1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
|
%-----------------------------------------------------------------------------%
% Copyright (C) 1993-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% File: prog_io.m.
% Main author: fjh.
%
% This module defines predicates for parsing Mercury programs.
%
% In some ways the representation of programs here is considerably
% more complex than is necessary for the compiler.
% The basic reason for this is that it was designed to preserve
% as much information about the source code as possible, so that
% this representation could also be used for other tools such
% as Mercury-to-Goedel converters, pretty-printers, etc.
% Currently the only information that is lost is that comments and
% whitespace are stripped, any redundant parenthesization
% are lost, distinctions between different spellings of the same
% operator (eg "\+" vs "not") are lost, and DCG clauses get expanded.
% It would be a good idea to preserve all those too (well, maybe not
% the redundant parentheses), but right now it's not worth the effort.
%
% So that means that this phase of compilation is purely parsing.
% No simplifications are done (other than DCG expansion).
% The results of this phase specify
% basically the same information as is contained in the source code,
% but in a parse tree rather than a flat file.
% Simplifications are done only by make_hlds.m, which transforms
% the parse tree which we built here into the HLDS.
%
% Some of this code is a rather bad example of cut-and-paste style reuse.
% It should be cleaned up to eliminate most of the duplication.
% But that task really needs to wait until we implement higher-order
% predicates. For the moment, just be careful that any changes
% you make are reflected correctly in all similar parts of this
% file.
%
% Implication and equivalence implemented by squirrel, who would also
% like to get her hands on this file and give it a good clean up and
% put it into good clean "mercury" style!
% Wishlist:
%
% 1. implement importing/exporting operators with a particular fixity
% eg. :- import_op prefix(+). % only prefix +, not infix
% (not important, but should be there for reasons of symmetry.)
% 2. improve the handling of type and inst parameters
% 3. improve the error reporting (most of the semidet preds should
% be det and should return a meaningful indication of where an
% error occured).
:- module prog_io.
:- interface.
:- import_module prog_data, prog_io_util.
:- import_module bool, varset, term, list, io.
%-----------------------------------------------------------------------------%
% This module (prog_io) exports the following predicates:
% prog_io__read_module(FileName, DefaultModuleName, Search, Error,
% ActualModuleName, Messages, Program)
% Reads and parses the module in file `FileName',
% using the default module name `DefaultModuleName'.
% If Search is yes, search directories given by the option
% search_directories.
% Error is `fatal' if the file coudn't be opened, `yes'
% if a syntax error was detected, and `no' otherwise.
% ActualModuleName is the module name specified in the
% `:- module' declaration, if any, or the DefaultModuleName
% if there is no `:- module' declaration.
% Messages is a list of warning/error messages.
% Program is the parse tree.
:- type module_error
---> no % no errors
; yes % some syntax errors
; fatal. % couldn't open the file
:- type file_name == string.
:- type dir_name == string.
:- pred prog_io__read_module(file_name, module_name, bool,
module_error, module_name, message_list, item_list,
io__state, io__state).
:- mode prog_io__read_module(in, in, in, out, out, out, out, di, uo) is det.
% Same as prog_io__read_module, but use intermod_directories
% instead of search_directories when searching for the file.
% Also report an error if the actual module name doesn't match
% the expected module name.
:- pred prog_io__read_opt_file(file_name, module_name, bool,
module_error, message_list, item_list, io__state, io__state).
:- mode prog_io__read_opt_file(in, in, in, out, out, out, di, uo) is det.
% check_module_has_expected_name(FileName, ExpectedName, ActualName):
% Check that two module names are equal,
% and report an error if they aren't.
:- pred check_module_has_expected_name(file_name, module_name, module_name,
io__state, io__state).
:- mode check_module_has_expected_name(in, in, in, di, uo) is det.
% search_for_file(Dirs, FileName, Found, IO0, IO)
%
% Search Dirs for FileName, opening the file if it is found.
:- pred search_for_file(list(dir_name), file_name, bool, io__state, io__state).
:- mode search_for_file(in, in, out, di, uo) is det.
% parse_item(ModuleName, VarSet, Term, MaybeItem)
%
% parse Term. If successful, MaybeItem is bound to the parsed item,
% otherwise it is bound to an appropriate error message.
% Qualify appropriate parts of the item, with ModuleName as the
% module name.
:- pred parse_item(module_name, varset, term, maybe_item_and_context).
:- mode parse_item(in, in, in, out) is det.
% parse_decl(ModuleName, VarSet, Term, Result)
%
% parse Term as a declaration. If successful, Result is bound to the
% parsed item, otherwise it is bound to an appropriate error message.
% Qualify appropriate parts of the item, with ModuleName as the module
% name.
:- pred parse_decl(module_name, varset, term, maybe_item_and_context).
:- mode parse_decl(in, in, in, out) is det.
%-----------------------------------------------------------------------------%
% A QualifiedTerm is one of
% Name(Args)
% Module:Name(Args)
% (or if Args is empty, one of
% Name
% Module:Name)
% where Module is a SymName.
% For backwards compatibility, we allow `__'
% as an alternative to `:'.
% sym_name_and_args takes a term and returns a sym_name and a list of
% argument terms.
% It fails if the input is not valid syntax for a QualifiedTerm.
:- pred sym_name_and_args(term(T), sym_name, list(term(T))).
:- mode sym_name_and_args(in, out, out) is semidet.
% parse_qualified_term/4 takes a term (and also the containing
% term, and a string describing the context from which it
% was called [e.g. "clause head"] and the containing term)
% and returns a sym_name and a list of argument terms.
% Returns an error on ill-formed input.
% See also parse_implicitly_qualified_term/5 (below).
:- pred parse_qualified_term(term(T), term(T), string, maybe_functor(T)).
:- mode parse_qualified_term(in, in, in, out) is det.
% parse_implicitly_qualified_term(DefaultModName, Term,
% ContainingTerm, Msg, Result):
%
% parse_implicitly_qualified_term/5 takes a default module name
% and a term,
% (and also the containing term, and a string describing
% the context from which it was called (e.g. "clause head"),
% and returns a sym_name and a list of argument terms.
% Returns an error on ill-formed input or a module qualifier that
% doesn't match the DefaultModName.
%
% Note: parse_qualified_term/4 is used for places where a symbol
% is _used_, in which case no default module name exists, whereas
% parse_implicitly_qualified_term/5 is used for places where a symbol
% is _defined_; in that case, there is a default module name (the
% name of the current module) -- specifying a module qualifier
% explicitly is redundant, but it is allowed, so long as the
% module qualifier specified matches the default.
:- pred parse_implicitly_qualified_term(module_name, term(T), term(T), string,
maybe_functor(T)).
:- mode parse_implicitly_qualified_term(in, in, in, in, out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module prog_io_goal, prog_io_dcg, prog_io_pragma, prog_io_util.
:- import_module prog_io_typeclass.
:- import_module hlds_data, hlds_pred, prog_util, prog_out.
:- import_module globals, options, (inst).
:- import_module int, string, std_util, parser, term_io, dir, require.
:- import_module assoc_list.
%-----------------------------------------------------------------------------%
prog_io__read_module(FileName, DefaultModuleName, Search,
Error, ModuleName, Messages, Items) -->
prog_io__read_module_2(FileName, DefaultModuleName, Search,
search_directories, Error, ModuleName, Messages, Items).
prog_io__read_opt_file(FileName, DefaultModuleName, Search,
Error, Messages, Items) -->
prog_io__read_module_2(FileName, DefaultModuleName, Search,
intermod_directories, Error, ModuleName, Messages, Items),
check_module_has_expected_name(FileName,
DefaultModuleName, ModuleName).
check_module_has_expected_name(FileName, ExpectedName, ActualName) -->
( { ActualName \= ExpectedName } ->
{ prog_out__sym_name_to_string(ActualName, ActualString) },
{ prog_out__sym_name_to_string(ExpectedName, ExpectedString) },
io__stderr_stream(ErrStream),
io__write_strings(ErrStream, [
"Error: file `", FileName,
"' contains the wrong module.\n",
"Expected module `", ExpectedString,
"', found module `", ActualString, "'.\n"
]),
io__set_exit_status(1)
;
[]
).
% This implementation uses io__read_term to read in the program
% term at a time, and then converts those terms into clauses and
% declarations, checking for errors as it goes.
% Note that rather than using difference lists, we just
% build up the lists of items and messages in reverse order
% and then reverse them afterwards. (Using difference lists would require
% late-input modes.)
:- pred prog_io__read_module_2(file_name, module_name, bool, option,
module_error, module_name, message_list, item_list,
io__state, io__state).
:- mode prog_io__read_module_2(in, in, in, in, out, out, out, out,
di, uo) is det.
prog_io__read_module_2(FileName, DefaultModuleName, Search,
SearchOpt, Error, ModuleName, Messages, Items) -->
(
{ Search = yes }
->
globals__io_lookup_accumulating_option(SearchOpt,
Dirs)
;
{ dir__this_directory(CurrentDir) },
{ Dirs = [CurrentDir] }
),
search_for_file(Dirs, FileName, R),
( { R = yes } ->
read_all_items(DefaultModuleName, ModuleName,
Messages, Items, Error),
io__seen
;
io__progname_base("prog_io.m", Progname),
{
string__append(Progname, ": can't open file `", Message1),
string__append(Message1, FileName, Message2),
string__append(Message2, "'", Message),
dummy_term(Term),
Messages = [Message - Term],
Error = fatal,
Items = [],
ModuleName = DefaultModuleName
}
).
search_for_file([], _, no) --> [].
search_for_file([Dir | Dirs], FileName, R) -->
{ dir__this_directory(Dir) ->
ThisFileName = FileName
;
dir__directory_separator(Separator),
string__first_char(Tmp1, Separator, FileName),
string__append(Dir, Tmp1, ThisFileName)
},
io__see(ThisFileName, R0),
( { R0 = ok } ->
{ R = yes }
;
search_for_file(Dirs, FileName, R)
).
%-----------------------------------------------------------------------------%
% extract the final `:- end_module' declaration if any
:- type module_end ---> no ; yes(module_name, prog_context).
:- pred get_end_module(item_list, module_name, item_list, module_end).
:- mode get_end_module(in, in, out, out) is det.
get_end_module(RevItems0, ModuleName, RevItems, EndModule) :-
(
%
% Note: if the module name in the end_module declaration
% does not match what we expect, given the source file name,
% then we assume that it is for a nested module, and so
% we leave it alone. If it is not for a nested module,
% the error will be caught by make_hlds.m.
%
RevItems0 = [
module_defn(_VarSet, end_module(ModuleName)) - Context
| RevItems1]
->
RevItems = RevItems1,
EndModule = yes(ModuleName, Context)
;
RevItems = RevItems0,
EndModule = no
).
%-----------------------------------------------------------------------------%
% check that the module starts with a :- module declaration,
% and that the end_module declaration (if any) is correct,
% and construct the final parsing result.
:- pred check_end_module(module_end, message_list, item_list, module_error,
message_list, item_list, module_error, io__state, io__state).
:- mode check_end_module(in, in, in, in, out, out, out, di, uo) is det.
check_end_module(EndModule, Messages0, Items0, Error0,
Messages, Items, Error) -->
%
% double-check that the first item is a `:- module ModuleName'
% declaration, and remove it from the front of the item list
%
{
Items0 = [module_defn(_VarSet, module(ModuleName1)) - _Context1
| Items1]
->
Items = Items1,
%
% check that the end module declaration (if any)
% matches the begin module declaration
%
(
EndModule = yes(ModuleName2, Context2),
ModuleName1 \= ModuleName2
->
dummy_term_with_context(Context2, Term),
add_error(
"`:- end_module' declaration doesn't match `:- module' declaration",
Term, Messages0, Messages),
Error = yes
;
Messages = Messages0,
Error = Error0
)
;
% if there's no `:- module' declaration at this point, it is
% an internal error -- read_first_item should have inserted one
error("check_end_module: no `:- module' declaration")
}.
%-----------------------------------------------------------------------------%
% Create a dummy term.
% Used for error messages that are not associated with any
% particular term or context.
:- pred dummy_term(term).
:- mode dummy_term(out) is det.
dummy_term(Term) :-
term__context_init(Context),
dummy_term_with_context(Context, Term).
% Create a dummy term with the specified context.
% Used for error messages that are associated with some specific
% context, but for which we don't want to print out the term
% (or for which the term isn't available to be printed out).
:- pred dummy_term_with_context(term__context, term).
:- mode dummy_term_with_context(in, out) is det.
dummy_term_with_context(Context, Term) :-
Term = term__functor(term__atom(""), [], Context).
%-----------------------------------------------------------------------------%
% Read a source file from standard in, first reading in
% the input term by term and then parsing those terms and producing
% a high-level representation.
% Parsing is actually a 3-stage process instead of the
% normal two-stage process:
% lexical analysis (chars -> tokens),
% parsing stage 1 (tokens -> terms),
% parsing stage 2 (terms -> items).
% The final stage produces a list of program items, each of
% which may be a declaration or a clause.
%
% We use a continuation-passing style here.
:- pred read_all_items(module_name, module_name,
message_list, item_list, module_error,
io__state, io__state).
:- mode read_all_items(in, out, out, out, out, di, uo) is det.
read_all_items(DefaultModuleName, ModuleName, Messages, Items, Error) -->
%
% read all the items (the first one is handled specially)
%
io__input_stream(Stream),
io__input_stream_name(Stream, SourceFileName),
read_first_item(DefaultModuleName, SourceFileName, ModuleName,
RevMessages, RevItems0, Error0),
%
% get the end_module declaration (if any),
% check that it matches the initial module declaration (if any),
% and remove both of them from the final item list.
%
{ get_end_module(RevItems0, ModuleName, RevItems, EndModule) },
{ list__reverse(RevMessages, Messages0) },
{ list__reverse(RevItems, Items0) },
check_end_module(EndModule,
Messages0, Items0, Error0,
Messages, Items, Error).
%
% We need to jump through a few hoops when reading the first item,
% to allow the initial `:- module' declaration to be optional.
% The reason is that in order to parse an item, we need to know
% which module it is defined in (because we do some module
% qualification and checking of module qualifiers at parse time),
% but the initial `:- module' declaration and the declaration
% that follows it occur in different scopes, so we need to know
% what it is that we're parsing before we can parse it!
% We solve this dilemma by first parsing it in the root scope,
% and then if it turns out to not be a `:- module' declaration
% we reparse it in the default module scope. Blecchh.
%
:- pred read_first_item(module_name, file_name, module_name,
message_list, item_list, module_error, io__state, io__state).
:- mode read_first_item(in, in, out, out, out, out, di, uo) is det.
read_first_item(DefaultModuleName, SourceFileName, ModuleName,
Messages, Items, Error) -->
globals__io_lookup_bool_option(warn_missing_module_name, WarnMissing),
globals__io_lookup_bool_option(warn_wrong_module_name, WarnWrong),
%
% parse the first term, treating it as occurring
% within the scope of the special "root" module
% (so that any `:- module' declaration is taken to
% be a non-nested module unless explicitly qualified).
%
parser__read_term(SourceFileName, MaybeFirstTerm),
{ root_module_name(RootModuleName) },
{ process_read_term(RootModuleName, MaybeFirstTerm, MaybeFirstItem) },
(
%
% apply and then skip `pragma source_file' decls,
% by calling ourselves recursively with the new source
% file name
%
{ MaybeFirstItem = ok(FirstItem, _) },
{ FirstItem = pragma(source_file(NewSourceFileName)) }
->
read_first_item(DefaultModuleName, NewSourceFileName,
ModuleName, Messages, Items, Error)
;
%
% check if the first term was a `:- module' decl
%
{ MaybeFirstItem = ok(FirstItem, FirstContext) },
{ FirstItem = module_defn(_VarSet, ModuleDefn) },
{ ModuleDefn = module(StartModuleName) }
->
%
% if so, then check that it matches the expected
% module name, and if not, report a warning
%
{
match_sym_name(StartModuleName, DefaultModuleName)
->
ModuleName = DefaultModuleName,
Messages0 = []
;
match_sym_name(DefaultModuleName, StartModuleName)
->
ModuleName = StartModuleName,
Messages0 = []
;
prog_out__sym_name_to_string(StartModuleName,
StartModuleNameString),
string__append_list(["source file `", SourceFileName,
"' contains module named `", StartModuleNameString,
"'"], WrongModuleWarning),
maybe_add_warning(WarnWrong, MaybeFirstTerm, FirstContext,
WrongModuleWarning, [], Messages0),
% Which one should we use here?
% We used to use the default module name
% (computed from the filename)
% but now we use the declared one.
ModuleName = StartModuleName
},
{ make_module_decl(ModuleName, FirstContext, FixedFirstItem) },
{ Items0 = [FixedFirstItem] },
{ Error0 = no },
read_items_loop(ModuleName, SourceFileName,
Messages0, Items0, Error0,
Messages, Items, Error)
;
%
% if the first term was not a `:- module' decl,
% then issue a warning (if warning enabled), and
% insert an implicit `:- module ModuleName' decl.
%
{ MaybeFirstItem = ok(_FirstItem, FirstContext0) ->
FirstContext = FirstContext0
;
term__context_init(SourceFileName, 1, FirstContext)
},
{ WarnMissing = yes ->
dummy_term_with_context(FirstContext, FirstTerm),
add_warning(
"module should start with a `:- module' declaration",
FirstTerm, [], Messages0)
;
Messages0 = []
},
{ ModuleName = DefaultModuleName },
{ make_module_decl(ModuleName, FirstContext, FixedFirstItem) },
%
% reparse the first term, this time treating it as
% occuring within the scope of the implicit
% `:- module' decl rather than in the root module.
%
{ MaybeSecondTerm = MaybeFirstTerm },
{ process_read_term(ModuleName, MaybeSecondTerm,
MaybeSecondItem) },
{ Items0 = [FixedFirstItem] },
{ Error0 = no },
read_items_loop_2(MaybeSecondItem, ModuleName, SourceFileName,
Messages0, Items0, Error0,
Messages, Items, Error)
).
:- pred make_module_decl(module_name, term__context, item_and_context).
:- mode make_module_decl(in, in, out) is det.
make_module_decl(ModuleName, Context, Item - Context) :-
varset__init(EmptyVarSet),
ModuleDefn = module(ModuleName),
Item = module_defn(EmptyVarSet, ModuleDefn).
:- pred maybe_add_warning(bool, read_term, term__context, string,
message_list, message_list).
:- mode maybe_add_warning(in, in, in, in, in, out) is det.
maybe_add_warning(DoWarn, MaybeTerm, Context, Warning, Messages0, Messages) :-
( DoWarn = yes ->
( MaybeTerm = term(_VarSet, Term) ->
WarningTerm = Term
;
dummy_term_with_context(Context, WarningTerm)
),
add_warning(Warning, WarningTerm, Messages0, Messages)
;
Messages = Messages0
).
%-----------------------------------------------------------------------------%
% The code below was carefully optimized to run efficiently
% in NU-Prolog. We used to call read_item(MaybeItem) -
% which does all the work for a single item -
% via io__gc_call/1, which called the goal with garbage collection.
% But optimizing for NU-Prolog is no longer a big priority...
:- pred read_items_loop(module_name, file_name,
message_list, item_list, module_error,
message_list, item_list, module_error,
io__state, io__state).
:- mode read_items_loop(in, in, in, in, in, out, out, out, di, uo) is det.
read_items_loop(ModuleName, SourceFileName, Msgs1, Items1, Error1,
Msgs, Items, Error) -->
read_item(ModuleName, SourceFileName, MaybeItem),
read_items_loop_2(MaybeItem, ModuleName, SourceFileName,
Msgs1, Items1, Error1, Msgs, Items, Error).
%-----------------------------------------------------------------------------%
:- pred read_items_loop_2(maybe_item_or_eof, module_name, file_name,
message_list, item_list, module_error,
message_list, item_list, module_error,
io__state, io__state).
:- mode read_items_loop_2(in, in, in, in, in, in, out, out, out, di, uo) is det.
% do a switch on the type of the next item
read_items_loop_2(eof, _ModuleName, _SourceFileName, Msgs, Items, Error,
Msgs, Items, Error) --> [].
% if the next item was end-of-file, then we're done.
read_items_loop_2(syntax_error(ErrorMsg, LineNumber), ModuleName,
SourceFileName, Msgs0, Items0, _Error0, Msgs, Items, Error) -->
% if the next item was a syntax error, then insert it in
% the list of messages and continue looping
{
term__context_init(SourceFileName, LineNumber, Context),
dummy_term_with_context(Context, Term),
ThisError = ErrorMsg - Term,
Msgs1 = [ThisError | Msgs0],
Items1 = Items0,
Error1 = yes
},
read_items_loop(ModuleName, SourceFileName, Msgs1, Items1, Error1,
Msgs, Items, Error).
read_items_loop_2(error(M, T), ModuleName, SourceFileName,
Msgs0, Items0, _Error0, Msgs, Items, Error) -->
% if the next item was a semantic error, then insert it in
% the list of messages and continue looping
{
add_error(M, T, Msgs0, Msgs1),
Items1 = Items0,
Error1 = yes
},
read_items_loop(ModuleName, SourceFileName, Msgs1, Items1, Error1,
Msgs, Items, Error).
read_items_loop_2(ok(Item, Context), ModuleName0, SourceFileName0,
Msgs0, Items0, Error0, Msgs, Items, Error) -->
% if the next item was a valid item, check whether it was
% a declaration that affects the current parsing context --
% i.e. either a `module'/`end_module' declaration or a
% `pragma source_file' declaration. If so, set the new
% parsing context according. Next, unless the item is a
% `pragma source_file' declaration, insert it into the item list.
% Then continue looping.
{ Item = pragma(source_file(NewSourceFileName)) ->
SourceFileName = NewSourceFileName,
ModuleName = ModuleName0,
Items1 = Items0
; Item = module_defn(_VarSet, module(NestedModuleName)) ->
ModuleName = NestedModuleName,
SourceFileName = SourceFileName0,
Items1 = [Item - Context | Items0]
; Item = module_defn(_VarSet, end_module(NestedModuleName)) ->
root_module_name(RootModuleName),
sym_name_get_module_name(NestedModuleName, RootModuleName,
ParentModuleName),
ModuleName = ParentModuleName,
SourceFileName = SourceFileName0,
Items1 = [Item - Context | Items0]
;
SourceFileName = SourceFileName0,
ModuleName = ModuleName0,
Items1 = [Item - Context | Items0]
},
read_items_loop(ModuleName, SourceFileName, Msgs0, Items1, Error0,
Msgs, Items, Error).
%-----------------------------------------------------------------------------%
% read_item/1 reads a single item, and if it is a valid term
% parses it.
:- type maybe_item_or_eof ---> eof
; syntax_error(file_name, int)
; error(string, term)
; ok(item, term__context).
:- pred read_item(module_name, file_name, maybe_item_or_eof,
io__state, io__state).
:- mode read_item(in, in, out, di, uo) is det.
read_item(ModuleName, SourceFileName, MaybeItem) -->
parser__read_term(SourceFileName, MaybeTerm),
{ process_read_term(ModuleName, MaybeTerm, MaybeItem) }.
:- pred process_read_term(module_name, read_term, maybe_item_or_eof).
:- mode process_read_term(in, in, out) is det.
process_read_term(_ModuleName, eof, eof).
process_read_term(_ModuleName, error(ErrorMsg, LineNumber),
syntax_error(ErrorMsg, LineNumber)).
process_read_term(ModuleName, term(VarSet, Term),
MaybeItemOrEof) :-
parse_item(ModuleName, VarSet, Term, MaybeItem),
convert_item(MaybeItem, MaybeItemOrEof).
:- pred convert_item(maybe_item_and_context, maybe_item_or_eof).
:- mode convert_item(in, out) is det.
convert_item(ok(Item, Context), ok(Item, Context)).
convert_item(error(M, T), error(M, T)).
parse_item(ModuleName, VarSet, Term, Result) :-
( %%% some [Decl, DeclContext]
Term = term__functor(term__atom(":-"), [Decl], _DeclContext)
->
% It's a declaration
parse_decl(ModuleName, VarSet, Decl, Result)
; %%% some [DCG_H, DCG_B, DCG_Context]
% It's a DCG clause
Term = term__functor(term__atom("-->"), [DCG_H, DCG_B],
DCG_Context)
->
parse_dcg_clause(ModuleName, VarSet, DCG_H, DCG_B,
DCG_Context, Result)
;
% It's either a fact or a rule
( %%% some [H, B, TermContext]
Term = term__functor(term__atom(":-"), [H, B],
TermContext)
->
% it's a rule
Head = H,
Body = B,
TheContext = TermContext
;
% it's a fact
Head = Term,
(
Head = term__functor(_Functor, _Args,
HeadContext)
->
TheContext = HeadContext
;
% term consists of just a single
% variable - the context has been lost
term__context_init(TheContext)
),
Body = term__functor(term__atom("true"), [], TheContext)
),
varset__coerce(VarSet, ProgVarSet),
parse_goal(Body, ProgVarSet, Body2, ProgVarSet2),
(
Head = term__functor(term__atom("="),
[FuncHead, FuncResult], _)
->
parse_implicitly_qualified_term(ModuleName,
FuncHead, Head, "equation head", R2),
process_func_clause(R2, FuncResult, ProgVarSet2, Body2,
R3)
;
parse_implicitly_qualified_term(ModuleName,
Head, Term, "clause head", R2),
process_pred_clause(R2, ProgVarSet2, Body2, R3)
),
add_context(R3, TheContext, Result)
).
:- pred process_pred_clause(maybe_functor, prog_varset, goal, maybe1(item)).
:- mode process_pred_clause(in, in, in, out) is det.
process_pred_clause(ok(Name, Args0), VarSet, Body,
ok(pred_clause(VarSet, Name, Args, Body))) :-
list__map(term__coerce, Args0, Args).
process_pred_clause(error(ErrMessage, Term0), _, _, error(ErrMessage, Term)) :-
term__coerce(Term0, Term).
:- pred process_func_clause(maybe_functor, term, prog_varset, goal,
maybe1(item)).
:- mode process_func_clause(in, in, in, in, out) is det.
process_func_clause(ok(Name, Args0), Result0, VarSet, Body,
ok(func_clause(VarSet, Name, Args, Result, Body))) :-
list__map(term__coerce, Args0, Args),
term__coerce(Result0, Result).
process_func_clause(error(ErrMessage, Term0), _, _, _,
error(ErrMessage, Term)) :-
term__coerce(Term0, Term).
%-----------------------------------------------------------------------------%
:- type decl_attribute
---> purity(purity)
; quantifier(quantifier_type, list(tvar))
; constraints(quantifier_type, term).
% the term here is the (not yet parsed) list of constraints
:- type quantifier_type
---> exist
; univ.
:- type decl_attrs == list(pair(decl_attribute, term)).
% the term associated with each decl_attribute
% is the term containing both the attribute and
% the declaration that that attribute modifies;
% this term is used when printing out error messages
% for cases when attributes are used on declarations
% where they are not allowed.
parse_decl(ModuleName, VarSet, F, Result) :-
parse_decl_2(ModuleName, VarSet, F, [], Result).
% parse_decl_2(ModuleName, VarSet, Term, Attributes, Result)
% succeeds if Term is a declaration and binds Result to a
% representation of that declaration. Attributes is a list
% of enclosing declaration attributes, in the order innermost to
% outermost.
:- pred parse_decl_2(module_name, varset, term, decl_attrs,
maybe_item_and_context).
:- mode parse_decl_2(in, in, in, in, out) is det.
parse_decl_2(ModuleName, VarSet, F, Attributes, Result) :-
(
F = term__functor(term__atom(Atom), Args, Context)
->
(
parse_decl_attribute(Atom, Args, Attribute, SubTerm)
->
NewAttributes = [Attribute - F | Attributes],
parse_decl_2(ModuleName, VarSet, SubTerm,
NewAttributes, Result)
;
process_decl(ModuleName, VarSet, Atom, Args,
Attributes, R)
->
add_context(R, Context, Result)
;
Result = error("unrecognized declaration", F)
)
;
Result = error("atom expected after `:-'", F)
).
% process_decl(ModuleName, VarSet, Attributes, Atom, Args, Result)
% succeeds if Atom(Args) is a declaration and binds Result to a
% representation of that declaration. Attributes is a list
% of enclosing declaration attributes, in the order outermost to
% innermost.
:- pred process_decl(module_name, varset, string, list(term), decl_attrs,
maybe1(item)).
:- mode process_decl(in, in, in, in, in, out) is semidet.
process_decl(ModuleName, VarSet, "type", [TypeDecl], Attributes, Result) :-
parse_type_decl(ModuleName, VarSet, TypeDecl, Result0),
check_no_attributes(Result0, Attributes, Result).
process_decl(ModuleName, VarSet, "pred", [PredDecl], Attributes, Result) :-
parse_type_decl_pred(ModuleName, VarSet, PredDecl, Attributes, Result).
process_decl(ModuleName, VarSet, "func", [FuncDecl], Attributes, Result) :-
parse_type_decl_func(ModuleName, VarSet, FuncDecl, Attributes, Result).
process_decl(ModuleName, VarSet, "mode", [ModeDecl], Attributes, Result) :-
parse_mode_decl(ModuleName, VarSet, ModeDecl, Result0),
check_no_attributes(Result0, Attributes, Result).
process_decl(ModuleName, VarSet, "inst", [InstDecl], Attributes, Result) :-
parse_inst_decl(ModuleName, VarSet, InstDecl, Result0),
check_no_attributes(Result0, Attributes, Result).
process_decl(_ModuleName, VarSet, "import_module", [ModuleSpec], Attributes,
Result) :-
parse_symlist_decl(parse_module_specifier, make_module, make_import,
ModuleSpec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet, "use_module", [ModuleSpec], Attributes,
Result) :-
parse_symlist_decl(parse_module_specifier, make_module, make_use,
ModuleSpec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet, "export_module", [ModuleSpec], Attributes,
Result) :-
parse_symlist_decl(parse_module_specifier, make_module, make_export,
ModuleSpec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet, "import_sym", [SymSpec], Attributes,
Result) :-
parse_symlist_decl(parse_symbol_specifier, make_sym, make_import,
SymSpec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet, "use_sym", [SymSpec], Attributes, Result) :-
parse_symlist_decl(parse_symbol_specifier, make_sym, make_use,
SymSpec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet, "export_sym", [SymSpec], Attributes,
Result) :-
parse_symlist_decl(parse_symbol_specifier, make_sym, make_export,
SymSpec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet, "import_pred", [PredSpec], Attributes,
Result) :-
parse_symlist_decl(parse_predicate_specifier, make_pred, make_import,
PredSpec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet, "use_pred", [PredSpec], Attributes,
Result) :-
parse_symlist_decl(parse_predicate_specifier, make_pred, make_use,
PredSpec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet, "export_pred", [PredSpec], Attributes,
Result) :-
parse_symlist_decl(parse_predicate_specifier, make_pred, make_export,
PredSpec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet, "import_func", [FuncSpec], Attributes,
Result) :-
parse_symlist_decl(parse_function_specifier, make_func, make_import,
FuncSpec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet, "use_func", [FuncSpec], Attributes,
Result) :-
parse_symlist_decl(parse_function_specifier, make_func, make_use,
FuncSpec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet, "export_func", [FuncSpec], Attributes,
Result) :-
parse_symlist_decl(parse_function_specifier, make_func, make_export,
FuncSpec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet, "import_cons", [ConsSpec], Attributes,
Result) :-
parse_symlist_decl(parse_constructor_specifier, make_cons, make_import,
ConsSpec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet, "use_cons", [ConsSpec], Attributes,
Result) :-
parse_symlist_decl(parse_constructor_specifier, make_cons, make_use,
ConsSpec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet, "export_cons", [ConsSpec], Attributes,
Result) :-
parse_symlist_decl(parse_constructor_specifier, make_cons, make_export,
ConsSpec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet, "import_type", [TypeSpec], Attributes,
Result) :-
parse_symlist_decl(parse_type_specifier, make_type, make_import,
TypeSpec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet, "use_type", [TypeSpec], Attributes,
Result) :-
parse_symlist_decl(parse_type_specifier, make_type, make_use,
TypeSpec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet, "export_type", [TypeSpec], Attributes,
Result) :-
parse_symlist_decl(parse_type_specifier, make_type, make_export,
TypeSpec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet, "import_adt", [ADT_Spec], Attributes,
Result) :-
parse_symlist_decl(parse_adt_specifier, make_adt, make_import,
ADT_Spec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet, "use_adt", [ADT_Spec], Attributes, Result) :-
parse_symlist_decl(parse_adt_specifier, make_adt, make_use,
ADT_Spec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet, "export_adt", [ADT_Spec], Attributes,
Result) :-
parse_symlist_decl(parse_adt_specifier, make_adt, make_export,
ADT_Spec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet, "import_op", [OpSpec], Attributes,
Result) :-
parse_symlist_decl(parse_op_specifier, make_op, make_import,
OpSpec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet, "use_op", [OpSpec], Attributes, Result) :-
parse_symlist_decl(parse_op_specifier, make_op, make_use,
OpSpec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet, "export_op", [OpSpec], Attributes, Result) :-
parse_symlist_decl(parse_op_specifier, make_op, make_export,
OpSpec, Attributes, VarSet, Result).
process_decl(_ModuleName, VarSet0, "interface", [], Attributes, Result) :-
varset__coerce(VarSet0, VarSet),
Result0 = ok(module_defn(VarSet, interface)),
check_no_attributes(Result0, Attributes, Result).
process_decl(_ModuleName, VarSet0, "implementation", [], Attributes, Result) :-
varset__coerce(VarSet0, VarSet),
Result0 = ok(module_defn(VarSet, implementation)),
check_no_attributes(Result0, Attributes, Result).
process_decl(_ModuleName, VarSet, "external", [PredSpec], Attributes,
Result) :-
parse_symbol_name_specifier(PredSpec, Result0),
process_maybe1(make_external(VarSet), Result0, Result1),
check_no_attributes(Result1, Attributes, Result).
process_decl(DefaultModuleName, VarSet0, "module", [ModuleName], Attributes,
Result) :-
parse_module_name(DefaultModuleName, ModuleName, Result0),
(
Result0 = ok(ModuleNameSym),
varset__coerce(VarSet0, VarSet),
Result1 = ok(module_defn(VarSet, module(ModuleNameSym)))
;
Result0 = error(A, B),
Result1 = error(A, B)
),
check_no_attributes(Result1, Attributes, Result).
process_decl(DefaultModuleName, VarSet0, "include_module", [ModuleNames],
Attributes, Result) :-
parse_list(parse_module_name(DefaultModuleName), ModuleNames, Result0),
(
Result0 = ok(ModuleNameSyms),
varset__coerce(VarSet0, VarSet),
Result1 = ok(module_defn(VarSet,
include_module(ModuleNameSyms)))
;
Result0 = error(A, B),
Result1 = error(A, B)
),
check_no_attributes(Result1, Attributes, Result).
process_decl(DefaultModuleName, VarSet0, "end_module", [ModuleName],
Attributes, Result) :-
%
% The name in an `end_module' declaration not inside the
% scope of the module being ended, so the default module name
% here is the parent of the previous default module name.
%
root_module_name(RootModuleName),
sym_name_get_module_name(DefaultModuleName, RootModuleName,
ParentOfDefaultModuleName),
parse_module_name(ParentOfDefaultModuleName, ModuleName, Result0),
(
Result0 = ok(ModuleNameSym),
varset__coerce(VarSet0, VarSet),
Result1 = ok(module_defn(VarSet, end_module(ModuleNameSym)))
;
Result0 = error(A, B),
Result1 = error(A, B)
),
check_no_attributes(Result1, Attributes, Result).
% NU-Prolog `when' declarations used to be silently ignored for
% backwards compatibility. We now issue a warning that they
% are deprecated. We should eventually drop support for them
% entirely.
process_decl(_ModuleName, _VarSet, "when", [_Goal, _Cond], Attributes,
Result) :-
Result0 = ok(nothing),
check_no_attributes(Result0, Attributes, Result).
process_decl(ModuleName, VarSet, "pragma", Pragma, Attributes, Result):-
parse_pragma(ModuleName, VarSet, Pragma, Result0),
check_no_attributes(Result0, Attributes, Result).
process_decl(ModuleName, VarSet, "promise", Assertion, Attributes, Result):-
parse_assertion(ModuleName, VarSet, Assertion, Result0),
check_no_attributes(Result0, Attributes, Result).
process_decl(ModuleName, VarSet, "typeclass", Args, Attributes, Result):-
parse_typeclass(ModuleName, VarSet, Args, Result0),
check_no_attributes(Result0, Attributes, Result).
process_decl(ModuleName, VarSet, "instance", Args, Attributes, Result):-
parse_instance(ModuleName, VarSet, Args, Result0),
check_no_attributes(Result0, Attributes, Result).
:- pred parse_decl_attribute(string, list(term), decl_attribute, term).
:- mode parse_decl_attribute(in, in, out, out) is semidet.
parse_decl_attribute("impure", [Decl], purity(impure), Decl).
parse_decl_attribute("semipure", [Decl], purity(semipure), Decl).
parse_decl_attribute("<=", [Decl, Constraints],
constraints(univ, Constraints), Decl).
parse_decl_attribute("=>", [Decl, Constraints],
constraints(exist, Constraints), Decl).
parse_decl_attribute("some", [TVars0, Decl],
quantifier(exist, TVarsList), Decl) :-
term__coerce(TVars0, TVars),
parse_list_of_vars(TVars, TVarsList).
parse_decl_attribute("all", [TVars0, Decl],
quantifier(univ, TVarsList), Decl) :-
term__coerce(TVars0, TVars),
parse_list_of_vars(TVars, TVarsList).
:- pred check_no_attributes(maybe1(item), decl_attrs, maybe1(item)).
:- mode check_no_attributes(in, in, out) is det.
check_no_attributes(Result0, Attributes, Result) :-
(
Result0 = ok(_),
Attributes = [Attr - Term | _]
->
attribute_description(Attr, AttrDescr),
string__append(AttrDescr, " not allowed here", Message),
Result = error(Message, Term)
;
Result = Result0
).
:- pred attribute_description(decl_attribute, string).
:- mode attribute_description(in, out) is det.
attribute_description(purity(_), "purity specifier").
attribute_description(quantifier(univ, _), "universal quantifier (`all')").
attribute_description(quantifier(exist, _), "existential quantifier (`some')").
attribute_description(constraints(univ, _), "type class constraint (`<=')").
attribute_description(constraints(exist, _),
"existentially quantified type class constraint (`=>')").
%-----------------------------------------------------------------------------%
% parse the assertion declaration.
:- pred parse_assertion(module_name, varset, list(term), maybe1(item)).
:- mode parse_assertion(in, in, in, out) is semidet.
parse_assertion(_ModuleName, VarSet, [AssertionTerm], Result) :-
varset__coerce(VarSet, ProgVarSet),
parse_goal(AssertionTerm, ProgVarSet, AssertGoal, AssertVarSet),
Result = ok(assertion(AssertGoal, AssertVarSet)).
%-----------------------------------------------------------------------------%
:- pred parse_type_decl(module_name, varset, term, maybe1(item)).
:- mode parse_type_decl(in, in, in, out) is det.
parse_type_decl(ModuleName, VarSet, TypeDecl, Result) :-
(
TypeDecl = term__functor(term__atom(Name), Args, _),
parse_type_decl_type(ModuleName, Name, Args, Cond, R)
->
R1 = R,
Cond1 = Cond
;
process_abstract_type(ModuleName, TypeDecl, R1),
Cond1 = true
),
process_maybe1(make_type_defn(VarSet, Cond1), R1, Result).
% we should check the condition for errs
% (don't bother at the moment, since we ignore
% conditions anyhow :-)
:- pred make_type_defn(varset, condition, type_defn, item).
:- mode make_type_defn(in, in, in, out) is det.
make_type_defn(VarSet0, Cond, TypeDefn, type_defn(VarSet, TypeDefn, Cond)) :-
varset__coerce(VarSet0, VarSet).
:- pred make_external(varset, sym_name_specifier, item).
:- mode make_external(in, in, out) is det.
make_external(VarSet0, SymSpec, module_defn(VarSet, external(SymSpec))) :-
varset__coerce(VarSet0, VarSet).
%-----------------------------------------------------------------------------%
% add a warning message to the list of messages
:- pred add_warning(string, term, message_list, message_list).
:- mode add_warning(in, in, in, out) is det.
add_warning(Warning, Term, Msgs, [Msg - Term | Msgs]) :-
string__append("Warning: ", Warning, Msg).
% add an error message to the list of messages
:- pred add_error(string, term, message_list, message_list).
:- mode add_error(in, in, in, out) is det.
add_error(Error, Term, Msgs, [Msg - Term | Msgs]) :-
string__append("Error: ", Error, Msg).
%-----------------------------------------------------------------------------%
% parse_type_decl_type(Term, Condition, Result) succeeds
% if Term is a "type" type declaration, and binds Condition
% to the condition for that declaration (if any), and Result to
% a representation of the declaration.
:- pred parse_type_decl_type(module_name, string, list(term), condition,
maybe1(type_defn)).
:- mode parse_type_decl_type(in, in, in, out, out) is semidet.
parse_type_decl_type(ModuleName, "--->", [H, B], Condition, R) :-
/* get_condition(...), */
Condition = true,
get_maybe_equality_pred(B, Body, EqualityPred),
process_du_type(ModuleName, H, Body, EqualityPred, R).
parse_type_decl_type(ModuleName, "=", [H, B], Condition, R) :-
get_condition(B, Body, Condition),
process_uu_type(ModuleName, H, Body, R).
parse_type_decl_type(ModuleName, "==", [H, B], Condition, R) :-
get_condition(B, Body, Condition),
process_eqv_type(ModuleName, H, Body, R).
%-----------------------------------------------------------------------------%
% parse_type_decl_pred(ModuleName, VarSet, Pred, Attributes, Result)
% succeeds if Pred is a predicate type declaration, and binds Result
% to a representation of the declaration.
:- pred parse_type_decl_pred(module_name, varset, term, decl_attrs,
maybe1(item)).
:- mode parse_type_decl_pred(in, in, in, in, out) is det.
parse_type_decl_pred(ModuleName, VarSet, Pred, Attributes, R) :-
get_condition(Pred, Body, Condition),
get_determinism(Body, Body2, MaybeDeterminism),
process_type_decl_pred(ModuleName, MaybeDeterminism, VarSet, Body2,
Condition, Attributes, R).
:- pred process_type_decl_pred(module_name, maybe1(maybe(determinism)), varset,
term, condition, decl_attrs, maybe1(item)).
:- mode process_type_decl_pred(in, in, in, in, in, in, out) is det.
process_type_decl_pred(_MNm, error(Term, Reason), _, _, _, _,
error(Term, Reason)).
process_type_decl_pred(ModuleName, ok(MaybeDeterminism), VarSet, Body,
Condition, Attributes, R) :-
process_pred(ModuleName, VarSet, Body, Condition, MaybeDeterminism,
Attributes, R).
%-----------------------------------------------------------------------------%
% parse_type_decl_func(ModuleName, Varset, Func, Attributes, Result)
% succeeds if Func is a function type declaration, and binds Result to
% a representation of the declaration.
:- pred parse_type_decl_func(module_name, varset, term, decl_attrs,
maybe1(item)).
:- mode parse_type_decl_func(in, in, in, in, out) is det.
parse_type_decl_func(ModuleName, VarSet, Func, Attributes, R) :-
get_condition(Func, Body, Condition),
get_determinism(Body, Body2, MaybeDeterminism),
process_maybe1_to_t(process_func(ModuleName, VarSet, Body2, Condition,
Attributes), MaybeDeterminism, R).
%-----------------------------------------------------------------------------%
% parse_mode_decl_pred(ModuleName, Pred, Condition, Result) succeeds
% if Pred is a predicate mode declaration, and binds Condition
% to the condition for that declaration (if any), and Result to
% a representation of the declaration.
:- pred parse_mode_decl_pred(module_name, varset, term, maybe1(item)).
:- mode parse_mode_decl_pred(in, in, in, out) is det.
parse_mode_decl_pred(ModuleName, VarSet, Pred, Result) :-
get_condition(Pred, Body, Condition),
get_determinism(Body, Body2, MaybeDeterminism),
process_maybe1_to_t(process_mode(ModuleName, VarSet, Body2, Condition),
MaybeDeterminism, Result).
%-----------------------------------------------------------------------------%
% get_maybe_equality_pred(Body0, Body, MaybeEqualPred):
% Checks if `Body0' is a term of the form
% `<body> where equality is <symname>'
% If so, returns the `<body>' in Body and the <symname> in
% MaybeEqualPred. If not, returns Body = Body0
% and `no' in MaybeEqualPred.
:- pred get_maybe_equality_pred(term, term, maybe1(maybe(sym_name))).
:- mode get_maybe_equality_pred(in, out, out) is det.
get_maybe_equality_pred(B, Body, MaybeEqualityPred) :-
(
B = term__functor(term__atom("where"), Args, _Context1),
Args = [Body1, Equality_Is_PredName]
->
Body = Body1,
(
Equality_Is_PredName = term__functor(term__atom("is"),
[Equality, PredName], _),
Equality = term__functor(term__atom("equality"), [], _)
->
parse_symbol_name(PredName, MaybeEqualityPred0),
process_maybe1(make_yes, MaybeEqualityPred0,
MaybeEqualityPred)
;
MaybeEqualityPred = error("syntax error after `where'",
Body)
)
;
Body = B,
MaybeEqualityPred = ok(no)
).
:- pred make_yes(T::in, maybe(T)::out) is det.
make_yes(T, yes(T)).
% get_determinism(Term0, Term, Determinism) binds Determinism
% to a representation of the determinism condition of Term0, if any,
% and binds Term to the other part of Term0. If Term0 does not
% contain a determinism, then Determinism is bound to `unspecified'.
:- pred get_determinism(term, term, maybe1(maybe(determinism))).
:- mode get_determinism(in, out, out) is det.
get_determinism(B, Body, Determinism) :-
(
B = term__functor(term__atom("is"), Args, _Context1),
Args = [Body1, Determinism1]
->
Body = Body1,
(
(
Determinism1 = term__functor(term__atom(Determinism2),
[], _Context2),
standard_det(Determinism2, Determinism3)
)
->
Determinism = ok(yes(Determinism3))
;
Determinism = error("invalid category", Determinism1)
)
;
Body = B,
Determinism = ok(no)
).
%-----------------------------------------------------------------------------%
% get_condition(Term0, Term, Condition) binds Condition
% to a representation of the 'where' condition of Term0, if any,
% and binds Term to the other part of Term0. If Term0 does not
% contain a condition, then Condition is bound to true.
:- pred get_condition(term, term, condition).
:- mode get_condition(in, out, out) is det.
get_condition(Body, Body, true).
/********
% NU-Prolog supported type declarations of the form
% :- pred p(T) where p(X) : sorted(X).
% or
% :- type sorted_list(T) = list(T) where X : sorted(X).
% :- pred p(sorted_list(T).
% There is some code here to support that sort of thing, but
% probably we would now need to use a different syntax, since
% Mercury now uses `where' for different purposes (e.g. specifying
% user-defined equality predicates; also for type classes, eventually...)
%
get_condition(B, Body, Condition) :-
(
B = term__functor(term__atom("where"), [Body1, Condition1],
_Context)
->
Body = Body1,
Condition = where(Condition1)
;
Body = B,
Condition = true
).
********/
%-----------------------------------------------------------------------------%
% This is for "Head = Body" (undiscriminated union) definitions.
:- pred process_uu_type(module_name, term, term, maybe1(type_defn)).
:- mode process_uu_type(in, in, in, out) is det.
process_uu_type(ModuleName, Head, Body, Result) :-
check_for_errors(ModuleName, Head, Body, Result0),
process_uu_type_2(Result0, Body, Result).
:- pred process_uu_type_2(maybe_functor, term, maybe1(type_defn)).
:- mode process_uu_type_2(in, in, out) is det.
process_uu_type_2(error(Error, Term), _, error(Error, Term)).
process_uu_type_2(ok(Name, Args0), Body0, ok(uu_type(Name, Args, List))) :-
list__map(term__coerce, Args0, Args),
term__coerce(Body0, Body),
sum_to_list(Body, List).
%-----------------------------------------------------------------------------%
% This is for "Head == Body" (equivalence) definitions.
:- pred process_eqv_type(module_name, term, term, maybe1(type_defn)).
:- mode process_eqv_type(in, in, in, out) is det.
process_eqv_type(ModuleName, Head, Body, Result) :-
check_for_errors(ModuleName, Head, Body, Result0),
process_eqv_type_2(Result0, Body, Result).
:- pred process_eqv_type_2(maybe_functor, term, maybe1(type_defn)).
:- mode process_eqv_type_2(in, in, out) is det.
process_eqv_type_2(error(Error, Term), _, error(Error, Term)).
process_eqv_type_2(ok(Name, Args0), Body0, Result) :-
% check that all the variables in the body occur in the head
(
(
term__contains_var(Body0, Var2),
\+ term__contains_var_list(Args0, Var2)
)
->
Result = error("free type parameter in RHS of type definition",
Body0)
;
list__map(term__coerce, Args0, Args),
term__coerce(Body0, Body),
Result = ok(eqv_type(Name, Args, Body))
).
%-----------------------------------------------------------------------------%
% process_du_type(ModuleName, TypeHead, TypeBody, Result)
% checks that its arguments are well formed, and if they are,
% binds Result to a representation of the type information about the
% TypeHead.
% This is for "Head ---> Body" (constructor) definitions.
:- pred process_du_type(module_name, term, term, maybe1(maybe(equality_pred)),
maybe1(type_defn)).
:- mode process_du_type(in, in, in, in, out) is det.
process_du_type(ModuleName, Head, Body, EqualityPred, Result) :-
check_for_errors(ModuleName, Head, Body, Result0),
process_du_type_2(ModuleName, Result0, Body, EqualityPred, Result).
:- pred process_du_type_2(module_name, maybe_functor, term,
maybe1(maybe(equality_pred)), maybe1(type_defn)).
:- mode process_du_type_2(in, in, in, in, out) is det.
process_du_type_2(_, error(Error, Term), _, _, error(Error, Term)).
process_du_type_2(ModuleName, ok(Functor, Args0), Body, MaybeEqualityPred,
Result) :-
% check that body is a disjunction of constructors
list__map(term__coerce, Args0, Args),
(
convert_constructors(ModuleName, Body, Constrs)
->
% check that all type variables in the body
% are either explicitly existentally quantified
% or occur in the head.
(
list__member(Ctor, Constrs),
Ctor = ctor(ExistQVars, _Constraints, _CtorName,
CtorArgs),
assoc_list__values(CtorArgs, CtorArgTypes),
term__contains_var_list(CtorArgTypes, Var),
\+ list__member(Var, ExistQVars),
\+ term__contains_var_list(Args, Var)
->
Result = error(
"free type parameter in RHS of type definition",
Body)
% check that all type variables in existential quantifiers
% do not occur in the head
% (maybe this should just be a warning, not an error?
% If we were to allow it, we would need to rename them apart.)
;
list__member(Ctor, Constrs),
Ctor = ctor(ExistQVars, _Constraints, _CtorName,
CtorArgs),
list__member(Var, ExistQVars),
assoc_list__values(CtorArgs, CtorArgTypes),
\+ term__contains_var_list(CtorArgTypes, Var)
->
Result = error( "type variable has overlapping scopes (explicit type quantifier shadows argument type)", Body)
% check that all type variables in existential quantifiers
% occur somewhere in the body
% (maybe this should just be a warning, not an error?
% If we were to allow it, we should at this point delete any
% such unused type variables from the list of quantifiers.)
;
list__member(Ctor, Constrs),
Ctor = ctor(ExistQVars, _Constraints, _CtorName,
CtorArgs),
list__member(Var, ExistQVars),
assoc_list__values(CtorArgs, CtorArgTypes),
\+ term__contains_var_list(CtorArgTypes, Var)
->
Result = error(
"var occurs only in existential quantifier",
Body)
% check that all type variables in existential constraints
% occur in the existential quantifiers
% (XXX is this check overly conservative? Perhaps we should
% allow existential constraints so long as they contain
% at least one type variable which is existentially quantified,
% rather than requiring all variables in them to be
% existentially quantified.)
;
list__member(Ctor, Constrs),
Ctor = ctor(ExistQVars, Constraints, _CtorName,
_CtorArgs),
list__member(Constraint, Constraints),
Constraint = constraint(_Name, Args),
term__contains_var_list(Args, Var),
\+ list__member(Var, ExistQVars)
->
Result = error("type variables in class constraints introduced with `=>' must be explicitly existentially quantified using `some'",
Body)
;
(
MaybeEqualityPred = ok(EqualityPred),
Result = ok(du_type(Functor, Args, Constrs,
EqualityPred))
;
MaybeEqualityPred = error(Error, Term),
Result = error(Error, Term)
)
)
;
Result = error("invalid RHS of type definition", Body)
).
%-----------------------------------------------------------------------------%
% process_abstract_type(ModuleName, TypeHead, Result)
% checks that its argument is well formed, and if it is,
% binds Result to a representation of the type information about the
% TypeHead.
:- pred process_abstract_type(module_name, term, maybe1(type_defn)).
:- mode process_abstract_type(in, in, out) is det.
process_abstract_type(ModuleName, Head, Result) :-
dummy_term(Body),
check_for_errors(ModuleName, Head, Body, Result0),
process_abstract_type_2(Result0, Result).
:- pred process_abstract_type_2(maybe_functor, maybe1(type_defn)).
:- mode process_abstract_type_2(in, out) is det.
process_abstract_type_2(error(Error, Term), error(Error, Term)).
process_abstract_type_2(ok(Functor, Args0), ok(abstract_type(Functor, Args))) :-
list__map(term__coerce, Args0, Args).
%-----------------------------------------------------------------------------%
% check a type definition for errors
:- pred check_for_errors(module_name, term, term, maybe_functor).
:- mode check_for_errors(in, in, in, out) is det.
check_for_errors(ModuleName, Head, Body, Result) :-
( Head = term__variable(_) ->
%
% `Head' has no term__context, so we need to get the
% context from `Body'
%
( Body = term__functor(_, _, Context) ->
dummy_term_with_context(Context, ErrorTerm)
;
dummy_term(ErrorTerm)
),
Result = error("variable on LHS of type definition", ErrorTerm)
;
parse_implicitly_qualified_term(ModuleName,
Head, Head, "type definition", R),
check_for_errors_2(R, Body, Head, Result)
).
:- pred check_for_errors_2(maybe_functor, term, term, maybe_functor).
:- mode check_for_errors_2(in, in, in, out) is det.
check_for_errors_2(error(Msg, Term), _, _, error(Msg, Term)).
check_for_errors_2(ok(Name, Args), Body, Head, Result) :-
check_for_errors_3(Name, Args, Body, Head, Result).
:- pred check_for_errors_3(sym_name, list(term), term, term, maybe_functor).
:- mode check_for_errors_3(in, in, in, in, out) is det.
check_for_errors_3(Name, Args, _Body, Head, Result) :-
% check that all the head args are variables
( %%% some [Arg]
(
list__member(Arg, Args),
Arg \= term__variable(_)
)
->
Result = error("type parameters must be variables", Head)
;
% check that all the head arg variables are distinct
%%% some [Arg2, OtherArgs]
(
list__member(Arg2, Args, [Arg2|OtherArgs]),
list__member(Arg2, OtherArgs)
)
->
Result = error("repeated type parameters in LHS of type defn", Head)
;
Result = ok(Name, Args)
).
%-----------------------------------------------------------------------------%
% Convert a list of terms separated by semi-colons
% (known as a "disjunction", even thought the terms aren't goals
% in this case) into a list of constructors
:- pred convert_constructors(module_name, term, list(constructor)).
:- mode convert_constructors(in, in, out) is semidet.
convert_constructors(ModuleName, Body, Constrs) :-
disjunction_to_list(Body, List),
convert_constructors_2(ModuleName, List, Constrs).
% true if input argument is a valid list of constructors
:- pred convert_constructors_2(module_name, list(term), list(constructor)).
:- mode convert_constructors_2(in, in, out) is semidet.
convert_constructors_2(_, [], []).
convert_constructors_2(ModuleName, [Term | Terms], [Constr | Constrs]) :-
convert_constructor(ModuleName, Term, Constr),
convert_constructors_2(ModuleName, Terms, Constrs).
% true if input argument is a valid constructor.
:- pred convert_constructor(module_name, term, constructor).
:- mode convert_constructor(in, in, out) is semidet.
convert_constructor(ModuleName, Term0, Result) :-
(
Term0 = term__functor(term__atom("some"), [Vars, Term1], _)
->
parse_list_of_vars(Vars, ExistQVars0),
list__map(term__coerce_var, ExistQVars0, ExistQVars),
Term2 = Term1
;
ExistQVars = [],
Term2 = Term0
),
get_existential_constraints_from_term(ModuleName, Term2, Term3,
ok(Constraints)),
(
% Note that as a special case, one level of
% curly braces around the constructor are ignored.
% This is to allow you to define ';'/2 and 'some'/2
% constructors.
Term3 = term__functor(term__atom("{}"), [Term4], _Context)
->
Term5 = Term4
;
Term5 = Term3
),
parse_implicitly_qualified_term(ModuleName,
Term5, Term0, "constructor definition", ok(F, As)),
convert_constructor_arg_list(As, Args),
Result = ctor(ExistQVars, Constraints, F, Args).
%-----------------------------------------------------------------------------%
% parse a `:- pred p(...)' declaration
:- pred process_pred(module_name, varset, term, condition, maybe(determinism),
decl_attrs, maybe1(item)).
:- mode process_pred(in, in, in, in, in, in, out) is det.
process_pred(ModuleName, VarSet, PredType, Cond, MaybeDet, Attributes0,
Result) :-
get_class_context(ModuleName, Attributes0, Attributes, MaybeContext),
(
MaybeContext = ok(ExistQVars, Constraints),
parse_implicitly_qualified_term(ModuleName,
PredType, PredType, "`:- pred' declaration",
R),
process_pred_2(R, PredType, VarSet, MaybeDet, Cond,
ExistQVars, Constraints, Attributes, Result)
;
MaybeContext = error(String, Term),
Result = error(String, Term)
).
:- pred process_pred_2(maybe_functor, term, varset, maybe(determinism),
condition, existq_tvars, class_constraints, decl_attrs,
maybe1(item)).
:- mode process_pred_2(in, in, in, in, in, in, in, in, out) is det.
process_pred_2(ok(F, As0), PredType, VarSet0, MaybeDet, Cond, ExistQVars,
ClassContext, Attributes0, Result) :-
( convert_type_and_mode_list(As0, As) ->
( verify_type_and_mode_list(As) ->
get_purity(Attributes0, Purity, Attributes),
varset__coerce(VarSet0, TVarSet),
varset__coerce(VarSet0, IVarSet),
Result0 = ok(pred(TVarSet, IVarSet, ExistQVars, F,
As, MaybeDet, Cond, Purity, ClassContext)),
check_no_attributes(Result0, Attributes, Result)
;
Result = error("some but not all arguments have modes",
PredType)
)
;
Result = error("syntax error in `:- pred' declaration",
PredType)
).
process_pred_2(error(M, T), _, _, _, _, _, _, _, error(M, T)).
:- pred get_purity(decl_attrs, purity, decl_attrs).
:- mode get_purity(in, out, out) is det.
get_purity(Attributes0, Purity, Attributes) :-
( Attributes0 = [purity(Purity0) - _ | Attributes1] ->
Purity = Purity0,
Attributes = Attributes1
;
Purity = (pure),
Attributes = Attributes0
).
%-----------------------------------------------------------------------------%
% We could perhaps get rid of some code duplication between here and
% prog_io_typeclass.m?
% get_class_context(ModuleName, Attributes0, Attributes, MaybeContext):
% Parse type quantifiers and type class constraints from the
% declaration attributes in Attributes0.
% MaybeContext is either bound to the correctly parsed context, or
% an appropriate error message (if there was a syntax error).
% Attributes is bound to the remaining attributes.
:- pred get_class_context(module_name, decl_attrs, decl_attrs,
maybe2(existq_tvars, class_constraints)).
:- mode get_class_context(in, in, out, out) is det.
get_class_context(ModuleName, RevAttributes0, RevAttributes, MaybeContext) :-
%
% constraints and quantifiers should occur in the following
% order (outermost to innermost):
%
% operator precedence
% ------- ----------
% 1. universal quantifiers all 950
% 2. existential quantifiers some 950
% 3. universal constraints <= 920
% 4. existential constraints => 920 [*]
% 5. the decl itself pred or func 800
%
% When we reach here, Attributes0 contains declaration attributes
% in the opposite order -- innermost to outermost -- so we reverse
% them before we start.
%
% [*] Note that the semantic meaning of `=>' is not quite
% the same as implication; logically speaking it's more
% like conjunction. Oh well, at least it has the right
% precedence.
%
% In theory it could make sense to allow the order of 2 & 3 to be
% swapped, or (in the case of multiple constraints & multiple
% quantifiers) to allow arbitrary interleaving of 2 & 3, but in
% practice it seems there would be little benefit in allowing that
% flexibility, so we don't.
%
% Universal quantification is the default, so we just ignore
% universal quantifiers. (XXX It might be a good idea to check
% that any universally quantified type variables do actually
% occur somewhere in the type declaration, and are not also
% existentially quantified, and if not, issue a warning or
% error message.)
list__reverse(RevAttributes0, Attributes0),
get_quant_tvars(univ, ModuleName, Attributes0, [],
Attributes1, _UnivQVars),
get_quant_tvars(exist, ModuleName, Attributes1, [],
Attributes2, ExistQVars),
get_constraints(univ, ModuleName, Attributes2,
Attributes3, MaybeUnivConstraints),
get_constraints(exist, ModuleName, Attributes3,
Attributes, MaybeExistConstraints),
list__reverse(Attributes, RevAttributes),
combine_quantifier_results(MaybeUnivConstraints, MaybeExistConstraints,
ExistQVars, MaybeContext).
:- pred combine_quantifier_results(maybe1(list(class_constraint)),
maybe1(list(class_constraint)), existq_tvars,
maybe2(existq_tvars, class_constraints)).
:- mode combine_quantifier_results(in, in, in, out) is det.
combine_quantifier_results(error(Msg, Term), _, _, error(Msg, Term)).
combine_quantifier_results(ok(_), error(Msg, Term), _, error(Msg, Term)).
combine_quantifier_results(
ok(UnivConstraints), ok(ExistConstraints), ExistQVars,
ok(ExistQVars, constraints(UnivConstraints, ExistConstraints))).
:- pred get_quant_tvars(quantifier_type, module_name, decl_attrs, list(tvar),
decl_attrs, list(tvar)).
:- mode get_quant_tvars(in, in, in, in, out, out) is det.
get_quant_tvars(QuantType, ModuleName, Attributes0, TVars0,
Attributes, TVars) :-
(
Attributes0 = [quantifier(QuantType, TVars1) - _ | Attributes1]
->
list__append(TVars0, TVars1, TVars2),
get_quant_tvars(QuantType, ModuleName, Attributes1, TVars2,
Attributes, TVars)
;
Attributes = Attributes0,
TVars = TVars0
).
:- pred get_constraints(quantifier_type, module_name, decl_attrs, decl_attrs,
maybe1(list(class_constraint))).
:- mode get_constraints(in, in, in, out, out) is det.
get_constraints(QuantType, ModuleName, Attributes0, Attributes,
MaybeConstraints) :-
(
Attributes0 = [constraints(QuantType, ConstraintsTerm) - _Term
| Attributes1]
->
parse_class_constraints(ModuleName, ConstraintsTerm,
MaybeConstraints0),
% there may be more constraints of the same type --
% collect them all and combine them
get_constraints(QuantType, ModuleName, Attributes1,
Attributes, MaybeConstraints1),
combine_constraint_list_results(MaybeConstraints1,
MaybeConstraints0, MaybeConstraints)
;
Attributes = Attributes0,
MaybeConstraints = ok([])
).
:- pred combine_constraint_list_results(maybe1(list(class_constraint)),
maybe1(list(class_constraint)), maybe1(list(class_constraint))).
:- mode combine_constraint_list_results(in, in, out) is det.
combine_constraint_list_results(error(Msg, Term), _, error(Msg, Term)).
combine_constraint_list_results(ok(_), error(Msg, Term), error(Msg, Term)).
combine_constraint_list_results(ok(Constraints0), ok(Constraints1),
ok(Constraints)) :-
list__append(Constraints0, Constraints1, Constraints).
:- pred get_existential_constraints_from_term(module_name, term, term,
maybe1(list(class_constraint))).
:- mode get_existential_constraints_from_term(in, in, out, out) is det.
get_existential_constraints_from_term(ModuleName, PredType0, PredType,
MaybeExistentialConstraints) :-
(
PredType0 = term__functor(term__atom("=>"),
[PredType1, ExistentialConstraints], _)
->
PredType = PredType1,
parse_class_constraints(ModuleName, ExistentialConstraints,
MaybeExistentialConstraints)
;
PredType = PredType0,
MaybeExistentialConstraints = ok([])
).
%-----------------------------------------------------------------------------%
% Verify that among the arguments of a :- pred declaration,
% either all arguments specify a mode or none of them do.
:- pred verify_type_and_mode_list(list(type_and_mode)).
:- mode verify_type_and_mode_list(in) is semidet.
verify_type_and_mode_list([]).
verify_type_and_mode_list([First | Rest]) :-
verify_type_and_mode_list_2(Rest, First).
:- pred verify_type_and_mode_list_2(list(type_and_mode), type_and_mode).
:- mode verify_type_and_mode_list_2(in, in) is semidet.
verify_type_and_mode_list_2([], _).
verify_type_and_mode_list_2([Head | Tail], First) :-
(
Head = type_only(_),
First = type_only(_)
;
Head = type_and_mode(_, _),
First = type_and_mode(_, _)
),
verify_type_and_mode_list_2(Tail, First).
%-----------------------------------------------------------------------------%
% parse a `:- func p(...)' declaration
:- pred process_func(module_name, varset, term, condition, decl_attrs,
maybe(determinism), maybe1(item)).
:- mode process_func(in, in, in, in, in, in, out) is det.
process_func(ModuleName, VarSet, Term, Cond, Attributes0, MaybeDet, Result) :-
get_class_context(ModuleName, Attributes0, Attributes, MaybeContext),
(
MaybeContext = ok(ExistQVars, Constraints),
process_func_2(ModuleName, VarSet, Term,
Cond, MaybeDet, ExistQVars, Constraints, Attributes,
Result)
;
MaybeContext = error(String, ErrorTerm),
Result = error(String, ErrorTerm)
).
:- pred process_func_2(module_name, varset, term, condition,
maybe(determinism), existq_tvars, class_constraints, decl_attrs,
maybe1(item)).
:- mode process_func_2(in, in, in, in, in, in, in, in, out) is det.
process_func_2(ModuleName, VarSet, Term, Cond, MaybeDet,
ExistQVars, Constraints, Attributes, Result) :-
(
Term = term__functor(term__atom("="),
[FuncTerm, ReturnTypeTerm], _Context)
->
parse_implicitly_qualified_term(ModuleName, FuncTerm, Term,
"`:- func' declaration", R),
process_func_3(R, FuncTerm, ReturnTypeTerm, VarSet, MaybeDet,
Cond, ExistQVars, Constraints, Attributes,
Result)
;
Result = error("`=' expected in `:- func' declaration", Term)
).
:- pred process_func_3(maybe_functor, term, term, varset, maybe(determinism),
condition, existq_tvars, class_constraints, decl_attrs,
maybe1(item)).
:- mode process_func_3(in, in, in, in, in, in, in, in, in, out) is det.
process_func_3(ok(F, As0), FuncTerm, ReturnTypeTerm, VarSet0, MaybeDet, Cond,
ExistQVars, ClassContext, Attributes, Result) :-
( convert_type_and_mode_list(As0, As) ->
( \+ verify_type_and_mode_list(As) ->
Result = error("some but not all arguments have modes",
FuncTerm)
; convert_type_and_mode(ReturnTypeTerm, ReturnType) ->
(
As = [type_and_mode(_, _) | _],
ReturnType = type_only(_)
->
Result = error(
"function arguments have modes, but function result doesn't",
FuncTerm)
;
As = [type_only(_) | _],
ReturnType = type_and_mode(_, _)
->
Result = error(
"function result has mode, but function arguments don't",
FuncTerm)
;
ReturnType = type_only(_),
MaybeDet = yes(_)
->
Result = error(
"function declaration specifies a determinism but does not specify the mode",
FuncTerm)
;
% note: impure or semipure functions are not
% allowed
Purity = (pure),
varset__coerce(VarSet0, TVarSet),
varset__coerce(VarSet0, IVarSet),
Result0 = ok(func(TVarSet, IVarSet, ExistQVars,
F, As, ReturnType, MaybeDet, Cond,
Purity, ClassContext)),
check_no_attributes(Result0, Attributes,
Result)
)
;
Result = error(
"syntax error in return type of `:- func' declaration",
ReturnTypeTerm)
)
;
Result = error(
"syntax error in arguments of `:- func' declaration",
FuncTerm)
).
process_func_3(error(M, T), _, _, _, _, _, _, _, _, error(M, T)).
%-----------------------------------------------------------------------------%
% parse a `:- mode p(...)' declaration
:- pred process_mode(module_name, varset, term, condition, maybe(determinism),
maybe1(item)).
:- mode process_mode(in, in, in, in, in, out) is det.
process_mode(ModuleName, VarSet, Term, Cond, MaybeDet, Result) :-
(
Term = term__functor(term__atom("="),
[FuncTerm, ReturnTypeTerm], _Context)
->
parse_implicitly_qualified_term(ModuleName, FuncTerm, Term,
"function `:- mode' declaration", R),
process_func_mode(R, FuncTerm, ReturnTypeTerm, VarSet, MaybeDet,
Cond, Result)
;
parse_implicitly_qualified_term(ModuleName, Term, Term,
"predicate `:- mode' declaration", R),
process_pred_mode(R, Term, VarSet, MaybeDet, Cond, Result)
).
:- pred process_pred_mode(maybe_functor, term, varset, maybe(determinism),
condition, maybe1(item)).
:- mode process_pred_mode(in, in, in, in, in, out) is det.
process_pred_mode(ok(F, As0), PredMode, VarSet0, MaybeDet, Cond, Result) :-
(
convert_mode_list(As0, As)
->
varset__coerce(VarSet0, VarSet),
Result = ok(pred_mode(VarSet, F, As, MaybeDet, Cond))
;
Result = error("syntax error in predicate mode declaration",
PredMode)
).
process_pred_mode(error(M, T), _, _, _, _, error(M, T)).
:- pred process_func_mode(maybe_functor, term, term, varset, maybe(determinism),
condition, maybe1(item)).
:- mode process_func_mode(in, in, in, in, in, in, out) is det.
process_func_mode(ok(F, As0), FuncMode, RetMode0, VarSet0, MaybeDet, Cond,
Result) :-
(
convert_mode_list(As0, As)
->
( convert_mode(RetMode0, RetMode) ->
varset__coerce(VarSet0, VarSet),
Result = ok(func_mode(VarSet, F, As, RetMode, MaybeDet,
Cond))
;
Result = error(
"syntax error in return mode of function mode declaration",
RetMode0)
)
;
Result = error(
"syntax error in arguments of function mode declaration",
FuncMode)
).
process_func_mode(error(M, T), _, _, _, _, _, error(M, T)).
%-----------------------------------------------------------------------------%
% Parse a `:- inst <InstDefn>.' declaration.
%
:- pred parse_inst_decl(module_name, varset, term, maybe1(item)).
:- mode parse_inst_decl(in, in, in, out) is det.
parse_inst_decl(ModuleName, VarSet, InstDefn, Result) :-
(
InstDefn = term__functor(term__atom(Op), [H, B], _Context),
( Op = "=" ; Op = "==" )
->
get_condition(B, Body, Condition),
convert_inst_defn(ModuleName, H, Body, R),
process_maybe1(make_inst_defn(VarSet, Condition), R, Result)
;
% XXX this is for `abstract inst' declarations,
% which are not really supported
InstDefn = term__functor(term__atom("is"), [
Head,
term__functor(term__atom("private"), [], _)
], _)
->
Condition = true,
convert_abstract_inst_defn(ModuleName, Head, R),
process_maybe1(make_inst_defn(VarSet, Condition), R, Result)
;
InstDefn = term__functor(term__atom("--->"), [H, B], Context)
->
get_condition(B, Body, Condition),
Body1 = term__functor(term__atom("bound"), [Body], Context),
convert_inst_defn(ModuleName, H, Body1, R),
process_maybe1(make_inst_defn(VarSet, Condition), R, Result)
;
Result = error("`=' expected in `:- inst' definition", InstDefn)
).
% we should check the condition for errs
% (don't bother at the moment, since we ignore
% conditions anyhow :-)
% Parse a `:- inst <Head> ---> <Body>.' definition.
%
:- pred convert_inst_defn(module_name, term, term, maybe1(inst_defn)).
:- mode convert_inst_defn(in, in, in, out) is det.
convert_inst_defn(ModuleName, Head, Body, Result) :-
parse_implicitly_qualified_term(ModuleName,
Head, Body, "inst definition", R),
convert_inst_defn_2(R, Head, Body, Result).
:- pred convert_inst_defn_2(maybe_functor, term, term, maybe1(inst_defn)).
:- mode convert_inst_defn_2(in, in, in, out) is det.
convert_inst_defn_2(error(M, T), _, _, error(M, T)).
convert_inst_defn_2(ok(Name, Args), Head, Body, Result) :-
% check that all the head args are variables
( %%% some [Arg]
(
list__member(Arg, Args),
Arg \= term__variable(_)
)
->
Result = error("inst parameters must be variables", Head)
;
% check that all the head arg variables are distinct
%%% some [Arg2, OtherArgs]
(
list__member(Arg2, Args, [Arg2|OtherArgs]),
list__member(Arg2, OtherArgs)
)
->
Result = error("repeated inst parameters in LHS of inst defn",
Head)
;
% check that all the variables in the body occur in the head
%%% some [Var2]
(
term__contains_var(Body, Var2),
\+ term__contains_var_list(Args, Var2)
)
->
Result = error("free inst parameter in RHS of inst definition",
Body)
;
% check that the inst is a valid user-defined inst, i.e. that
% it does not have the form of one of the builtin insts
\+ (
convert_inst(Head, UserInst),
UserInst = defined_inst(user_inst(_, _))
)
->
Result = error("attempt to redefine builtin inst", Head)
;
% should improve the error message here
( %%% some [ConvertedBody]
convert_inst(Body, ConvertedBody)
->
list__map(term__coerce, Args, InstArgs),
Result = ok(eqv_inst(Name, InstArgs, ConvertedBody))
;
Result = error("syntax error in inst body", Body)
)
).
:- pred convert_abstract_inst_defn(module_name, term, maybe1(inst_defn)).
:- mode convert_abstract_inst_defn(in, in, out) is det.
convert_abstract_inst_defn(ModuleName, Head, Result) :-
parse_implicitly_qualified_term(ModuleName, Head, Head,
"inst definition", R),
convert_abstract_inst_defn_2(R, Head, Result).
:- pred convert_abstract_inst_defn_2(maybe_functor, term, maybe1(inst_defn)).
:- mode convert_abstract_inst_defn_2(in, in, out) is det.
convert_abstract_inst_defn_2(error(M, T), _, error(M, T)).
convert_abstract_inst_defn_2(ok(Name, Args), Head, Result) :-
% check that all the head args are variables
( %%% some [Arg]
(
list__member(Arg, Args),
Arg \= term__variable(_)
)
->
Result = error("inst parameters must be variables", Head)
;
% check that all the head arg variables are distinct
%%% some [Arg2, OtherArgs]
(
list__member(Arg2, Args, [Arg2|OtherArgs]),
list__member(Arg2, OtherArgs)
)
->
Result = error(
"repeated inst parameters in abstract inst definition",
Head)
;
list__map(term__coerce, Args, InstArgs),
Result = ok(abstract_inst(Name, InstArgs))
).
:- pred make_inst_defn(varset, condition, inst_defn, item).
:- mode make_inst_defn(in, in, in, out) is det.
make_inst_defn(VarSet0, Cond, InstDefn, inst_defn(VarSet, InstDefn, Cond)) :-
varset__coerce(VarSet0, VarSet).
%-----------------------------------------------------------------------------%
% parse a `:- mode foo :: ...' or `:- mode foo = ...' definition.
:- pred parse_mode_decl(module_name, varset, term, maybe1(item)).
:- mode parse_mode_decl(in, in, in, out) is det.
parse_mode_decl(ModuleName, VarSet, ModeDefn, Result) :-
( %%% some [H, B]
mode_op(ModeDefn, H, B)
->
get_condition(B, Body, Condition),
convert_mode_defn(ModuleName, H, Body, R),
process_maybe1(make_mode_defn(VarSet, Condition), R, Result)
;
parse_mode_decl_pred(ModuleName, VarSet, ModeDefn, Result)
).
% People never seem to remember what the right operator to use in a
% `:- mode' declaration is, so the syntax is forgiving. We allow
% `::', the standard one which has the right precedence, but we
% also allow `==' just to be nice.
:- pred mode_op(term, term, term).
:- mode mode_op(in, out, out) is semidet.
mode_op(term__functor(term__atom(Op), [H, B], _), H, B) :-
( Op = "::" ; Op = "==" ).
:- pred convert_mode_defn(module_name, term, term, maybe1(mode_defn)).
:- mode convert_mode_defn(in, in, in, out) is det.
convert_mode_defn(ModuleName, Head, Body, Result) :-
parse_implicitly_qualified_term(ModuleName, Head, Head,
"mode definition", R),
convert_mode_defn_2(R, Head, Body, Result).
:- pred convert_mode_defn_2(maybe_functor, term, term, maybe1(mode_defn)).
:- mode convert_mode_defn_2(in, in, in, out) is det.
convert_mode_defn_2(error(M, T), _, _, error(M, T)).
convert_mode_defn_2(ok(Name, Args), Head, Body, Result) :-
% check that all the head args are variables
( %%% some [Arg]
(
list__member(Arg, Args),
Arg \= term__variable(_)
)
->
Result = error("mode parameters must be variables", Head)
;
% check that all the head arg variables are distinct
%%% some [Arg2, OtherArgs]
(
list__member(Arg2, Args, [Arg2|OtherArgs]),
list__member(Arg2, OtherArgs)
)
->
Result = error("repeated parameters in LHS of mode defn",
Head)
% check that all the variables in the body occur in the head
; %%% some [Var2]
(
term__contains_var(Body, Var2),
\+ term__contains_var_list(Args, Var2)
)
->
Result = error("free inst parameter in RHS of mode definition",
Body)
;
% should improve the error message here
( %%% some [ConvertedBody]
convert_mode(Body, ConvertedBody)
->
list__map(term__coerce, Args, InstArgs),
Result = ok(eqv_mode(Name, InstArgs, ConvertedBody))
;
% catch-all error message - we should do
% better than this
Result = error("syntax error in mode definition body",
Body)
)
).
:- pred convert_type_and_mode_list(list(term), list(type_and_mode)).
:- mode convert_type_and_mode_list(in, out) is semidet.
convert_type_and_mode_list([], []).
convert_type_and_mode_list([H0|T0], [H|T]) :-
convert_type_and_mode(H0, H),
convert_type_and_mode_list(T0, T).
:- pred convert_type_and_mode(term, type_and_mode).
:- mode convert_type_and_mode(in, out) is semidet.
convert_type_and_mode(Term, Result) :-
(
Term = term__functor(term__atom("::"), [TypeTerm, ModeTerm],
_Context)
->
convert_type(TypeTerm, Type),
convert_mode(ModeTerm, Mode),
Result = type_and_mode(Type, Mode)
;
convert_type(Term, Type),
Result = type_only(Type)
).
:- pred make_mode_defn(varset, condition, mode_defn, item).
:- mode make_mode_defn(in, in, in, out) is det.
make_mode_defn(VarSet0, Cond, ModeDefn, mode_defn(VarSet, ModeDefn, Cond)) :-
varset__coerce(VarSet0, VarSet).
%-----------------------------------------------------------------------------%
:- type parser(T) == pred(term, maybe1(T)).
:- mode parser :: pred(in, out) is det.
:- type maker(T1, T2) == pred(T1, T2).
:- mode maker :: pred(in, out) is det.
:- pred parse_symlist_decl(parser(T), maker(list(T), sym_list),
maker(sym_list, module_defn),
term, decl_attrs, varset, maybe1(item)).
:- mode parse_symlist_decl(parser, maker, maker, in, in, in, out) is det.
parse_symlist_decl(ParserPred, MakeSymListPred, MakeModuleDefnPred,
Term, Attributes, VarSet, Result) :-
parse_list(ParserPred, Term, Result0),
process_maybe1(make_module_defn(MakeSymListPred, MakeModuleDefnPred,
VarSet), Result0, Result1),
check_no_attributes(Result1, Attributes, Result).
:- pred make_module_defn(maker(T, sym_list), maker(sym_list, module_defn),
varset, T, item).
:- mode make_module_defn(maker, maker, in, in, out) is det.
make_module_defn(MakeSymListPred, MakeModuleDefnPred, VarSet0, T,
module_defn(VarSet, ModuleDefn)) :-
varset__coerce(VarSet0, VarSet),
call(MakeSymListPred, T, SymList),
call(MakeModuleDefnPred, SymList, ModuleDefn).
%-----------------------------------------------------------------------------%
% Parse a comma-separated list (misleading described as
% a "conjunction") of things.
:- pred parse_list(parser(T), term, maybe1(list(T))).
:- mode parse_list(parser, in, out) is det.
parse_list(Parser, Term, Result) :-
conjunction_to_list(Term, List),
parse_list_2(List, Parser, Result).
:- pred parse_list_2(list(term), parser(T), maybe1(list(T))).
:- mode parse_list_2(in, parser, out) is det.
parse_list_2([], _, ok([])).
parse_list_2([X|Xs], Parser, Result) :-
call(Parser, X, X_Result),
parse_list_2(Xs, Parser, Xs_Result),
combine_list_results(X_Result, Xs_Result, Result).
% If a list of things contains multiple errors, then we only
% report the first one.
:- pred combine_list_results(maybe1(T), maybe1(list(T)), maybe1(list(T))).
:- mode combine_list_results(in, in, out) is det.
combine_list_results(error(Msg, Term), _, error(Msg, Term)).
combine_list_results(ok(_), error(Msg, Term), error(Msg, Term)).
combine_list_results(ok(X), ok(Xs), ok([X|Xs])).
%-----------------------------------------------------------------------------%
:- pred process_maybe1(maker(T1, T2), maybe1(T1), maybe1(T2)).
:- mode process_maybe1(maker, in, out) is det.
process_maybe1(Maker, ok(X), ok(Y)) :- !, call(Maker, X, Y).
process_maybe1(_, error(M, T), error(M, T)).
:- pred process_maybe1_to_t(maker(T1, maybe1(T2)), maybe1(T1), maybe1(T2)).
:- mode process_maybe1_to_t(maker, in, out) is det.
process_maybe1_to_t(Maker, ok(X), Y) :- !, call(Maker, X, Y).
process_maybe1_to_t(_, error(M, T), error(M, T)).
%-----------------------------------------------------------------------------%
:- pred make_module(list(module_specifier)::in, sym_list::out) is det.
make_module(X, module(X)).
:- pred make_sym(list(sym_specifier)::in, sym_list::out) is det.
make_sym(X, sym(X)).
:- pred make_pred(list(pred_specifier)::in, sym_list::out) is det.
make_pred(X, pred(X)).
:- pred make_func(list(func_specifier)::in, sym_list::out) is det.
make_func(X, func(X)).
:- pred make_cons(list(cons_specifier)::in, sym_list::out) is det.
make_cons(X, cons(X)).
:- pred make_type(list(type_specifier)::in, sym_list::out) is det.
make_type(X, type(X)).
:- pred make_adt(list(adt_specifier)::in, sym_list::out) is det.
make_adt(X, adt(X)).
:- pred make_op(list(op_specifier)::in, sym_list::out) is det.
make_op(X, op(X)).
%-----------------------------------------------------------------------------%
%
% A symbol specifier is one of
%
% SymbolNameSpecifier
% Matches any symbol matched by the SymbolNameSpecifier.
% TypedConstructorSpecifier
% Matches any constructors matched by the
% TypedConstructorSpecifier.
% cons(ConstructorSpecifier)
% Matches only constructors.
% pred(PredSpecifier)
% Matches only predicates, ie. constructors of type
% `pred'.
% adt(SymbolNameSpecifier)
% Matches only type names.
% type(SymbolNameSpecifier)
% Matches type names matched by the SymbolNameSpecifier,
% and also matches any constructors for the matched type
% names.
% op(SymbolNameSpecifier)
% Matches only operators.
% module(ModuleSpecifier)
% Matches all symbols in the specified module.
:- pred parse_symbol_specifier(term, maybe1(sym_specifier)).
:- mode parse_symbol_specifier(in, out) is det.
parse_symbol_specifier(MainTerm, Result) :-
( MainTerm = term__functor(term__atom(Functor), [Term], _Context) ->
( Functor = "cons" ->
parse_constructor_specifier(Term, Result0),
process_maybe1(make_cons_symbol_specifier, Result0,
Result)
; Functor = "pred" ->
parse_predicate_specifier(Term, Result0),
process_maybe1(make_pred_symbol_specifier, Result0,
Result)
; Functor = "func" ->
parse_function_specifier(Term, Result0),
process_maybe1(make_func_symbol_specifier, Result0,
Result)
; Functor = "type" ->
parse_type_specifier(Term, Result0),
process_maybe1(make_type_symbol_specifier, Result0,
Result)
; Functor = "adt" ->
parse_adt_specifier(Term, Result0),
process_maybe1(make_adt_symbol_specifier, Result0,
Result)
; Functor = "op" ->
parse_op_specifier(Term, Result0),
process_maybe1(make_op_symbol_specifier, Result0,
Result)
; Functor = "module" ->
parse_module_specifier(Term, Result0),
process_maybe1(make_module_symbol_specifier, Result0,
Result)
;
parse_constructor_specifier(MainTerm, Result0),
process_maybe1(make_cons_symbol_specifier, Result0,
Result)
)
;
parse_constructor_specifier(MainTerm, Result0),
process_maybe1(make_cons_symbol_specifier, Result0, Result)
).
% Once we've parsed the appropriate type of symbol specifier, we
% need to convert it to a sym_specifier.
:- pred make_pred_symbol_specifier(pred_specifier::in, sym_specifier::out)
is det.
make_pred_symbol_specifier(PredSpec, pred(PredSpec)).
:- pred make_func_symbol_specifier(func_specifier::in, sym_specifier::out)
is det.
make_func_symbol_specifier(FuncSpec, func(FuncSpec)).
:- pred make_cons_symbol_specifier(cons_specifier::in, sym_specifier::out)
is det.
make_cons_symbol_specifier(ConsSpec, cons(ConsSpec)).
:- pred make_type_symbol_specifier(type_specifier::in, sym_specifier::out)
is det.
make_type_symbol_specifier(TypeSpec, type(TypeSpec)).
:- pred make_adt_symbol_specifier(adt_specifier::in, sym_specifier::out) is det.
make_adt_symbol_specifier(ADT_Spec, adt(ADT_Spec)).
:- pred make_op_symbol_specifier(op_specifier::in, sym_specifier::out) is det.
make_op_symbol_specifier(OpSpec, op(OpSpec)).
:- pred make_module_symbol_specifier(module_specifier::in, sym_specifier::out)
is det.
make_module_symbol_specifier(ModuleSpec, module(ModuleSpec)).
:- pred cons_specifier_to_sym_specifier(cons_specifier, sym_specifier).
:- mode cons_specifier_to_sym_specifier(in, out) is det.
cons_specifier_to_sym_specifier(sym(SymSpec), sym(SymSpec)).
cons_specifier_to_sym_specifier(typed(SymSpec), typed_sym(SymSpec)).
%-----------------------------------------------------------------------------%
% A ModuleSpecifier is just an sym_name.
:- pred parse_module_specifier(term, maybe1(module_specifier)).
:- mode parse_module_specifier(in, out) is det.
parse_module_specifier(Term, Result) :-
parse_symbol_name(Term, Result).
% A ModuleName is an implicitly-quantified sym_name.
%
% We check for module names starting with capital letters
% as a special case, so that we can report a better error
% message for that case.
:- pred parse_module_name(module_name, term, maybe1(module_name)).
:- mode parse_module_name(in, in, out) is det.
parse_module_name(DefaultModuleName, Term, Result) :-
(
Term = term__variable(_)
->
dummy_term(ErrorContext),
Result = error("module names starting with capital letters must be quoted using single quotes (e.g. "":- module 'Foo'."")", ErrorContext)
;
parse_implicitly_qualified_symbol_name(DefaultModuleName,
Term, Result)
).
%-----------------------------------------------------------------------------%
% A ConstructorSpecifier is one of
% SymbolNameSpecifier
% TypedConstructorSpecifier
%
% A TypedConstructorSpecifier is one of
% SymbolNameSpecifier::Type
% Matches only constructors with the specified result
% type.
% SymbolName(ArgType1, ..., ArgTypeN)
% Matches only constructors with the specified argument
% types.
% SymbolName(ArgType1, ..., ArgTypeN)::Type
% Matches only constructors with the specified argument
% and result types.
:- pred parse_constructor_specifier(term, maybe1(cons_specifier)).
:- mode parse_constructor_specifier(in, out) is det.
parse_constructor_specifier(Term, Result) :-
(
Term = term__functor(term__atom("::"), [NameArgsTerm, TypeTerm],
_Context)
->
parse_arg_types_specifier(NameArgsTerm, NameArgsResult),
parse_type(TypeTerm, TypeResult),
process_typed_constructor_specifier(NameArgsResult, TypeResult, Result)
;
parse_arg_types_specifier(Term, TermResult),
process_maybe1(make_untyped_cons_spec, TermResult, Result)
).
%-----------------------------------------------------------------------------%
% A PredicateSpecifier is one of
% SymbolName(ArgType1, ..., ArgTypeN)
% Matches only predicates with the specified argument
% types.
% SymbolNameSpecifier
:- pred parse_predicate_specifier(term, maybe1(pred_specifier)).
:- mode parse_predicate_specifier(in, out) is det.
parse_predicate_specifier(Term, Result) :-
(
Term = term__functor(term__atom("/"), [_,_], _Context)
->
parse_symbol_name_specifier(Term, NameResult),
process_maybe1(make_arity_predicate_specifier, NameResult, Result)
;
parse_qualified_term(Term, Term, "predicate specifier", TermResult),
process_typed_predicate_specifier(TermResult, Result)
).
:- pred process_typed_predicate_specifier(maybe_functor, maybe1(pred_specifier)).
:- mode process_typed_predicate_specifier(in, out) is det.
process_typed_predicate_specifier(ok(Name, Args0), ok(Result)) :-
( Args0 = [] ->
Result = sym(name(Name))
;
list__map(term__coerce, Args0, Args),
Result = name_args(Name, Args)
).
process_typed_predicate_specifier(error(Msg, Term), error(Msg, Term)).
:- pred make_arity_predicate_specifier(sym_name_specifier, pred_specifier).
:- mode make_arity_predicate_specifier(in, out) is det.
make_arity_predicate_specifier(Result, sym(Result)).
%-----------------------------------------------------------------------------%
% Parsing the name & argument types of a constructor specifier is
% exactly the same as parsing a predicate specifier...
:- pred parse_arg_types_specifier(term, maybe1(pred_specifier)).
:- mode parse_arg_types_specifier(in, out) is det.
parse_arg_types_specifier(Term, Result) :-
(
Term = term__functor(term__atom("/"), [_,_], _Context)
->
parse_symbol_name_specifier(Term, NameResult),
process_maybe1(make_arity_predicate_specifier, NameResult, Result)
;
parse_qualified_term(Term, Term, "constructor specifier", TermResult),
process_typed_predicate_specifier(TermResult, Result)
).
% ... but we have to convert the result back into the appropriate
% format.
:- pred process_typed_constructor_specifier(maybe1(pred_specifier),
maybe1(type), maybe1(cons_specifier)).
:- mode process_typed_constructor_specifier(in, in, out) is det.
process_typed_constructor_specifier(error(Msg, Term), _, error(Msg, Term)).
process_typed_constructor_specifier(ok(_), error(Msg, Term), error(Msg, Term)).
process_typed_constructor_specifier(ok(NameArgs), ok(ResType), ok(Result)) :-
process_typed_cons_spec_2(NameArgs, ResType, Result).
:- pred process_typed_cons_spec_2(pred_specifier, type, cons_specifier).
:- mode process_typed_cons_spec_2(in, in, out) is det.
process_typed_cons_spec_2(sym(Name), Res, typed(name_res(Name, Res))).
process_typed_cons_spec_2(name_args(Name, Args), Res,
typed(name_args_res(Name, Args, Res))).
:- pred make_untyped_cons_spec(pred_specifier::in, cons_specifier::out) is det.
make_untyped_cons_spec(sym(Name), sym(Name)).
make_untyped_cons_spec(name_args(Name, Args), typed(name_args(Name, Args))).
%-----------------------------------------------------------------------------%
% A SymbolNameSpecifier is one of
% SymbolName
% SymbolName/Arity
% Matches only symbols of the specified arity.
%
:- pred parse_symbol_name_specifier(term, maybe1(sym_name_specifier)).
:- mode parse_symbol_name_specifier(in, out) is det.
parse_symbol_name_specifier(Term, Result) :-
( %%% some [NameTerm, ArityTerm, Context]
Term = term__functor(term__atom("/"), [NameTerm, ArityTerm], _Context)
->
( %%% some [Arity, Context2]
ArityTerm = term__functor(term__integer(Arity), [], _Context2)
->
( Arity >= 0 ->
parse_symbol_name(NameTerm, NameResult),
process_maybe1(make_name_arity_specifier(Arity), NameResult,
Result)
;
Result = error("arity in symbol name specifier must be a non-negative integer", Term)
)
;
Result = error("arity in symbol name specifier must be an integer", Term)
)
;
parse_symbol_name(Term, SymbolNameResult),
process_maybe1(make_name_specifier, SymbolNameResult, Result)
).
:- pred make_name_arity_specifier(arity, sym_name, sym_name_specifier).
:- mode make_name_arity_specifier(in, in, out) is det.
make_name_arity_specifier(Arity, Name, name_arity(Name, Arity)).
:- pred make_name_specifier(sym_name::in, sym_name_specifier::out) is det.
make_name_specifier(Name, name(Name)).
%-----------------------------------------------------------------------------%
% A SymbolName is one of
% Name
% Matches symbols with the specified name in the
% current namespace.
% Module:Name
% Matches symbols with the specified name exported
% by the specified module (where Module is itself
% a SymbolName).
%
% We also allow the syntax `Module__Name'
% as an alternative for `Module:Name'.
:- pred parse_symbol_name(term(T), maybe1(sym_name)).
:- mode parse_symbol_name(in, out) is det.
parse_symbol_name(Term, Result) :-
(
Term = term__functor(term__atom(":"), [ModuleTerm, NameTerm], _Context)
->
(
NameTerm = term__functor(term__atom(Name), [], _Context1)
->
parse_symbol_name(ModuleTerm, ModuleResult),
(
ModuleResult = ok(Module),
Result = ok(qualified(Module, Name))
;
ModuleResult = error(_, _),
term__coerce(Term, ErrorTerm),
Result = error("module name identifier expected before ':' in qualified symbol name", ErrorTerm)
)
;
term__coerce(Term, ErrorTerm),
Result = error("identifier expected after ':' in qualified symbol name", ErrorTerm)
)
;
(
Term = term__functor(term__atom(Name), [], _Context3)
->
string_to_sym_name(Name, "__", SymName),
Result = ok(SymName)
;
term__coerce(Term, ErrorTerm),
Result = error("symbol name expected", ErrorTerm)
)
).
:- pred parse_implicitly_qualified_symbol_name(module_name, term,
maybe1(sym_name)).
:- mode parse_implicitly_qualified_symbol_name(in, in, out) is det.
parse_implicitly_qualified_symbol_name(DefaultModName, Term, Result) :-
parse_symbol_name(Term, Result0),
( Result0 = ok(SymName) ->
(
root_module_name(DefaultModName)
->
Result = Result0
;
SymName = qualified(ModName, _),
\+ match_sym_name(ModName, DefaultModName)
->
Result = error("module qualifier in definition does not match preceding `:- module' declaration", Term)
;
unqualify_name(SymName, UnqualName),
Result = ok(qualified(DefaultModName, UnqualName))
)
;
Result = Result0
).
%-----------------------------------------------------------------------------%
% A QualifiedTerm is one of
% Name(Args)
% Module:Name(Args)
% (or if Args is empty, one of
% Name
% Module:Name)
% where Module is a SymName.
% For backwards compatibility, we allow `__'
% as an alternative to `:'.
sym_name_and_args(Term, SymName, Args) :-
parse_qualified_term(Term, Term, "", ok(SymName, Args)).
parse_implicitly_qualified_term(DefaultModName, Term, ContainingTerm, Msg,
Result) :-
parse_qualified_term(Term, ContainingTerm, Msg, Result0),
( Result0 = ok(SymName, Args) ->
(
root_module_name(DefaultModName)
->
Result = Result0
;
SymName = qualified(ModName, _),
\+ match_sym_name(ModName, DefaultModName)
->
term__coerce(Term, ErrorTerm),
Result = error("module qualifier in definition does not match preceding `:- module' declaration", ErrorTerm)
;
unqualify_name(SymName, UnqualName),
Result = ok(qualified(DefaultModName, UnqualName), Args)
)
;
Result = Result0
).
parse_qualified_term(Term, ContainingTerm, Msg, Result) :-
(
Term = term__functor(term__atom(":"), [ModuleTerm, NameArgsTerm],
_Context)
->
(
NameArgsTerm = term__functor(term__atom(Name), Args, _Context2)
->
parse_symbol_name(ModuleTerm, ModuleResult),
(
ModuleResult = ok(Module),
Result = ok(qualified(Module, Name), Args)
;
ModuleResult = error(_, _),
term__coerce(Term, ErrorTerm),
Result = error("module name identifier expected before ':' in qualified symbol name", ErrorTerm)
)
;
term__coerce(Term, ErrorTerm),
Result = error("identifier expected after ':' in qualified symbol name", ErrorTerm)
)
;
(
Term = term__functor(term__atom(Name), Args, _Context4)
->
string_to_sym_name(Name, "__", SymName),
Result = ok(SymName, Args)
;
string__append("atom expected in ", Msg, ErrorMsg),
%
% since variables don't have any term__context,
% if Term is a variable, we use ContainingTerm instead
% (hopefully that _will_ have a term__context).
%
( Term = term__variable(_) ->
ErrorTerm0 = ContainingTerm
;
ErrorTerm0 = Term
),
term__coerce(ErrorTerm0, ErrorTerm),
Result = error(ErrorMsg, ErrorTerm)
)
).
%-----------------------------------------------------------------------------%
% predicates used to convert a sym_list to a program item
:- pred make_use(sym_list::in, module_defn::out) is det.
make_use(Syms, use(Syms)).
:- pred make_import(sym_list::in, module_defn::out) is det.
make_import(Syms, import(Syms)).
:- pred make_export(sym_list::in, module_defn::out) is det.
make_export(Syms, export(Syms)).
%-----------------------------------------------------------------------------%
% A FuncSpecifier is just a constructur name specifier.
:- pred parse_function_specifier(term, maybe1(func_specifier)).
:- mode parse_function_specifier(in, out) is det.
parse_function_specifier(Term, Result) :-
parse_constructor_specifier(Term, Result).
% A TypeSpecifier is just a symbol name specifier.
:- pred parse_type_specifier(term, maybe1(sym_name_specifier)).
:- mode parse_type_specifier(in, out) is det.
parse_type_specifier(Term, Result) :-
parse_symbol_name_specifier(Term, Result).
% An ADT_Specifier is just a symbol name specifier.
:- pred parse_adt_specifier(term, maybe1(sym_name_specifier)).
:- mode parse_adt_specifier(in, out) is det.
parse_adt_specifier(Term, Result) :-
parse_symbol_name_specifier(Term, Result).
%-----------------------------------------------------------------------------%
% For the moment, an OpSpecifier is just a symbol name specifier.
% XXX We should allow specifying the fixity of an operator
:- pred parse_op_specifier(term, maybe1(op_specifier)).
:- mode parse_op_specifier(in, out) is det.
parse_op_specifier(Term, Result) :-
parse_symbol_name_specifier(Term, R),
process_maybe1(make_op_specifier, R, Result).
:- pred make_op_specifier(sym_name_specifier::in, op_specifier::out) is det.
make_op_specifier(X, sym(X)).
%-----------------------------------------------------------------------------%
% types are represented just as ordinary terms
:- pred parse_type(term, maybe1(type)).
:- mode parse_type(in, out) is det.
parse_type(T0, ok(T)) :-
term__coerce(T0, T).
:- pred convert_constructor_arg_list(list(term), list(constructor_arg)).
:- mode convert_constructor_arg_list(in, out) is det.
convert_constructor_arg_list([], []).
convert_constructor_arg_list([Term | Terms], [Arg | Args]) :-
(
Term = term__functor(term__atom("::"), [NameTerm, TypeTerm], _),
NameTerm = term__functor(term__atom(Name), [], _)
->
convert_type(TypeTerm, Type),
Arg = Name - Type
;
convert_type(Term, Type),
Arg = "" - Type
),
convert_constructor_arg_list(Terms, Args).
:- pred convert_type(term, type).
:- mode convert_type(in, out) is det.
convert_type(T0, T) :-
term__coerce(T0, T).
%-----------------------------------------------------------------------------%
% We use the empty module name ('') as the "root" module name; when adding
% default module qualifiers in parse_implicitly_qualified_{term,symbol},
% if the default module is the root module then we don't add any qualifier.
:- pred root_module_name(module_name::out) is det.
root_module_name(unqualified("")).
%-----------------------------------------------------------------------------%
|