
			;	error(string, term)
			;	ok(item, term__context).

:- pred read_item(module_name, file_name, maybe_item_or_eof,
			io__state, io__state).
:- mode read_item(in, in, out, di, uo) is det.

read_item(ModuleName, SourceFileName, MaybeItem) -->
	parser__read_term(SourceFileName, MaybeTerm),
	{ process_read_term(ModuleName, MaybeTerm, MaybeItem) }.

:- pred process_read_term(module_name, read_term, maybe_item_or_eof).
:- mode process_read_term(in, in, out) is det.

process_read_term(_ModuleName, eof, eof).
process_read_term(_ModuleName, error(ErrorMsg, LineNumber),
			syntax_error(ErrorMsg, LineNumber)).
process_read_term(ModuleName, term(VarSet, Term),
			MaybeItemOrEof) :-
	parse_item(ModuleName, VarSet, Term, MaybeItem),
	convert_item(MaybeItem, MaybeItemOrEof).

:- pred convert_item(maybe_item_and_context, maybe_item_or_eof).
:- mode convert_item(in, out) is det.

convert_item(ok(Item, Context), ok(Item, Context)).
convert_item(error(M, T), error(M, T)).

parse_item(ModuleName, VarSet, Term, Result) :-
 	( %%% some [Decl, DeclContext]
		Term = term__functor(term__atom(":-"), [Decl], _DeclContext)
	->
		% It's a declaration
		parse_decl(ModuleName, VarSet, Decl, Result)
	; %%% some [DCG_H, DCG_B, DCG_Context]
		% It's a DCG clause
		Term = term__functor(term__atom("-->"), [DCG_H, DCG_B],
			DCG_Context)
	->
		parse_dcg_clause(ModuleName, VarSet, DCG_H, DCG_B,
				DCG_Context, Result)
	;
		% It's either a fact or a rule
		( %%% some [H, B, TermContext]
			Term = term__functor(term__atom(":-"), [H, B],
						TermContext)
		->
			% it's a rule
			Head = H,
			Body = B,
			TheContext = TermContext
		;
			% it's a fact
			Head = Term,
			(
				Head = term__functor(_Functor, _Args,
							HeadContext)
			->
				TheContext = HeadContext
			;
					% term consists of just a single
					% variable - the context has been lost
				term__context_init(TheContext)
			),
			Body = term__functor(term__atom("true"), [], TheContext)
		),
		varset__coerce(VarSet, ProgVarSet),
		parse_goal(Body, ProgVarSet, Body2, ProgVarSet2),
		(
			Head = term__functor(term__atom("="),
					[FuncHead, FuncResult], _)
		->
			parse_implicitly_qualified_term(ModuleName,
				FuncHead, Head, "equation head", R2),
			process_func_clause(R2, FuncResult, ProgVarSet2, Body2,
				R3)
		;
			parse_implicitly_qualified_term(ModuleName,
				Head, Term, "clause head", R2),
			process_pred_clause(R2, ProgVarSet2, Body2, R3)
		),
		add_context(R3, TheContext, Result)
	).

:- pred process_pred_clause(maybe_functor, prog_varset, goal, maybe1(item)).
:- mode process_pred_clause(in, in, in, out) is det.
process_pred_clause(ok(Name, Args0), VarSet, Body,
		ok(pred_clause(VarSet, Name, Args, Body))) :-
	list__map(term__coerce, Args0, Args).
process_pred_clause(error(ErrMessage, Term0), _, _, error(ErrMessage, Term)) :-
	term__coerce(Term0, Term).

:- pred process_func_clause(maybe_functor, term, prog_varset, goal,
		maybe1(item)).
:- mode process_func_clause(in, in, in, in, out) is det.
process_func_clause(ok(Name, Args0), Result0, VarSet, Body,
		ok(func_clause(VarSet, Name, Args, Result, Body))) :-
	list__map(term__coerce, Args0, Args),
	term__coerce(Result0, Result).
process_func_clause(error(ErrMessage, Term0), _, _, _,
		error(ErrMessage, Term)) :-
	term__coerce(Term0, Term).

%-----------------------------------------------------------------------------%

:- type decl_attribute
	--->	purity(purity)
	;	quantifier(quantifier_type, list(tvar))
	;	constraints(quantifier_type, term).
		% the term here is the (not yet parsed) list of constraints

:- type quantifier_type
	--->	exist
	;	univ.

:- type decl_attrs == list(pair(decl_attribute, term)).
	% the term associated with each decl_attribute
	% is the term containing both the attribute and
	% the declaration that that attribute modifies;
	% this term is used when printing out error messages
	% for cases when attributes are used on declarations
	% where they are not allowed.

parse_decl(ModuleName, VarSet, F, Result) :-
	parse_decl_2(ModuleName, VarSet, F, [], Result).

	% parse_decl_2(ModuleName, VarSet, Term, Attributes, Result)
	% succeeds if Term is a declaration and binds Result to a
	% representation of that declaration.  Attributes is a list
	% of enclosing declaration attributes, in the order innermost to
	% outermost.
:- pred parse_decl_2(module_name, varset, term, decl_attrs,
		maybe_item_and_context).
:- mode parse_decl_2(in, in, in, in, out) is det.

parse_decl_2(ModuleName, VarSet, F, Attributes, Result) :-
	( 
		F = term__functor(term__atom(Atom), Args, Context)
	->
		(
			parse_decl_attribute(Atom, Args, Attribute, SubTerm)
		->
			NewAttributes = [Attribute - F | Attributes],
			parse_decl_2(ModuleName, VarSet, SubTerm,
				NewAttributes, Result)
		;
			process_decl(ModuleName, VarSet, Atom, Args,
				Attributes, R)
		->
			add_context(R, Context, Result)
		;
			Result = error("unrecognized declaration", F)
		)
	;
		Result = error("atom expected after `:-'", F)
	).

	% process_decl(ModuleName, VarSet, Attributes, Atom, Args, Result)
	% succeeds if Atom(Args) is a declaration and binds Result to a
	% representation of that declaration.  Attributes is a list
	% of enclosing declaration attributes, in the order outermost to
	% innermost.
:- pred process_decl(module_name, varset, string, list(term), decl_attrs,
		maybe1(item)).
:- mode process_decl(in, in, in, in, in, out) is semidet.

process_decl(ModuleName, VarSet, "type", [TypeDecl], Attributes, Result) :-
	parse_type_decl(ModuleName, VarSet, TypeDecl, Result0),
	check_no_attributes(Result0, Attributes, Result).

process_decl(ModuleName, VarSet, "pred", [PredDecl], Attributes, Result) :-
	parse_type_decl_pred(ModuleName, VarSet, PredDecl, Attributes, Result).

process_decl(ModuleName, VarSet, "func", [FuncDecl], Attributes, Result) :-
	parse_type_decl_func(ModuleName, VarSet, FuncDecl, Attributes, Result).

process_decl(ModuleName, VarSet, "mode", [ModeDecl], Attributes, Result) :-
	parse_mode_decl(ModuleName, VarSet, ModeDecl, Result0),
	check_no_attributes(Result0, Attributes, Result).

process_decl(ModuleName, VarSet, "inst", [InstDecl], Attributes, Result) :-
	parse_inst_decl(ModuleName, VarSet, InstDecl, Result0),
	check_no_attributes(Result0, Attributes, Result).

process_decl(_ModuleName, VarSet, "import_module", [ModuleSpec], Attributes,
		Result) :-
	parse_symlist_decl(parse_module_specifier, make_module, make_import,
		ModuleSpec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet, "use_module", [ModuleSpec], Attributes,
		Result) :-
	parse_symlist_decl(parse_module_specifier, make_module, make_use,
		ModuleSpec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet, "export_module", [ModuleSpec], Attributes,
		Result) :-
	parse_symlist_decl(parse_module_specifier, make_module, make_export,
		ModuleSpec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet, "import_sym", [SymSpec], Attributes,
		Result) :-
	parse_symlist_decl(parse_symbol_specifier, make_sym, make_import,
		SymSpec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet, "use_sym", [SymSpec], Attributes, Result) :-
	parse_symlist_decl(parse_symbol_specifier, make_sym, make_use,
		SymSpec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet, "export_sym", [SymSpec], Attributes,
		Result) :-
	parse_symlist_decl(parse_symbol_specifier, make_sym, make_export,
		SymSpec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet, "import_pred", [PredSpec], Attributes,
		Result) :-
	parse_symlist_decl(parse_predicate_specifier, make_pred, make_import,
		PredSpec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet, "use_pred", [PredSpec], Attributes,
		Result) :-
	parse_symlist_decl(parse_predicate_specifier, make_pred, make_use,
		PredSpec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet, "export_pred", [PredSpec], Attributes,
		Result) :-
	parse_symlist_decl(parse_predicate_specifier, make_pred, make_export,
		PredSpec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet, "import_func", [FuncSpec], Attributes,
		Result) :-
	parse_symlist_decl(parse_function_specifier, make_func, make_import,
		FuncSpec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet, "use_func", [FuncSpec], Attributes,
		Result) :-
	parse_symlist_decl(parse_function_specifier, make_func, make_use,
		FuncSpec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet, "export_func", [FuncSpec], Attributes,
		Result) :-
	parse_symlist_decl(parse_function_specifier, make_func, make_export,
		FuncSpec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet, "import_cons", [ConsSpec], Attributes,
		Result) :-
	parse_symlist_decl(parse_constructor_specifier, make_cons, make_import,
		ConsSpec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet, "use_cons", [ConsSpec], Attributes,
		Result) :-
	parse_symlist_decl(parse_constructor_specifier, make_cons, make_use,
		ConsSpec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet, "export_cons", [ConsSpec], Attributes,
		Result) :-
	parse_symlist_decl(parse_constructor_specifier, make_cons, make_export,
		ConsSpec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet, "import_type", [TypeSpec], Attributes,
		Result) :-
	parse_symlist_decl(parse_type_specifier, make_type, make_import,
		TypeSpec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet, "use_type", [TypeSpec], Attributes,
		Result) :-
	parse_symlist_decl(parse_type_specifier, make_type, make_use,
		TypeSpec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet, "export_type", [TypeSpec], Attributes,
		Result) :-
	parse_symlist_decl(parse_type_specifier, make_type, make_export,
		TypeSpec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet, "import_adt", [ADT_Spec], Attributes,
		Result) :-
	parse_symlist_decl(parse_adt_specifier, make_adt, make_import,
		ADT_Spec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet, "use_adt", [ADT_Spec], Attributes, Result) :-
	parse_symlist_decl(parse_adt_specifier, make_adt, make_use,
		ADT_Spec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet, "export_adt", [ADT_Spec], Attributes,
		Result) :-
	parse_symlist_decl(parse_adt_specifier, make_adt, make_export,
		ADT_Spec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet, "import_op", [OpSpec], Attributes,
		Result) :-
	parse_symlist_decl(parse_op_specifier, make_op, make_import,
		OpSpec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet, "use_op", [OpSpec], Attributes, Result) :-
	parse_symlist_decl(parse_op_specifier, make_op, make_use,
		OpSpec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet, "export_op", [OpSpec], Attributes, Result) :-
	parse_symlist_decl(parse_op_specifier, make_op, make_export,
		OpSpec, Attributes, VarSet, Result).

process_decl(_ModuleName, VarSet0, "interface", [], Attributes, Result) :-
	varset__coerce(VarSet0, VarSet),
	Result0 = ok(module_defn(VarSet, interface)),
	check_no_attributes(Result0, Attributes, Result).

process_decl(_ModuleName, VarSet0, "implementation", [], Attributes, Result) :-
	varset__coerce(VarSet0, VarSet),
	Result0 = ok(module_defn(VarSet, implementation)),
	check_no_attributes(Result0, Attributes, Result).

process_decl(_ModuleName, VarSet, "external", [PredSpec], Attributes,
		Result) :-
	parse_symbol_name_specifier(PredSpec, Result0),
	process_maybe1(make_external(VarSet), Result0, Result1),
	check_no_attributes(Result1, Attributes, Result).

process_decl(DefaultModuleName, VarSet0, "module", [ModuleName], Attributes,
		Result) :-
	parse_module_name(DefaultModuleName, ModuleName, Result0),
	(	
		Result0 = ok(ModuleNameSym), 
		varset__coerce(VarSet0, VarSet),
		Result1 = ok(module_defn(VarSet, module(ModuleNameSym)))
	;	
		Result0 = error(A, B),
		Result1 = error(A, B)
	),
	check_no_attributes(Result1, Attributes, Result).

process_decl(DefaultModuleName, VarSet0, "include_module", [ModuleNames],
		Attributes, Result) :-
	parse_list(parse_module_name(DefaultModuleName), ModuleNames, Result0),
	(	
		Result0 = ok(ModuleNameSyms), 
		varset__coerce(VarSet0, VarSet),
		Result1 = ok(module_defn(VarSet,
				include_module(ModuleNameSyms)))
	;	
		Result0 = error(A, B),
		Result1 = error(A, B)
	),
	check_no_attributes(Result1, Attributes, Result).

process_decl(DefaultModuleName, VarSet0, "end_module", [ModuleName],
		Attributes, Result) :-
	%
	% The name in an `end_module' declaration not inside the
	% scope of the module being ended, so the default module name
	% here is the parent of the previous default module name.
	%
	root_module_name(RootModuleName),
	sym_name_get_module_name(DefaultModuleName, RootModuleName,
		ParentOfDefaultModuleName),
	parse_module_name(ParentOfDefaultModuleName, ModuleName, Result0),
	(	
		Result0 = ok(ModuleNameSym), 
		varset__coerce(VarSet0, VarSet),
		Result1 = ok(module_defn(VarSet, end_module(ModuleNameSym)))
	;	
		Result0 = error(A, B),
		Result1 = error(A, B)
	),
	check_no_attributes(Result1, Attributes, Result).

	% NU-Prolog `when' declarations used to be silently ignored for
	% backwards compatibility.  We now issue a warning that they
	% are deprecated.  We should eventually drop support for them
	% entirely.
process_decl(_ModuleName, _VarSet, "when", [_Goal, _Cond], Attributes,
		Result) :-
	Result0 = ok(nothing),
	check_no_attributes(Result0, Attributes, Result).

process_decl(ModuleName, VarSet, "pragma", Pragma, Attributes, Result):-
	parse_pragma(ModuleName, VarSet, Pragma, Result0),
	check_no_attributes(Result0, Attributes, Result).

process_decl(ModuleName, VarSet, "promise", Assertion, Attributes, Result):-
	parse_assertion(ModuleName, VarSet, Assertion, Result0),
	check_no_attributes(Result0, Attributes, Result).

process_decl(ModuleName, VarSet, "typeclass", Args, Attributes, Result):-
	parse_typeclass(ModuleName, VarSet, Args, Result0),
	check_no_attributes(Result0, Attributes, Result).

process_decl(ModuleName, VarSet, "instance", Args, Attributes, Result):-
	parse_instance(ModuleName, VarSet, Args, Result0),
	check_no_attributes(Result0, Attributes, Result).

:- pred parse_decl_attribute(string, list(term), decl_attribute, term).
:- mode parse_decl_attribute(in, in, out, out) is semidet.

parse_decl_attribute("impure", [Decl], purity(impure), Decl).
parse_decl_attribute("semipure", [Decl], purity(semipure), Decl).
parse_decl_attribute("<=", [Decl, Constraints],
		constraints(univ, Constraints), Decl).
parse_decl_attribute("=>", [Decl, Constraints],
		constraints(exist, Constraints), Decl).
parse_decl_attribute("some", [TVars0, Decl],
		quantifier(exist, TVarsList), Decl) :-
	term__coerce(TVars0, TVars),
	parse_list_of_vars(TVars, TVarsList).
parse_decl_attribute("all", [TVars0, Decl],
		quantifier(univ, TVarsList), Decl) :-
	term__coerce(TVars0, TVars),
	parse_list_of_vars(TVars, TVarsList).

:- pred check_no_attributes(maybe1(item), decl_attrs, maybe1(item)).
:- mode check_no_attributes(in, in, out) is det.

check_no_attributes(Result0, Attributes, Result) :-
	(
		Result0 = ok(_),
		Attributes = [Attr - Term | _]
	->
		attribute_description(Attr, AttrDescr),
		string__append(AttrDescr, " not allowed here", Message),
		Result = error(Message, Term)
	;
		Result = Result0
	).

:- pred attribute_description(decl_attribute, string).
:- mode attribute_description(in, out) is det.

attribute_description(purity(_), "purity specifier").
attribute_description(quantifier(univ, _), "universal quantifier (`all')").
attribute_description(quantifier(exist, _), "existential quantifier (`some')").
attribute_description(constraints(univ, _), "type class constraint (`<=')").
attribute_description(constraints(exist, _),
	"existentially quantified type class constraint (`=>')").

%-----------------------------------------------------------------------------%

	% parse the assertion declaration. 
:- pred parse_assertion(module_name, varset, list(term), maybe1(item)).
:- mode parse_assertion(in, in, in, out) is semidet.

parse_assertion(_ModuleName, VarSet, [AssertionTerm], Result) :-
	varset__coerce(VarSet, ProgVarSet),
	parse_goal(AssertionTerm, ProgVarSet, AssertGoal, AssertVarSet),
	Result = ok(assertion(AssertGoal, AssertVarSet)).

%-----------------------------------------------------------------------------%

:- pred parse_type_decl(module_name, varset, term, maybe1(item)).
:- mode parse_type_decl(in, in, in, out) is det.
parse_type_decl(ModuleName, VarSet, TypeDecl, Result) :-
	( 
		TypeDecl = term__functor(term__atom(Name), Args, _),
		parse_type_decl_type(ModuleName, Name, Args, Cond, R) 
	->
		R1 = R,
		Cond1 = Cond
	;
		process_abstract_type(ModuleName, TypeDecl, R1),
		Cond1 = true
	),
	process_maybe1(make_type_defn(VarSet, Cond1), R1, Result).
		% we should check the condition for errs
		% (don't bother at the moment, since we ignore
		% conditions anyhow :-)

:- pred make_type_defn(varset, condition, type_defn, item).
:- mode make_type_defn(in, in, in, out) is det.

make_type_defn(VarSet0, Cond, TypeDefn, type_defn(VarSet, TypeDefn, Cond)) :-
	varset__coerce(VarSet0, VarSet).

:- pred make_external(varset, sym_name_specifier, item).
:- mode make_external(in, in, out) is det.

make_external(VarSet0, SymSpec, module_defn(VarSet, external(SymSpec))) :-
	varset__coerce(VarSet0, VarSet).

%-----------------------------------------------------------------------------%

	% add a warning message to the list of messages

:- pred add_warning(string, term, message_list, message_list).
:- mode add_warning(in, in, in, out) is det.
add_warning(Warning, Term, Msgs, [Msg - Term | Msgs]) :-
	string__append("Warning: ", Warning, Msg).

	% add an error message to the list of messages

:- pred add_error(string, term, message_list, message_list).
:- mode add_error(in, in, in, out) is det.
add_error(Error, Term, Msgs, [Msg - Term | Msgs]) :-
	string__append("Error: ", Error, Msg).

%-----------------------------------------------------------------------------%
	% parse_type_decl_type(Term, Condition, Result) succeeds
	% if Term is a "type" type declaration, and binds Condition
	% to the condition for that declaration (if any), and Result to
	% a representation of the declaration.

:- pred parse_type_decl_type(module_name, string, list(term), condition,
				maybe1(type_defn)).
:- mode parse_type_decl_type(in, in, in, out, out) is semidet.

parse_type_decl_type(ModuleName, "--->", [H, B], Condition, R) :-
	/* get_condition(...), */
	Condition = true,
	get_maybe_equality_pred(B, Body, EqualityPred),
	process_du_type(ModuleName, H, Body, EqualityPred, R).

parse_type_decl_type(ModuleName, "=", [H, B], Condition, R) :-
	get_condition(B, Body, Condition),
	process_uu_type(ModuleName, H, Body, R).

parse_type_decl_type(ModuleName, "==", [H, B], Condition, R) :-
	get_condition(B, Body, Condition),
	process_eqv_type(ModuleName, H, Body, R).

%-----------------------------------------------------------------------------%

	% parse_type_decl_pred(ModuleName, VarSet, Pred, Attributes, Result)
	% succeeds if Pred is a predicate type declaration, and binds Result
	% to a representation of the declaration.
:- pred parse_type_decl_pred(module_name, varset, term, decl_attrs,
		maybe1(item)).
:- mode parse_type_decl_pred(in, in, in, in, out) is det.

parse_type_decl_pred(ModuleName, VarSet, Pred, Attributes, R) :-
	get_condition(Pred, Body, Condition),
	get_determinism(Body, Body2, MaybeDeterminism),
        process_type_decl_pred(ModuleName, MaybeDeterminism, VarSet, Body2,
                                Condition, Attributes, R).

:- pred process_type_decl_pred(module_name, maybe1(maybe(determinism)), varset,
				term, condition, decl_attrs, maybe1(item)).
:- mode process_type_decl_pred(in, in, in, in, in, in, out) is det.

process_type_decl_pred(_MNm, error(Term, Reason), _, _, _, _,
			error(Term, Reason)).
process_type_decl_pred(ModuleName, ok(MaybeDeterminism), VarSet, Body,
			Condition, Attributes, R) :-
        process_pred(ModuleName, VarSet, Body, Condition, MaybeDeterminism,
		     Attributes, R).

%-----------------------------------------------------------------------------%

	% parse_type_decl_func(ModuleName, Varset, Func, Attributes, Result)
	% succeeds if Func is a function type declaration, and binds Result to
	% a representation of the declaration.
:- pred parse_type_decl_func(module_name, varset, term, decl_attrs,
		maybe1(item)).
:- mode parse_type_decl_func(in, in, in, in, out) is det.

parse_type_decl_func(ModuleName, VarSet, Func, Attributes, R) :-
	get_condition(Func, Body, Condition),
	get_determinism(Body, Body2, MaybeDeterminism),
        process_maybe1_to_t(process_func(ModuleName, VarSet, Body2, Condition,
					 Attributes), MaybeDeterminism, R).

%-----------------------------------------------------------------------------%

	% parse_mode_decl_pred(ModuleName, Pred, Condition, Result) succeeds
	% if Pred is a predicate mode declaration, and binds Condition
	% to the condition for that declaration (if any), and Result to
	% a representation of the declaration.
:- pred parse_mode_decl_pred(module_name, varset, term, maybe1(item)).
:- mode parse_mode_decl_pred(in, in, in, out) is det.

parse_mode_decl_pred(ModuleName, VarSet, Pred, Result) :-
	get_condition(Pred, Body, Condition),
	get_determinism(Body, Body2, MaybeDeterminism),
	process_maybe1_to_t(process_mode(ModuleName, VarSet, Body2, Condition),
			MaybeDeterminism, Result).

%-----------------------------------------------------------------------------%

	% get_maybe_equality_pred(Body0, Body, MaybeEqualPred):
	%	Checks if `Body0' is a term of the form
	%		`<body> where equality is <symname>'
	%	If so, returns the `<body>' in Body and the <symname> in
	%	MaybeEqualPred.  If not, returns Body = Body0 
	%	and `no' in MaybeEqualPred.

:- pred get_maybe_equality_pred(term, term, maybe1(maybe(sym_name))).
:- mode get_maybe_equality_pred(in, out, out) is det.

get_maybe_equality_pred(B, Body, MaybeEqualityPred) :-
	( 
		B = term__functor(term__atom("where"), Args, _Context1),
		Args = [Body1, Equality_Is_PredName]
	->
		Body = Body1,
		( 
			Equality_Is_PredName = term__functor(term__atom("is"),
				[Equality, PredName], _),
			Equality = term__functor(term__atom("equality"), [], _)
		->
			parse_symbol_name(PredName, MaybeEqualityPred0),
			process_maybe1(make_yes, MaybeEqualityPred0,
				MaybeEqualityPred)
		;
			MaybeEqualityPred = error("syntax error after `where'",
				Body)
		)
	;
		Body = B,
		MaybeEqualityPred = ok(no)
	).

:- pred make_yes(T::in, maybe(T)::out) is det.
make_yes(T, yes(T)).

	% get_determinism(Term0, Term, Determinism) binds Determinism
	% to a representation of the determinism condition of Term0, if any,
	% and binds Term to the other part of Term0. If Term0 does not
	% contain a determinism, then Determinism is bound to `unspecified'.

:- pred get_determinism(term, term, maybe1(maybe(determinism))).
:- mode get_determinism(in, out, out) is det.

get_determinism(B, Body, Determinism) :-
	( 
		B = term__functor(term__atom("is"), Args, _Context1),
		Args = [Body1, Determinism1]
	->
		Body = Body1,
		( 
		    (
			Determinism1 = term__functor(term__atom(Determinism2),
				[], _Context2),
			standard_det(Determinism2, Determinism3)
		    )
		->
			Determinism = ok(yes(Determinism3))
		;
			Determinism = error("invalid category", Determinism1)
		)
	;
		Body = B,
		Determinism = ok(no)
	).

%-----------------------------------------------------------------------------%

	% get_condition(Term0, Term, Condition) binds Condition
	% to a representation of the 'where' condition of Term0, if any,
	% and binds Term to the other part of Term0. If Term0 does not
	% contain a condition, then Condition is bound to true.

:- pred get_condition(term, term, condition).
:- mode get_condition(in, out, out) is det.

get_condition(Body, Body, true).

/********
% NU-Prolog supported type declarations of the form
%	:- pred p(T) where p(X) : sorted(X).
% or
%	:- type sorted_list(T) = list(T) where X : sorted(X).
%	:- pred p(sorted_list(T).
% There is some code here to support that sort of thing, but
% probably we would now need to use a different syntax, since
% Mercury now uses `where' for different purposes (e.g. specifying
% user-defined equality predicates; also for type classes, eventually...)
%
get_condition(B, Body, Condition) :-
	( 
		B = term__functor(term__atom("where"), [Body1, Condition1],
					_Context)
	->
		Body = Body1,
		Condition = where(Condition1)
	;
		Body = B,
		Condition = true
	).
********/

%-----------------------------------------------------------------------------%

	% This is for "Head = Body" (undiscriminated union) definitions.
:- pred process_uu_type(module_name, term, term, maybe1(type_defn)).
:- mode process_uu_type(in, in, in, out) is det.
process_uu_type(ModuleName, Head, Body, Result) :-
	check_for_errors(ModuleName, Head, Body, Result0),
	process_uu_type_2(Result0, Body, Result).

:- pred process_uu_type_2(maybe_functor, term, maybe1(type_defn)).
:- mode process_uu_type_2(in, in, out) is det.
process_uu_type_2(error(Error, Term), _, error(Error, Term)).
process_uu_type_2(ok(Name, Args0), Body0, ok(uu_type(Name, Args, List))) :-
	list__map(term__coerce, Args0, Args),
	term__coerce(Body0, Body),
	sum_to_list(Body, List).

%-----------------------------------------------------------------------------%

	% This is for "Head == Body" (equivalence) definitions.
:- pred process_eqv_type(module_name, term, term, maybe1(type_defn)).
:- mode process_eqv_type(in, in, in, out) is det.
process_eqv_type(ModuleName, Head, Body, Result) :-
	check_for_errors(ModuleName, Head, Body, Result0),
	process_eqv_type_2(Result0, Body, Result).

:- pred process_eqv_type_2(maybe_functor, term, maybe1(type_defn)).
:- mode process_eqv_type_2(in, in, out) is det.
process_eqv_type_2(error(Error, Term), _, error(Error, Term)).
process_eqv_type_2(ok(Name, Args0), Body0, Result) :-
	% check that all the variables in the body occur in the head
	(
		(
			term__contains_var(Body0, Var2),
			\+ term__contains_var_list(Args0, Var2)
		)
	->
		Result = error("free type parameter in RHS of type definition",
				Body0)
	;
		list__map(term__coerce, Args0, Args),
		term__coerce(Body0, Body),
		Result = ok(eqv_type(Name, Args, Body))
	).

%-----------------------------------------------------------------------------%

	% process_du_type(ModuleName, TypeHead, TypeBody, Result)
	% checks that its arguments are well formed, and if they are,
	% binds Result to a representation of the type information about the
	% TypeHead.
	% This is for "Head ---> Body" (constructor) definitions.
:- pred process_du_type(module_name, term, term, maybe1(maybe(equality_pred)),
			maybe1(type_defn)).
:- mode process_du_type(in, in, in, in, out) is det.
process_du_type(ModuleName, Head, Body, EqualityPred, Result) :-
	check_for_errors(ModuleName, Head, Body, Result0),
	process_du_type_2(ModuleName, Result0, Body, EqualityPred, Result).

:- pred process_du_type_2(module_name, maybe_functor, term,
			maybe1(maybe(equality_pred)), maybe1(type_defn)).
:- mode process_du_type_2(in, in, in, in, out) is det.
process_du_type_2(_, error(Error, Term), _, _, error(Error, Term)).
process_du_type_2(ModuleName, ok(Functor, Args0), Body, MaybeEqualityPred,
		Result) :-
	% check that body is a disjunction of constructors
	list__map(term__coerce, Args0, Args),
	(
		convert_constructors(ModuleName, Body, Constrs)
	->
		% check that all type variables in the body
		% are either explicitly existentally quantified
		% or occur in the head.
		(
			list__member(Ctor, Constrs),
			Ctor = ctor(ExistQVars, _Constraints, _CtorName,
					CtorArgs),
			assoc_list__values(CtorArgs, CtorArgTypes),
			term__contains_var_list(CtorArgTypes, Var),
			\+ list__member(Var, ExistQVars),
			\+ term__contains_var_list(Args, Var)
		->
			Result = error(
			"free type parameter in RHS of type definition",
					Body)
		
		% check that all type variables in existential quantifiers
		% do not occur in the head
		% (maybe this should just be a warning, not an error?
		% If we were to allow it, we would need to rename them apart.)
		;
			list__member(Ctor, Constrs),
			Ctor = ctor(ExistQVars, _Constraints, _CtorName,
					CtorArgs),
			list__member(Var, ExistQVars),
			assoc_list__values(CtorArgs, CtorArgTypes),
			\+ term__contains_var_list(CtorArgTypes, Var)
		->
			Result = error( "type variable has overlapping scopes (explicit type quantifier shadows argument type)", Body)

		% check that all type variables in existential quantifiers
		% occur somewhere in the body
		% (maybe this should just be a warning, not an error?
		% If we were to allow it, we should at this point delete any
		% such unused type variables from the list of quantifiers.)
		;
			list__member(Ctor, Constrs),
			Ctor = ctor(ExistQVars, _Constraints, _CtorName,
					CtorArgs),
			list__member(Var, ExistQVars),
			assoc_list__values(CtorArgs, CtorArgTypes),
			\+ term__contains_var_list(CtorArgTypes, Var)
		->
			Result = error(
			"var occurs only in existential quantifier",
					Body)
		% check that all type variables in existential constraints
		% occur in the existential quantifiers
		% (XXX is this check overly conservative? Perhaps we should
		% allow existential constraints so long as they contain
		% at least one type variable which is existentially quantified,
		% rather than requiring all variables in them to be
		% existentially quantified.)
		;
			list__member(Ctor, Constrs),
			Ctor = ctor(ExistQVars, Constraints, _CtorName,
					_CtorArgs),
			list__member(Constraint, Constraints),
			Constraint = constraint(_Name, Args),
			term__contains_var_list(Args, Var),
			\+ list__member(Var, ExistQVars)
		->
			Result = error("type variables in class constraints introduced with `=>' must be explicitly existentially quantified using `some'",
					Body)
		;
			(
				MaybeEqualityPred = ok(EqualityPred),
				Result = ok(du_type(Functor, Args, Constrs,
							EqualityPred))
			;
				MaybeEqualityPred = error(Error, Term),
				Result = error(Error, Term)
			)
		)
	;
		Result = error("invalid RHS of type definition", Body)
	).

%-----------------------------------------------------------------------------%

	% process_abstract_type(ModuleName, TypeHead, Result)
	% checks that its argument is well formed, and if it is,
	% binds Result to a representation of the type information about the
	% TypeHead.

:- pred process_abstract_type(module_name, term, maybe1(type_defn)).
:- mode process_abstract_type(in, in, out) is det.
process_abstract_type(ModuleName, Head, Result) :-
	dummy_term(Body),
	check_for_errors(ModuleName, Head, Body, Result0),
	process_abstract_type_2(Result0, Result).

:- pred process_abstract_type_2(maybe_functor, maybe1(type_defn)).
:- mode process_abstract_type_2(in, out) is det.
process_abstract_type_2(error(Error, Term), error(Error, Term)).
process_abstract_type_2(ok(Functor, Args0), ok(abstract_type(Functor, Args))) :-
	list__map(term__coerce, Args0, Args).

%-----------------------------------------------------------------------------%

	%  check a type definition for errors

:- pred check_for_errors(module_name, term, term, maybe_functor).
:- mode check_for_errors(in, in, in, out) is det.
check_for_errors(ModuleName, Head, Body, Result) :-
	( Head = term__variable(_) ->
		%
		% `Head' has no term__context, so we need to get the
		% context from `Body'
		%
		( Body = term__functor(_, _, Context) ->
			dummy_term_with_context(Context, ErrorTerm)
		;
			dummy_term(ErrorTerm)
		),
		Result = error("variable on LHS of type definition", ErrorTerm)
	;
		parse_implicitly_qualified_term(ModuleName,
			Head, Head, "type definition", R),
		check_for_errors_2(R, Body, Head, Result)
	).

:- pred check_for_errors_2(maybe_functor, term, term, maybe_functor).
:- mode check_for_errors_2(in, in, in, out) is det.
check_for_errors_2(error(Msg, Term), _, _, error(Msg, Term)).
check_for_errors_2(ok(Name, Args), Body, Head, Result) :-
	check_for_errors_3(Name, Args, Body, Head, Result).

:- pred check_for_errors_3(sym_name, list(term), term, term, maybe_functor).
:- mode check_for_errors_3(in, in, in, in, out) is det.
check_for_errors_3(Name, Args, _Body, Head, Result) :-
	% check that all the head args are variables
	( %%%	some [Arg]
		(
			list__member(Arg, Args),
			Arg \= term__variable(_)
		)
	->
		Result = error("type parameters must be variables", Head)
	;
	% check that all the head arg variables are distinct
	  %%%	some [Arg2, OtherArgs]
		(
			list__member(Arg2, Args, [Arg2|OtherArgs]),
			list__member(Arg2, OtherArgs)
		)
	->
		Result = error("repeated type parameters in LHS of type defn", Head)
	;
		Result = ok(Name, Args)
	).

%-----------------------------------------------------------------------------%

	% Convert a list of terms separated by semi-colons
	% (known as a "disjunction", even thought the terms aren't goals
	% in this case) into a list of constructors

:- pred convert_constructors(module_name, term, list(constructor)).
:- mode convert_constructors(in, in, out) is semidet.
convert_constructors(ModuleName, Body, Constrs) :-
	disjunction_to_list(Body, List),
	convert_constructors_2(ModuleName, List, Constrs).

	% true if input argument is a valid list of constructors

:- pred convert_constructors_2(module_name, list(term), list(constructor)).
:- mode convert_constructors_2(in, in, out) is semidet.
convert_constructors_2(_, [], []).
convert_constructors_2(ModuleName, [Term | Terms], [Constr | Constrs]) :-
	convert_constructor(ModuleName, Term, Constr),
	convert_constructors_2(ModuleName, Terms, Constrs).

	% true if input argument is a valid constructor.

:- pred convert_constructor(module_name, term, constructor).
:- mode convert_constructor(in, in, out) is semidet.
convert_constructor(ModuleName, Term0, Result) :-
	( 
		Term0 = term__functor(term__atom("some"), [Vars, Term1], _)
	->
		parse_list_of_vars(Vars, ExistQVars0),
		list__map(term__coerce_var, ExistQVars0, ExistQVars),
		Term2 = Term1
	;
		ExistQVars = [],
		Term2 = Term0
	),
	get_existential_constraints_from_term(ModuleName, Term2, Term3,
		ok(Constraints)),
	( 
		% Note that as a special case, one level of
		% curly braces around the constructor are ignored.
		% This is to allow you to define ';'/2 and 'some'/2
		% constructors.
		Term3 = term__functor(term__atom("{}"), [Term4], _Context)
	->
		Term5 = Term4
	;
		Term5 = Term3
	),
	parse_implicitly_qualified_term(ModuleName,
		Term5, Term0, "constructor definition", ok(F, As)),
	convert_constructor_arg_list(As, Args),
	Result = ctor(ExistQVars, Constraints, F, Args).

%-----------------------------------------------------------------------------%

	% parse a `:- pred p(...)' declaration

:- pred process_pred(module_name, varset, term, condition, maybe(determinism),
			decl_attrs, maybe1(item)).
:- mode process_pred(in, in, in, in, in, in, out) is det.

process_pred(ModuleName, VarSet, PredType, Cond, MaybeDet, Attributes0,
		Result) :-
	get_class_context(ModuleName, Attributes0, Attributes, MaybeContext),
	(
		MaybeContext = ok(ExistQVars, Constraints),
		parse_implicitly_qualified_term(ModuleName,
			PredType, PredType, "`:- pred' declaration",
			R),
		process_pred_2(R, PredType, VarSet, MaybeDet, Cond,
			ExistQVars, Constraints, Attributes, Result)
	;
		MaybeContext = error(String, Term),
		Result = error(String, Term)
	).

:- pred process_pred_2(maybe_functor, term, varset, maybe(determinism),
			condition, existq_tvars, class_constraints, decl_attrs,
			maybe1(item)).
:- mode process_pred_2(in, in, in, in, in, in, in, in, out) is det.

process_pred_2(ok(F, As0), PredType, VarSet0, MaybeDet, Cond, ExistQVars,
		ClassContext, Attributes0, Result) :-
	( convert_type_and_mode_list(As0, As) ->
		( verify_type_and_mode_list(As) ->
	        	get_purity(Attributes0, Purity, Attributes),
			varset__coerce(VarSet0, TVarSet),
			varset__coerce(VarSet0, IVarSet),
			Result0 = ok(pred(TVarSet, IVarSet, ExistQVars, F,
				As, MaybeDet, Cond, Purity, ClassContext)),
			check_no_attributes(Result0, Attributes, Result)
		;
			Result = error("some but not all arguments have modes",
				PredType)
		)
	;
		Result = error("syntax error in `:- pred' declaration",
				PredType)
	).
process_pred_2(error(M, T), _, _, _, _, _, _, _, error(M, T)).

:- pred get_purity(decl_attrs, purity, decl_attrs).
:- mode get_purity(in, out, out) is det.

get_purity(Attributes0, Purity, Attributes) :-
	( Attributes0 = [purity(Purity0) - _ | Attributes1] ->
		Purity = Purity0,
		Attributes = Attributes1
	;
		Purity = (pure),
		Attributes = Attributes0
	).

%-----------------------------------------------------------------------------%

	% We could perhaps get rid of some code duplication between here and
	% prog_io_typeclass.m?

	% get_class_context(ModuleName, Attributes0, Attributes, MaybeContext):
	% Parse type quantifiers and type class constraints from the
	% declaration attributes in Attributes0.
	% MaybeContext is either bound to the correctly parsed context, or
	% an appropriate error message (if there was a syntax error).
	% Attributes is bound to the remaining attributes.

:- pred get_class_context(module_name, decl_attrs, decl_attrs,
			maybe2(existq_tvars, class_constraints)).
:- mode get_class_context(in, in, out, out) is det.

get_class_context(ModuleName, RevAttributes0, RevAttributes, MaybeContext) :-
	%
	% constraints and quantifiers should occur in the following
	% order (outermost to innermost):
	%
	%					operator	precedence
	%					-------         ----------
	%	1. universal quantifiers	all		950
	%	2. existential quantifiers	some		950
	%	3. universal constraints	<=		920
	%	4. existential constraints	=>		920	[*]
	%	5. the decl itself 		pred or func	800
	%
	% When we reach here, Attributes0 contains declaration attributes
	% in the opposite order -- innermost to outermost -- so we reverse
	% them before we start.
	%
	% [*] Note that the semantic meaning of `=>' is not quite
	%     the same as implication; logically speaking it's more
	%     like conjunction.  Oh well, at least it has the right
	%     precedence.
	%
	% In theory it could make sense to allow the order of 2 & 3 to be
	% swapped, or (in the case of multiple constraints & multiple
	% quantifiers) to allow arbitrary interleaving of 2 & 3, but in
	% practice it seems there would be little benefit in allowing that
	% flexibility, so we don't.
	%
	% Universal quantification is the default, so we just ignore
	% universal quantifiers.  (XXX It might be a good idea to check
	% that any universally quantified type variables do actually
	% occur somewhere in the type declaration, and are not also
	% existentially quantified, and if not, issue a warning or
	% error message.)

	list__reverse(RevAttributes0, Attributes0),
	get_quant_tvars(univ, ModuleName, Attributes0, [],
					Attributes1, _UnivQVars),
	get_quant_tvars(exist, ModuleName, Attributes1, [],
					Attributes2, ExistQVars),
	get_constraints(univ, ModuleName, Attributes2,
					Attributes3, MaybeUnivConstraints),
	get_constraints(exist, ModuleName, Attributes3,
					Attributes, MaybeExistConstraints),
	list__reverse(Attributes, RevAttributes),

	combine_quantifier_results(MaybeUnivConstraints, MaybeExistConstraints,
			ExistQVars, MaybeContext).

:- pred combine_quantifier_results(maybe1(list(class_constraint)),
		maybe1(list(class_constraint)), existq_tvars,
		maybe2(existq_tvars, class_constraints)).
:- mode combine_quantifier_results(in, in, in, out) is det.

combine_quantifier_results(error(Msg, Term), _, _, error(Msg, Term)).
combine_quantifier_results(ok(_), error(Msg, Term), _, error(Msg, Term)).
combine_quantifier_results(
	ok(UnivConstraints), ok(ExistConstraints), ExistQVars,
	ok(ExistQVars, constraints(UnivConstraints, ExistConstraints))).

:- pred get_quant_tvars(quantifier_type, module_name, decl_attrs, list(tvar),
		decl_attrs, list(tvar)).
:- mode get_quant_tvars(in, in, in, in, out, out) is det.

get_quant_tvars(QuantType, ModuleName, Attributes0, TVars0,
		Attributes, TVars) :-
	(	
		Attributes0 = [quantifier(QuantType, TVars1) - _ | Attributes1]
	->
		list__append(TVars0, TVars1, TVars2),
		get_quant_tvars(QuantType, ModuleName, Attributes1, TVars2,
			Attributes, TVars)
	;
		Attributes = Attributes0,
		TVars = TVars0
	).

:- pred get_constraints(quantifier_type, module_name, decl_attrs, decl_attrs, 
			maybe1(list(class_constraint))).
:- mode get_constraints(in, in, in, out, out) is det.

get_constraints(QuantType, ModuleName, Attributes0, Attributes,
		MaybeConstraints) :-
	(	
		Attributes0 = [constraints(QuantType, ConstraintsTerm) - _Term
				| Attributes1]
	->
		parse_class_constraints(ModuleName, ConstraintsTerm,
			MaybeConstraints0),
		% there may be more constraints of the same type --
		% collect them all and combine them
		get_constraints(QuantType, ModuleName, Attributes1,
			Attributes, MaybeConstraints1),
		combine_constraint_list_results(MaybeConstraints1,
			MaybeConstraints0, MaybeConstraints)
	;
		Attributes = Attributes0,
		MaybeConstraints = ok([])
	).

:- pred combine_constraint_list_results(maybe1(list(class_constraint)),
	maybe1(list(class_constraint)), maybe1(list(class_constraint))).
:- mode combine_constraint_list_results(in, in, out) is det.

combine_constraint_list_results(error(Msg, Term), _, error(Msg, Term)).
combine_constraint_list_results(ok(_), error(Msg, Term), error(Msg, Term)).
combine_constraint_list_results(ok(Constraints0), ok(Constraints1),
		ok(Constraints)) :-
	list__append(Constraints0, Constraints1, Constraints).

:- pred get_existential_constraints_from_term(module_name, term, term,
			maybe1(list(class_constraint))).
:- mode get_existential_constraints_from_term(in, in, out, out) is det.

get_existential_constraints_from_term(ModuleName, PredType0, PredType,
		MaybeExistentialConstraints) :-
	(	
		PredType0 = term__functor(term__atom("=>"), 
			[PredType1, ExistentialConstraints], _)
	->
		PredType = PredType1,
		parse_class_constraints(ModuleName, ExistentialConstraints,
			MaybeExistentialConstraints)
	;
		PredType = PredType0,
		MaybeExistentialConstraints = ok([])
	).

%-----------------------------------------------------------------------------%

	% Verify that among the arguments of a :- pred declaration,
	% either all arguments specify a mode or none of them do.

:- pred verify_type_and_mode_list(list(type_and_mode)).
:- mode verify_type_and_mode_list(in) is semidet.

verify_type_and_mode_list([]).
verify_type_and_mode_list([First | Rest]) :-
	verify_type_and_mode_list_2(Rest, First).

:- pred verify_type_and_mode_list_2(list(type_and_mode), type_and_mode).
:- mode verify_type_and_mode_list_2(in, in) is semidet.

verify_type_and_mode_list_2([], _).
verify_type_and_mode_list_2([Head | Tail], First) :-
	(
		Head = type_only(_),
		First = type_only(_)
	;
		Head = type_and_mode(_, _),
		First = type_and_mode(_, _)
	),
	verify_type_and_mode_list_2(Tail, First).

%-----------------------------------------------------------------------------%

	% parse a `:- func p(...)' declaration

:- pred process_func(module_name, varset, term, condition, decl_attrs,
			maybe(determinism), maybe1(item)).
:- mode process_func(in, in, in, in, in, in, out) is det.

process_func(ModuleName, VarSet, Term, Cond, Attributes0, MaybeDet, Result) :-
	get_class_context(ModuleName, Attributes0, Attributes, MaybeContext),
	(
		MaybeContext = ok(ExistQVars, Constraints),
		process_func_2(ModuleName, VarSet, Term,
			Cond, MaybeDet, ExistQVars, Constraints, Attributes,
			Result) 
	;
		MaybeContext = error(String, ErrorTerm),
		Result = error(String, ErrorTerm)
	).

:- pred process_func_2(module_name, varset, term, condition,
	maybe(determinism), existq_tvars, class_constraints, decl_attrs,
	maybe1(item)).
:- mode process_func_2(in, in, in, in, in, in, in, in, out) is det.

process_func_2(ModuleName, VarSet, Term, Cond, MaybeDet, 
		ExistQVars, Constraints, Attributes, Result) :-
	(
		Term = term__functor(term__atom("="),
				[FuncTerm, ReturnTypeTerm], _Context)
	->
		parse_implicitly_qualified_term(ModuleName, FuncTerm, Term,
			"`:- func' declaration", R),
		process_func_3(R, FuncTerm, ReturnTypeTerm, VarSet, MaybeDet,
				Cond, ExistQVars, Constraints, Attributes,
				Result)
	;
		Result = error("`=' expected in `:- func' declaration", Term)
	).


:- pred process_func_3(maybe_functor, term, term, varset, maybe(determinism),
			condition, existq_tvars, class_constraints, decl_attrs,
			maybe1(item)).
:- mode process_func_3(in, in, in, in, in, in, in, in, in, out) is det.

process_func_3(ok(F, As0), FuncTerm, ReturnTypeTerm, VarSet0, MaybeDet, Cond,
		ExistQVars, ClassContext, Attributes, Result) :-
	( convert_type_and_mode_list(As0, As) ->
		( \+ verify_type_and_mode_list(As) ->
			Result = error("some but not all arguments have modes",
					FuncTerm)
		; convert_type_and_mode(ReturnTypeTerm, ReturnType) ->
			(
				As = [type_and_mode(_, _) | _],
				ReturnType = type_only(_)
			->
				Result = error(
		"function arguments have modes, but function result doesn't",
					FuncTerm)
			;
				As = [type_only(_) | _],
				ReturnType = type_and_mode(_, _)
			->
				Result = error(
		"function result has mode, but function arguments don't",
					FuncTerm)
			;
				ReturnType = type_only(_),
				MaybeDet = yes(_)
			->
				Result = error(
"function declaration specifies a determinism but does not specify the mode",
					FuncTerm)
			;
				% note: impure or semipure functions are not
				% allowed
				Purity = (pure),
				varset__coerce(VarSet0, TVarSet),
				varset__coerce(VarSet0, IVarSet),
				Result0 = ok(func(TVarSet, IVarSet, ExistQVars,
					F, As, ReturnType, MaybeDet, Cond,
					Purity, ClassContext)),
				check_no_attributes(Result0, Attributes,
					Result)
			)
		;
			Result = error(
			"syntax error in return type of `:- func' declaration",
					ReturnTypeTerm)
		)
	;
		Result = error(
			"syntax error in arguments of `:- func' declaration",
					FuncTerm)
	).
process_func_3(error(M, T), _, _, _, _, _, _, _, _, error(M, T)).

%-----------------------------------------------------------------------------%

	% parse a `:- mode p(...)' declaration

:- pred process_mode(module_name, varset, term, condition, maybe(determinism),
		maybe1(item)).
:- mode process_mode(in, in, in, in, in, out) is det.

process_mode(ModuleName, VarSet, Term, Cond, MaybeDet, Result) :-
	(
		Term = term__functor(term__atom("="),
				[FuncTerm, ReturnTypeTerm], _Context)
	->
		parse_implicitly_qualified_term(ModuleName, FuncTerm, Term,
				"function `:- mode' declaration", R),
		process_func_mode(R, FuncTerm, ReturnTypeTerm, VarSet, MaybeDet,
				Cond, Result)
	;
		parse_implicitly_qualified_term(ModuleName, Term, Term,
				"predicate `:- mode' declaration", R),
		process_pred_mode(R, Term, VarSet, MaybeDet, Cond, Result)
	).

:- pred process_pred_mode(maybe_functor, term, varset, maybe(determinism),
			condition, maybe1(item)).
:- mode process_pred_mode(in, in, in, in, in, out) is det.

process_pred_mode(ok(F, As0), PredMode, VarSet0, MaybeDet, Cond, Result) :-
	(
		convert_mode_list(As0, As)
	->
		varset__coerce(VarSet0, VarSet),
		Result = ok(pred_mode(VarSet, F, As, MaybeDet, Cond))
	;
		Result = error("syntax error in predicate mode declaration",
				PredMode)
	).
process_pred_mode(error(M, T), _, _, _, _, error(M, T)).

:- pred process_func_mode(maybe_functor, term, term, varset, maybe(determinism),
			condition, maybe1(item)).
:- mode process_func_mode(in, in, in, in, in, in, out) is det.

process_func_mode(ok(F, As0), FuncMode, RetMode0, VarSet0, MaybeDet, Cond,
		Result) :-
	(
		convert_mode_list(As0, As)
	->
		( convert_mode(RetMode0, RetMode) ->
			varset__coerce(VarSet0, VarSet),
			Result = ok(func_mode(VarSet, F, As, RetMode, MaybeDet,
					Cond))
		;
			Result = error(
		"syntax error in return mode of function mode declaration",
					RetMode0)
		)
	;
		Result = error(
		"syntax error in arguments of function mode declaration",
				FuncMode)
	).
process_func_mode(error(M, T), _, _, _, _, _, error(M, T)).

%-----------------------------------------------------------------------------%

	% Parse a `:- inst <InstDefn>.' declaration.
	%
:- pred parse_inst_decl(module_name, varset, term, maybe1(item)).
:- mode parse_inst_decl(in, in, in, out) is det.
parse_inst_decl(ModuleName, VarSet, InstDefn, Result) :-
	(
		InstDefn = term__functor(term__atom(Op), [H, B], _Context),
		( Op = "=" ; Op = "==" )
	->
		get_condition(B, Body, Condition),
		convert_inst_defn(ModuleName, H, Body, R),
		process_maybe1(make_inst_defn(VarSet, Condition), R, Result)
	;
		% XXX this is for `abstract inst' declarations,
		% which are not really supported
		InstDefn = term__functor(term__atom("is"), [
				Head,
				term__functor(term__atom("private"), [], _)
			], _)
	->
		Condition = true,
		convert_abstract_inst_defn(ModuleName, Head, R),
		process_maybe1(make_inst_defn(VarSet, Condition), R, Result)
	;
		InstDefn = term__functor(term__atom("--->"), [H, B], Context)
	->
		get_condition(B, Body, Condition),
		Body1 = term__functor(term__atom("bound"), [Body], Context),
		convert_inst_defn(ModuleName, H, Body1, R),
		process_maybe1(make_inst_defn(VarSet, Condition), R, Result)
	;
		Result = error("`=' expected in `:- inst' definition", InstDefn)
	).
		% we should check the condition for errs
		% (don't bother at the moment, since we ignore
		% conditions anyhow :-)

	% Parse a `:- inst <Head> ---> <Body>.' definition.
	%
:- pred convert_inst_defn(module_name, term, term, maybe1(inst_defn)).
:- mode convert_inst_defn(in, in, in, out) is det.
convert_inst_defn(ModuleName, Head, Body, Result) :-
	parse_implicitly_qualified_term(ModuleName,
		Head, Body, "inst definition", R),
	convert_inst_defn_2(R, Head, Body, Result).

:- pred convert_inst_defn_2(maybe_functor, term, term, maybe1(inst_defn)).
:- mode convert_inst_defn_2(in, in, in, out) is det.

convert_inst_defn_2(error(M, T), _, _, error(M, T)).
convert_inst_defn_2(ok(Name, Args), Head, Body, Result) :-
	% check that all the head args are variables
	( %%%	some [Arg]
		(
			list__member(Arg, Args),
			Arg \= term__variable(_)
		)
	->
		Result = error("inst parameters must be variables", Head)
	;
	% check that all the head arg variables are distinct
	%%%	some [Arg2, OtherArgs]
		(
			list__member(Arg2, Args, [Arg2|OtherArgs]),
			list__member(Arg2, OtherArgs)
		)
	->
		Result = error("repeated inst parameters in LHS of inst defn",
				Head)
	;
	% check that all the variables in the body occur in the head
	%%%	some [Var2]
		(
			term__contains_var(Body, Var2),
			\+ term__contains_var_list(Args, Var2)
		)
	->
		Result = error("free inst parameter in RHS of inst definition",
				Body)
	;
	% check that the inst is a valid user-defined inst, i.e. that
	% it does not have the form of one of the builtin insts
		\+ (
			convert_inst(Head, UserInst),
			UserInst = defined_inst(user_inst(_, _))
		)
	->
		Result = error("attempt to redefine builtin inst", Head)
	;
		% should improve the error message here

		( %%% some [ConvertedBody]
			convert_inst(Body, ConvertedBody)
		->
			list__map(term__coerce, Args, InstArgs),
			Result = ok(eqv_inst(Name, InstArgs, ConvertedBody))
		;
			Result = error("syntax error in inst body", Body)
		)
	).

:- pred convert_abstract_inst_defn(module_name, term, maybe1(inst_defn)).
:- mode convert_abstract_inst_defn(in, in, out) is det.
convert_abstract_inst_defn(ModuleName, Head, Result) :-
	parse_implicitly_qualified_term(ModuleName, Head, Head,
		"inst definition", R),
	convert_abstract_inst_defn_2(R, Head, Result).

:- pred convert_abstract_inst_defn_2(maybe_functor, term, maybe1(inst_defn)).
:- mode convert_abstract_inst_defn_2(in, in, out) is det.
convert_abstract_inst_defn_2(error(M, T), _, error(M, T)).
convert_abstract_inst_defn_2(ok(Name, Args), Head, Result) :-
	% check that all the head args are variables
	( %%%	some [Arg]
		(
			list__member(Arg, Args),
			Arg \= term__variable(_)
		)
	->
		Result = error("inst parameters must be variables", Head)
	;
	% check that all the head arg variables are distinct
	%%%	some [Arg2, OtherArgs]
		(
			list__member(Arg2, Args, [Arg2|OtherArgs]),
			list__member(Arg2, OtherArgs)
		)
	->
		Result = error(
			"repeated inst parameters in abstract inst definition",
				Head)
	;
		list__map(term__coerce, Args, InstArgs),
		Result = ok(abstract_inst(Name, InstArgs))
	).

:- pred make_inst_defn(varset, condition, inst_defn, item).
:- mode make_inst_defn(in, in, in, out) is det.

make_inst_defn(VarSet0, Cond, InstDefn, inst_defn(VarSet, InstDefn, Cond)) :-
	varset__coerce(VarSet0, VarSet).

%-----------------------------------------------------------------------------%

	% parse a `:- mode foo :: ...' or `:- mode foo = ...' definition.

:- pred parse_mode_decl(module_name, varset, term, maybe1(item)).
:- mode parse_mode_decl(in, in, in, out) is det.
parse_mode_decl(ModuleName, VarSet, ModeDefn, Result) :-
	( %%% some [H, B]
		mode_op(ModeDefn, H, B)
	->
		get_condition(B, Body, Condition),
		convert_mode_defn(ModuleName, H, Body, R),
		process_maybe1(make_mode_defn(VarSet, Condition), R, Result)
	;
		parse_mode_decl_pred(ModuleName, VarSet, ModeDefn, Result)
	).

	% People never seem to remember what the right operator to use in a
	% `:- mode' declaration is, so the syntax is forgiving.  We allow
	% `::', the standard one which has the right precedence, but we
	% also allow `==' just to be nice.
:- pred mode_op(term, term, term).
:- mode mode_op(in, out, out) is semidet.
mode_op(term__functor(term__atom(Op), [H, B], _), H, B) :-
	( Op = "::" ; Op = "==" ).

:- pred convert_mode_defn(module_name, term, term, maybe1(mode_defn)).
:- mode convert_mode_defn(in, in, in, out) is det.
convert_mode_defn(ModuleName, Head, Body, Result) :-
	parse_implicitly_qualified_term(ModuleName, Head, Head,
		"mode definition", R),
	convert_mode_defn_2(R, Head, Body, Result).

:- pred convert_mode_defn_2(maybe_functor, term, term, maybe1(mode_defn)).
:- mode convert_mode_defn_2(in, in, in, out) is det.
convert_mode_defn_2(error(M, T), _, _, error(M, T)).
convert_mode_defn_2(ok(Name, Args), Head, Body, Result) :-
	% check that all the head args are variables
	( %%% some [Arg]
		(
			list__member(Arg, Args),
			Arg \= term__variable(_)
		)
	->
		Result = error("mode parameters must be variables", Head)
	;
	% check that all the head arg variables are distinct
		%%% some [Arg2, OtherArgs]
		(
			list__member(Arg2, Args, [Arg2|OtherArgs]),
			list__member(Arg2, OtherArgs)
		)
	->
		Result = error("repeated parameters in LHS of mode defn",
				Head)
	% check that all the variables in the body occur in the head
	; %%% some [Var2]
		(
			term__contains_var(Body, Var2),
			\+ term__contains_var_list(Args, Var2)
		)
	->
		Result = error("free inst parameter in RHS of mode definition",
				Body)
	;
		% should improve the error message here

		( %%% some [ConvertedBody]
			convert_mode(Body, ConvertedBody)
		->
			list__map(term__coerce, Args, InstArgs),
			Result = ok(eqv_mode(Name, InstArgs, ConvertedBody))
		;
			% catch-all error message - we should do
			% better than this
			Result = error("syntax error in mode definition body",
					Body)
		)
	).

:- pred convert_type_and_mode_list(list(term), list(type_and_mode)).
:- mode convert_type_and_mode_list(in, out) is semidet.
convert_type_and_mode_list([], []).
convert_type_and_mode_list([H0|T0], [H|T]) :-
	convert_type_and_mode(H0, H),
	convert_type_and_mode_list(T0, T).

:- pred convert_type_and_mode(term, type_and_mode).
:- mode convert_type_and_mode(in, out) is semidet.
convert_type_and_mode(Term, Result) :-
	(
		Term = term__functor(term__atom("::"), [TypeTerm, ModeTerm],
				_Context)
	->
		convert_type(TypeTerm, Type),
		convert_mode(ModeTerm, Mode),
		Result = type_and_mode(Type, Mode)
	;
		convert_type(Term, Type),
		Result = type_only(Type)
	).

:- pred make_mode_defn(varset, condition, mode_defn, item).
:- mode make_mode_defn(in, in, in, out) is det.
make_mode_defn(VarSet0, Cond, ModeDefn, mode_defn(VarSet, ModeDefn, Cond)) :-
	varset__coerce(VarSet0, VarSet).

%-----------------------------------------------------------------------------%

:- type parser(T) == pred(term, maybe1(T)).
:- mode parser    :: pred(in, out) is det.

:- type maker(T1, T2) == pred(T1, T2).
:- mode maker         :: pred(in, out) is det.

:- pred parse_symlist_decl(parser(T), maker(list(T), sym_list),
			maker(sym_list, module_defn),
			term, decl_attrs, varset, maybe1(item)).
:- mode parse_symlist_decl(parser, maker, maker, in, in, in, out) is det.

parse_symlist_decl(ParserPred, MakeSymListPred, MakeModuleDefnPred,
			Term, Attributes, VarSet, Result) :-
	parse_list(ParserPred, Term, Result0),
	process_maybe1(make_module_defn(MakeSymListPred, MakeModuleDefnPred,
			VarSet), Result0, Result1),
	check_no_attributes(Result1, Attributes, Result).

:- pred make_module_defn(maker(T, sym_list), maker(sym_list, module_defn),
			varset, T, item).
:- mode make_module_defn(maker, maker, in, in, out) is det.
make_module_defn(MakeSymListPred, MakeModuleDefnPred, VarSet0, T,
		module_defn(VarSet, ModuleDefn)) :-
	varset__coerce(VarSet0, VarSet),
	call(MakeSymListPred, T, SymList),
	call(MakeModuleDefnPred, SymList, ModuleDefn).

%-----------------------------------------------------------------------------%

	% Parse a comma-separated list (misleading described as
	% a "conjunction") of things.

:- pred parse_list(parser(T), term, maybe1(list(T))).
:- mode parse_list(parser, in, out) is det.
parse_list(Parser, Term, Result) :-
	conjunction_to_list(Term, List),
	parse_list_2(List, Parser, Result).

:- pred parse_list_2(list(term), parser(T), maybe1(list(T))).
:- mode parse_list_2(in, parser, out) is det.
parse_list_2([], _, ok([])).
parse_list_2([X|Xs], Parser, Result) :-
	call(Parser, X, X_Result),
	parse_list_2(Xs, Parser, Xs_Result),
	combine_list_results(X_Result, Xs_Result, Result).

	% If a list of things contains multiple errors, then we only
	% report the first one.

:- pred combine_list_results(maybe1(T), maybe1(list(T)), maybe1(list(T))).
:- mode combine_list_results(in, in, out) is det.
combine_list_results(error(Msg, Term), _, error(Msg, Term)).
combine_list_results(ok(_), error(Msg, Term), error(Msg, Term)).
combine_list_results(ok(X), ok(Xs), ok([X|Xs])).

%-----------------------------------------------------------------------------%

:- pred process_maybe1(maker(T1, T2), maybe1(T1), maybe1(T2)).
:- mode process_maybe1(maker, in, out) is det.
process_maybe1(Maker, ok(X), ok(Y)) :- !, call(Maker, X, Y).
process_maybe1(_, error(M, T), error(M, T)).

:- pred process_maybe1_to_t(maker(T1, maybe1(T2)), maybe1(T1), maybe1(T2)).
:- mode process_maybe1_to_t(maker, in, out) is det.
process_maybe1_to_t(Maker, ok(X), Y) :- !, call(Maker, X, Y).
process_maybe1_to_t(_, error(M, T), error(M, T)).

%-----------------------------------------------------------------------------%

:- pred make_module(list(module_specifier)::in, sym_list::out) is det.
make_module(X, module(X)).

:- pred make_sym(list(sym_specifier)::in, sym_list::out) is det.
make_sym(X, sym(X)).

:- pred make_pred(list(pred_specifier)::in, sym_list::out) is det.
make_pred(X, pred(X)).

:- pred make_func(list(func_specifier)::in, sym_list::out) is det.
make_func(X, func(X)).

:- pred make_cons(list(cons_specifier)::in, sym_list::out) is det.
make_cons(X, cons(X)).

:- pred make_type(list(type_specifier)::in, sym_list::out) is det.
make_type(X, type(X)).

:- pred make_adt(list(adt_specifier)::in, sym_list::out) is det.
make_adt(X, adt(X)).

:- pred make_op(list(op_specifier)::in, sym_list::out) is det.
make_op(X, op(X)).

%-----------------------------------------------------------------------------%
%
%	A symbol specifier is one of
%
%		SymbolNameSpecifier
%			Matches any symbol matched by the SymbolNameSpecifier.
%		TypedConstructorSpecifier
%			Matches any constructors matched by the
%			TypedConstructorSpecifier.
%		cons(ConstructorSpecifier)
%			Matches only constructors.
%		pred(PredSpecifier)
%			Matches only predicates, ie. constructors of type
%			`pred'.
%		adt(SymbolNameSpecifier)
%			Matches only type names.
%		type(SymbolNameSpecifier)
%			Matches type names matched by the SymbolNameSpecifier,
%			and also matches any constructors for the matched type
%			names.
%		op(SymbolNameSpecifier)
%			Matches only operators.
%		module(ModuleSpecifier)
%			Matches all symbols in the specified module.

:- pred parse_symbol_specifier(term, maybe1(sym_specifier)).
:- mode parse_symbol_specifier(in, out) is det.

parse_symbol_specifier(MainTerm, Result) :-
	( MainTerm = term__functor(term__atom(Functor), [Term], _Context) ->
		( Functor = "cons" ->
			parse_constructor_specifier(Term, Result0),
			process_maybe1(make_cons_symbol_specifier, Result0,
				Result)
		; Functor = "pred" ->
			parse_predicate_specifier(Term, Result0),
			process_maybe1(make_pred_symbol_specifier, Result0,
				Result)
		; Functor = "func" ->
			parse_function_specifier(Term, Result0),
			process_maybe1(make_func_symbol_specifier, Result0,
				Result)
		; Functor = "type" ->
			parse_type_specifier(Term, Result0),
			process_maybe1(make_type_symbol_specifier, Result0,
				Result)
		; Functor = "adt" ->
			parse_adt_specifier(Term, Result0),
			process_maybe1(make_adt_symbol_specifier, Result0,
				Result)
		; Functor = "op" ->
			parse_op_specifier(Term, Result0),
			process_maybe1(make_op_symbol_specifier, Result0,
				Result)
		; Functor = "module" ->
			parse_module_specifier(Term, Result0),
			process_maybe1(make_module_symbol_specifier, Result0,
				Result)
		;
			parse_constructor_specifier(MainTerm, Result0),
			process_maybe1(make_cons_symbol_specifier, Result0,
				Result)
		)
	;
		parse_constructor_specifier(MainTerm, Result0),
		process_maybe1(make_cons_symbol_specifier, Result0, Result)
	).

% 	Once we've parsed the appropriate type of symbol specifier, we
%	need to convert it to a sym_specifier.

:- pred make_pred_symbol_specifier(pred_specifier::in, sym_specifier::out)
	is det.
make_pred_symbol_specifier(PredSpec, pred(PredSpec)).

:- pred make_func_symbol_specifier(func_specifier::in, sym_specifier::out)
	is det.
make_func_symbol_specifier(FuncSpec, func(FuncSpec)).

:- pred make_cons_symbol_specifier(cons_specifier::in, sym_specifier::out)
	is det.
make_cons_symbol_specifier(ConsSpec, cons(ConsSpec)).

:- pred make_type_symbol_specifier(type_specifier::in, sym_specifier::out)
	is det.
make_type_symbol_specifier(TypeSpec, type(TypeSpec)).

:- pred make_adt_symbol_specifier(adt_specifier::in, sym_specifier::out) is det.
make_adt_symbol_specifier(ADT_Spec, adt(ADT_Spec)).

:- pred make_op_symbol_specifier(op_specifier::in, sym_specifier::out) is det.
make_op_symbol_specifier(OpSpec, op(OpSpec)).

:- pred make_module_symbol_specifier(module_specifier::in, sym_specifier::out)
	is det.
make_module_symbol_specifier(ModuleSpec, module(ModuleSpec)).

:- pred cons_specifier_to_sym_specifier(cons_specifier, sym_specifier).
:- mode cons_specifier_to_sym_specifier(in, out) is det.

cons_specifier_to_sym_specifier(sym(SymSpec), sym(SymSpec)).
cons_specifier_to_sym_specifier(typed(SymSpec), typed_sym(SymSpec)).

%-----------------------------------------------------------------------------%

%	A ModuleSpecifier is just an sym_name.

:- pred parse_module_specifier(term, maybe1(module_specifier)).
:- mode parse_module_specifier(in, out) is det.
parse_module_specifier(Term, Result) :-
	parse_symbol_name(Term, Result).

%	A ModuleName is an implicitly-quantified sym_name.
%
%	We check for module names starting with capital letters
%	as a special case, so that we can report a better error
%	message for that case.

:- pred parse_module_name(module_name, term, maybe1(module_name)).
:- mode parse_module_name(in, in, out) is det.
parse_module_name(DefaultModuleName, Term, Result) :-
	(
		Term = term__variable(_)
	->
		dummy_term(ErrorContext),
		Result = error("module names starting with capital letters must be quoted using single quotes (e.g. "":- module 'Foo'."")", ErrorContext)
	;
		parse_implicitly_qualified_symbol_name(DefaultModuleName,
				Term, Result)
	).

%-----------------------------------------------------------------------------%

%	A ConstructorSpecifier is one of
%		SymbolNameSpecifier
%		TypedConstructorSpecifier
%
%	A TypedConstructorSpecifier is one of
%		SymbolNameSpecifier::Type
%			Matches only constructors with the specified result
%			type.
%		SymbolName(ArgType1, ..., ArgTypeN)
%			Matches only constructors with the specified argument
%			types.
%		SymbolName(ArgType1, ..., ArgTypeN)::Type
%			Matches only constructors with the specified argument
%			and result types.

:- pred parse_constructor_specifier(term, maybe1(cons_specifier)).
:- mode parse_constructor_specifier(in, out) is det.
parse_constructor_specifier(Term, Result) :-
    (
	Term = term__functor(term__atom("::"), [NameArgsTerm, TypeTerm],
		_Context)
    ->
	parse_arg_types_specifier(NameArgsTerm, NameArgsResult),
	parse_type(TypeTerm, TypeResult),
	process_typed_constructor_specifier(NameArgsResult, TypeResult, Result)
    ;
	parse_arg_types_specifier(Term, TermResult),
	process_maybe1(make_untyped_cons_spec, TermResult, Result)
    ).

%-----------------------------------------------------------------------------%

%	A PredicateSpecifier is one of
%		SymbolName(ArgType1, ..., ArgTypeN)
%			Matches only predicates with the specified argument
%			types.
%		SymbolNameSpecifier

:- pred parse_predicate_specifier(term, maybe1(pred_specifier)).
:- mode parse_predicate_specifier(in, out) is det.
parse_predicate_specifier(Term, Result) :-
    (
	Term = term__functor(term__atom("/"), [_,_], _Context)
    ->
	parse_symbol_name_specifier(Term, NameResult),
        process_maybe1(make_arity_predicate_specifier, NameResult, Result)
    ;
	parse_qualified_term(Term, Term, "predicate specifier", TermResult),
	process_typed_predicate_specifier(TermResult, Result)
    ).

:- pred process_typed_predicate_specifier(maybe_functor, maybe1(pred_specifier)).
:- mode process_typed_predicate_specifier(in, out) is det.
process_typed_predicate_specifier(ok(Name, Args0), ok(Result)) :-
    ( Args0 = [] ->
	Result = sym(name(Name))
    ;
    	list__map(term__coerce, Args0, Args),
	Result = name_args(Name, Args)
    ).
process_typed_predicate_specifier(error(Msg, Term), error(Msg, Term)).

:- pred make_arity_predicate_specifier(sym_name_specifier, pred_specifier).
:- mode make_arity_predicate_specifier(in, out) is det.
make_arity_predicate_specifier(Result, sym(Result)).

%-----------------------------------------------------------------------------%

% 	Parsing the name & argument types of a constructor specifier is
% 	exactly the same as parsing a predicate specifier...

:- pred parse_arg_types_specifier(term, maybe1(pred_specifier)).
:- mode parse_arg_types_specifier(in, out) is det.
parse_arg_types_specifier(Term, Result) :-
    (
	Term = term__functor(term__atom("/"), [_,_], _Context)
    ->
	parse_symbol_name_specifier(Term, NameResult),
        process_maybe1(make_arity_predicate_specifier, NameResult, Result)
    ;
	parse_qualified_term(Term, Term, "constructor specifier", TermResult),
	process_typed_predicate_specifier(TermResult, Result)
    ).

% 	... but we have to convert the result back into the appropriate
% 	format.

:- pred process_typed_constructor_specifier(maybe1(pred_specifier),
		maybe1(type), maybe1(cons_specifier)).
:- mode process_typed_constructor_specifier(in, in, out) is det.
process_typed_constructor_specifier(error(Msg, Term), _, error(Msg, Term)).
process_typed_constructor_specifier(ok(_), error(Msg, Term), error(Msg, Term)).
process_typed_constructor_specifier(ok(NameArgs), ok(ResType), ok(Result)) :-
	process_typed_cons_spec_2(NameArgs, ResType, Result).

:- pred process_typed_cons_spec_2(pred_specifier, type, cons_specifier).
:- mode process_typed_cons_spec_2(in, in, out) is det.
process_typed_cons_spec_2(sym(Name), Res, typed(name_res(Name, Res))).
process_typed_cons_spec_2(name_args(Name, Args), Res,
			  typed(name_args_res(Name, Args, Res))).

:- pred make_untyped_cons_spec(pred_specifier::in, cons_specifier::out) is det.
make_untyped_cons_spec(sym(Name), sym(Name)).
make_untyped_cons_spec(name_args(Name, Args), typed(name_args(Name, Args))).

%-----------------------------------------------------------------------------%

%	A SymbolNameSpecifier is one of
%		SymbolName
%		SymbolName/Arity
%			Matches only symbols of the specified arity.
%	

:- pred parse_symbol_name_specifier(term, maybe1(sym_name_specifier)).
:- mode parse_symbol_name_specifier(in, out) is det.
parse_symbol_name_specifier(Term, Result) :-
    ( %%% some [NameTerm, ArityTerm, Context]
       	Term = term__functor(term__atom("/"), [NameTerm, ArityTerm], _Context)
    ->
        ( %%% some [Arity, Context2]
            ArityTerm = term__functor(term__integer(Arity), [], _Context2)
	->
            ( Arity >= 0 ->
		parse_symbol_name(NameTerm, NameResult),
		process_maybe1(make_name_arity_specifier(Arity), NameResult,
			Result)
	    ;
		Result = error("arity in symbol name specifier must be a non-negative integer", Term)
	    )
        ;
	    Result = error("arity in symbol name specifier must be an integer", Term)
        )
    ;
	parse_symbol_name(Term, SymbolNameResult),
	process_maybe1(make_name_specifier, SymbolNameResult, Result)
    ).

:- pred make_name_arity_specifier(arity, sym_name, sym_name_specifier).
:- mode make_name_arity_specifier(in, in, out) is det.
make_name_arity_specifier(Arity, Name, name_arity(Name, Arity)).

:- pred make_name_specifier(sym_name::in, sym_name_specifier::out) is det.
make_name_specifier(Name, name(Name)).

%-----------------------------------------------------------------------------%

%	A SymbolName is one of
%		Name
%			Matches symbols with the specified name in the
%			current namespace.
%		Module:Name
%			Matches symbols with the specified name exported
%			by the specified module (where Module is itself
%			a SymbolName).
%
%	We also allow the syntax `Module__Name'
%	as an alternative for `Module:Name'.

:- pred parse_symbol_name(term(T), maybe1(sym_name)).
:- mode parse_symbol_name(in, out) is det.
parse_symbol_name(Term, Result) :-
    ( 
       	Term = term__functor(term__atom(":"), [ModuleTerm, NameTerm], _Context)
    ->
        ( 
            NameTerm = term__functor(term__atom(Name), [], _Context1)
        ->
	    parse_symbol_name(ModuleTerm, ModuleResult),
            (
	    	ModuleResult = ok(Module),
		Result = ok(qualified(Module, Name))
	    ;
	    	ModuleResult = error(_, _),
		term__coerce(Term, ErrorTerm),
		Result = error("module name identifier expected before ':' in qualified symbol name", ErrorTerm)
            )
        ;
	    term__coerce(Term, ErrorTerm),
            Result = error("identifier expected after ':' in qualified symbol name", ErrorTerm)
	)
    ;
        ( 
            Term = term__functor(term__atom(Name), [], _Context3)
        ->
    	    string_to_sym_name(Name, "__", SymName),
	    Result = ok(SymName)
        ;
	    term__coerce(Term, ErrorTerm),
            Result = error("symbol name expected", ErrorTerm)
        )
    ).

:- pred parse_implicitly_qualified_symbol_name(module_name, term,
			maybe1(sym_name)).
:- mode parse_implicitly_qualified_symbol_name(in, in, out) is det.

parse_implicitly_qualified_symbol_name(DefaultModName, Term, Result) :-
	parse_symbol_name(Term, Result0),
	( Result0 = ok(SymName) ->
		(
			root_module_name(DefaultModName)
		->
			Result = Result0
		;
			SymName = qualified(ModName, _),
			\+ match_sym_name(ModName, DefaultModName)
		->
			Result = error("module qualifier in definition does not match preceding `:- module' declaration", Term)
		;
			unqualify_name(SymName, UnqualName),
			Result = ok(qualified(DefaultModName, UnqualName))
		)
	;
		Result = Result0
	).

%-----------------------------------------------------------------------------%

%	A QualifiedTerm is one of
%		Name(Args)
%		Module:Name(Args)
%	(or if Args is empty, one of
%		Name
%		Module:Name)
%	where Module is a SymName.
%	For backwards compatibility, we allow `__'
%	as an alternative to `:'.

sym_name_and_args(Term, SymName, Args) :-
	parse_qualified_term(Term, Term, "", ok(SymName, Args)).

parse_implicitly_qualified_term(DefaultModName, Term, ContainingTerm, Msg,
		Result) :-
	parse_qualified_term(Term, ContainingTerm, Msg, Result0),
	( Result0 = ok(SymName, Args) ->
		(
			root_module_name(DefaultModName)
		->
			Result = Result0
		;
			SymName = qualified(ModName, _),
			\+ match_sym_name(ModName, DefaultModName)
		->
			term__coerce(Term, ErrorTerm),
			Result = error("module qualifier in definition does not match preceding `:- module' declaration", ErrorTerm)
		;
			unqualify_name(SymName, UnqualName),
			Result = ok(qualified(DefaultModName, UnqualName), Args)
		)
	;
		Result = Result0
	).

parse_qualified_term(Term, ContainingTerm, Msg, Result) :-
    (
       	Term = term__functor(term__atom(":"), [ModuleTerm, NameArgsTerm],
		_Context)
    ->
        ( 
            NameArgsTerm = term__functor(term__atom(Name), Args, _Context2)
        ->
	    parse_symbol_name(ModuleTerm, ModuleResult),
            ( 
	    	ModuleResult = ok(Module),
	        Result = ok(qualified(Module, Name), Args)
	    ;
	        ModuleResult = error(_, _),
		term__coerce(Term, ErrorTerm),
		Result = error("module name identifier expected before ':' in qualified symbol name", ErrorTerm)
            )
        ;
	    term__coerce(Term, ErrorTerm),
            Result = error("identifier expected after ':' in qualified symbol name", ErrorTerm)
	)
    ;
        ( 
            Term = term__functor(term__atom(Name), Args, _Context4)
        ->
	    string_to_sym_name(Name, "__", SymName),
	    Result = ok(SymName, Args)
        ;
	    string__append("atom expected in ", Msg, ErrorMsg),
	    %
	    % since variables don't have any term__context,
	    % if Term is a variable, we use ContainingTerm instead
	    % (hopefully that _will_ have a term__context).
	    %
	    ( Term = term__variable(_) ->
	    	ErrorTerm0 = ContainingTerm
	    ;
	    	ErrorTerm0 = Term
	    ),
	    term__coerce(ErrorTerm0, ErrorTerm),
	    Result = error(ErrorMsg, ErrorTerm)
        )
    ).

%-----------------------------------------------------------------------------%

% predicates used to convert a sym_list to a program item

:- pred make_use(sym_list::in, module_defn::out) is det.
make_use(Syms, use(Syms)).

:- pred make_import(sym_list::in, module_defn::out) is det.
make_import(Syms, import(Syms)).

:- pred make_export(sym_list::in, module_defn::out) is det.
make_export(Syms, export(Syms)).

%-----------------------------------------------------------------------------%

%	A FuncSpecifier is just a constructur name specifier.

:- pred parse_function_specifier(term, maybe1(func_specifier)).
:- mode parse_function_specifier(in, out) is det.
parse_function_specifier(Term, Result) :-
	parse_constructor_specifier(Term, Result).

%	A TypeSpecifier is just a symbol name specifier.

:- pred parse_type_specifier(term, maybe1(sym_name_specifier)).
:- mode parse_type_specifier(in, out) is det.
parse_type_specifier(Term, Result) :-
	parse_symbol_name_specifier(Term, Result).

%	An ADT_Specifier is just a symbol name specifier.

:- pred parse_adt_specifier(term, maybe1(sym_name_specifier)).
:- mode parse_adt_specifier(in, out) is det.
parse_adt_specifier(Term, Result) :-
	parse_symbol_name_specifier(Term, Result).

%-----------------------------------------------------------------------------%

%	For the moment, an OpSpecifier is just a symbol name specifier.
% 	XXX We should allow specifying the fixity of an operator

:- pred parse_op_specifier(term, maybe1(op_specifier)).
:- mode parse_op_specifier(in, out) is det.
parse_op_specifier(Term, Result) :-
	parse_symbol_name_specifier(Term, R),
	process_maybe1(make_op_specifier, R, Result).

:- pred make_op_specifier(sym_name_specifier::in, op_specifier::out) is det.
make_op_specifier(X, sym(X)).

%-----------------------------------------------------------------------------%

	% types are represented just as ordinary terms

:- pred parse_type(term, maybe1(type)).
:- mode parse_type(in, out) is det.
parse_type(T0, ok(T)) :-
	term__coerce(T0, T).

:- pred convert_constructor_arg_list(list(term), list(constructor_arg)).
:- mode convert_constructor_arg_list(in, out) is det.

convert_constructor_arg_list([], []).
convert_constructor_arg_list([Term | Terms], [Arg | Args]) :-
	(
		Term = term__functor(term__atom("::"), [NameTerm, TypeTerm], _),
		NameTerm = term__functor(term__atom(Name), [], _)
	->
		convert_type(TypeTerm, Type),
		Arg = Name - Type
	;
		convert_type(Term, Type),
		Arg = "" - Type
	),
	convert_constructor_arg_list(Terms, Args).

:- pred convert_type(term, type).
:- mode convert_type(in, out) is det.
convert_type(T0, T) :-
	term__coerce(T0, T).

%-----------------------------------------------------------------------------%

% We use the empty module name ('') as the "root" module name; when adding
% default module qualifiers in parse_implicitly_qualified_{term,symbol},
% if the default module is the root module then we don't add any qualifier.

:- pred root_module_name(module_name::out) is det.
root_module_name(unqualified("")).

%-----------------------------------------------------------------------------%