1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
%-----------------------------------------------------------------------------%
% Copyright (C) 1994-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
% main author: fjh
% various utility predicates acting on the parse tree data
% structure defined in prog_data.m.
:- module prog_util.
:- interface.
:- import_module prog_data, term.
:- import_module std_util, list.
%-----------------------------------------------------------------------------%
% Returns the name of the module containing public builtins;
% originally this was "mercury_builtin", but it later became
% just "builtin", and it may eventually be renamed "std:builtin".
:- pred mercury_public_builtin_module(sym_name).
:- mode mercury_public_builtin_module(out) is det.
% Returns the name of the module containing private builtins;
% traditionally this was "mercury_builtin", but it later became
% "private_builtin", and it may eventually be renamed
% "std:private_builtin".
:- pred mercury_private_builtin_module(sym_name).
:- mode mercury_private_builtin_module(out) is det.
% Given a symbol name, return its unqualified name.
:- pred unqualify_name(sym_name, string).
:- mode unqualify_name(in, out) is det.
% sym_name_get_module_name(SymName, DefaultModName, ModName):
% Given a symbol name, return the module qualifier(s).
% If the symbol is unqualified, then return the specified default
% module name.
:- pred sym_name_get_module_name(sym_name, module_name, module_name).
:- mode sym_name_get_module_name(in, in, out) is det.
% string_to_sym_name(String, Separator, SymName):
% Convert a string, possibly prefixed with
% module qualifiers (separated by Separator),
% into a symbol name.
%
:- pred string_to_sym_name(string, string, sym_name).
:- mode string_to_sym_name(in, in, out) is det.
% match_sym_name(PartialSymName, CompleteSymName):
% succeeds iff there is some sequence of module qualifiers
% which when prefixed to PartialSymName gives CompleteSymName.
%
:- pred match_sym_name(sym_name, sym_name).
:- mode match_sym_name(in, in) is semidet.
% insert_module_qualifier(ModuleName, SymName0, SymName):
% prepend the specified ModuleName onto the module
% qualifiers in SymName0, giving SymName.
:- pred insert_module_qualifier(string, sym_name, sym_name).
:- mode insert_module_qualifier(in, in, out) is det.
% Given a possible module qualified sym_name and a list of
% argument types and a context, construct a term. This is
% used to construct types.
:- pred construct_qualified_term(sym_name, list(term(T)), term(T)).
:- mode construct_qualified_term(in, in, out) is det.
:- pred construct_qualified_term(sym_name, list(term(T)), prog_context, term(T)).
:- mode construct_qualified_term(in, in, in, out) is det.
%-----------------------------------------------------------------------------%
% make_pred_name_with_context(ModuleName, Prefix, PredOrFunc, PredName,
% Line, Counter, SymName).
%
% Create a predicate name with context, e.g. for introduced
% lambda or deforestation predicates.
:- pred make_pred_name(module_name, string, maybe(pred_or_func),
string, new_pred_id, sym_name).
:- mode make_pred_name(in, in, in, in, in, out) is det.
% make_pred_name_with_context(ModuleName, Prefix, PredOrFunc, PredName,
% Line, Counter, SymName).
%
% Create a predicate name with context, e.g. for introduced
% lambda or deforestation predicates.
:- pred make_pred_name_with_context(module_name, string, pred_or_func,
string, int, int, sym_name).
:- mode make_pred_name_with_context(in, in, in, in, in, in, out) is det.
:- type new_pred_id
---> counter(int, int) % Line number, Counter
; type_subst(tvarset, type_subst)
.
%-----------------------------------------------------------------------------%
% A pred declaration may contains just types, as in
% :- pred list__append(list(T), list(T), list(T)).
% or it may contain both types and modes, as in
% :- pred list__append(list(T)::in, list(T)::in,
% list(T)::output).
%
% This predicate takes the argument list of a pred declaration,
% splits it into two separate lists for the types and (if present)
% the modes.
:- type maybe_modes == maybe(list(mode)).
:- pred split_types_and_modes(list(type_and_mode), list(type), maybe_modes).
:- mode split_types_and_modes(in, out, out) is det.
:- pred split_type_and_mode(type_and_mode, type, maybe(mode)).
:- mode split_type_and_mode(in, out, out) is det.
%-----------------------------------------------------------------------------%
% Perform a substitution on a goal.
:- pred prog_util__rename_in_goal(goal, prog_var, prog_var, goal).
:- mode prog_util__rename_in_goal(in, in, in, out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module mercury_to_mercury, (inst).
:- import_module bool, string, int, map, varset.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% We may eventually want to put the standard library into a package "std":
% mercury_public_builtin_module(M) :-
% M = qualified(unqualified("std"), "builtin"))).
% mercury_private_builtin_module(M) :-
% M = qualified(unqualified("std"), "private_builtin"))).
mercury_public_builtin_module(unqualified("builtin")).
mercury_private_builtin_module(unqualified("private_builtin")).
unqualify_name(unqualified(PredName), PredName).
unqualify_name(qualified(_ModuleName, PredName), PredName).
sym_name_get_module_name(unqualified(_), ModuleName, ModuleName).
sym_name_get_module_name(qualified(ModuleName, _PredName), _, ModuleName).
construct_qualified_term(qualified(Module, Name), Args, Context, Term) :-
construct_qualified_term(Module, [], Context, ModuleTerm),
UnqualifiedTerm = term__functor(term__atom(Name), Args, Context),
Term = term__functor(term__atom(":"),
[ModuleTerm, UnqualifiedTerm], Context).
construct_qualified_term(unqualified(Name), Args, Context, Term) :-
Term = term__functor(term__atom(Name), Args, Context).
construct_qualified_term(SymName, Args, Term) :-
term__context_init(Context),
construct_qualified_term(SymName, Args, Context, Term).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
split_types_and_modes(TypesAndModes, Types, MaybeModes) :-
split_types_and_modes_2(TypesAndModes, yes, Types, Modes, Result),
(
Result = yes
->
MaybeModes = yes(Modes)
;
MaybeModes = no
).
:- pred split_types_and_modes_2(list(type_and_mode), bool,
list(type), list(mode), bool).
:- mode split_types_and_modes_2(in, in, out, out, out) is det.
% T = type, M = mode, TM = combined type and mode
split_types_and_modes_2([], Result, [], [], Result).
split_types_and_modes_2([TM|TMs], Result0, [T|Ts], [M|Ms], Result) :-
split_type_and_mode(TM, Result0, T, M, Result1),
split_types_and_modes_2(TMs, Result1, Ts, Ms, Result).
% if a pred declaration specifies modes for some but
% not all of the arguments, then the modes are ignored
% - should this be an error instead?
:- pred split_type_and_mode(type_and_mode, bool, type, mode, bool).
:- mode split_type_and_mode(in, in, out, out, out) is det.
split_type_and_mode(type_only(T), _, T, (free -> free), no).
split_type_and_mode(type_and_mode(T,M), R, T, M, R).
split_type_and_mode(type_only(T), T, no).
split_type_and_mode(type_and_mode(T,M), T, yes(M)).
%-----------------------------------------------------------------------------%
prog_util__rename_in_goal(Goal0 - Context, OldVar, NewVar, Goal - Context) :-
prog_util__rename_in_goal_expr(Goal0, OldVar, NewVar, Goal).
:- pred prog_util__rename_in_goal_expr(goal_expr, prog_var, prog_var,
goal_expr).
:- mode prog_util__rename_in_goal_expr(in, in, in, out) is det.
prog_util__rename_in_goal_expr((GoalA0, GoalB0), OldVar, NewVar,
(GoalA, GoalB)) :-
prog_util__rename_in_goal(GoalA0, OldVar, NewVar, GoalA),
prog_util__rename_in_goal(GoalB0, OldVar, NewVar, GoalB).
prog_util__rename_in_goal_expr((GoalA0 & GoalB0), OldVar, NewVar,
(GoalA & GoalB)) :-
prog_util__rename_in_goal(GoalA0, OldVar, NewVar, GoalA),
prog_util__rename_in_goal(GoalB0, OldVar, NewVar, GoalB).
prog_util__rename_in_goal_expr(true, _Var, _NewVar, true).
prog_util__rename_in_goal_expr((GoalA0; GoalB0), OldVar, NewVar,
(GoalA; GoalB)) :-
prog_util__rename_in_goal(GoalA0, OldVar, NewVar, GoalA),
prog_util__rename_in_goal(GoalB0, OldVar, NewVar, GoalB).
prog_util__rename_in_goal_expr(fail, _Var, _NewVar, fail).
prog_util__rename_in_goal_expr(not(Goal0), OldVar, NewVar, not(Goal)) :-
prog_util__rename_in_goal(Goal0, OldVar, NewVar, Goal).
prog_util__rename_in_goal_expr(some(Vars0, Goal0), OldVar, NewVar,
some(Vars, Goal)) :-
prog_util__rename_in_vars(Vars0, OldVar, NewVar, Vars),
prog_util__rename_in_goal(Goal0, OldVar, NewVar, Goal).
prog_util__rename_in_goal_expr(all(Vars0, Goal0), OldVar, NewVar,
all(Vars, Goal)) :-
prog_util__rename_in_vars(Vars0, OldVar, NewVar, Vars),
prog_util__rename_in_goal(Goal0, OldVar, NewVar, Goal).
prog_util__rename_in_goal_expr(implies(GoalA0, GoalB0), OldVar, NewVar,
implies(GoalA, GoalB)) :-
prog_util__rename_in_goal(GoalA0, OldVar, NewVar, GoalA),
prog_util__rename_in_goal(GoalB0, OldVar, NewVar, GoalB).
prog_util__rename_in_goal_expr(equivalent(GoalA0, GoalB0), OldVar, NewVar,
equivalent(GoalA, GoalB)) :-
prog_util__rename_in_goal(GoalA0, OldVar, NewVar, GoalA),
prog_util__rename_in_goal(GoalB0, OldVar, NewVar, GoalB).
prog_util__rename_in_goal_expr(if_then(Vars0, Cond0, Then0), OldVar, NewVar,
if_then(Vars, Cond, Then)) :-
prog_util__rename_in_vars(Vars0, OldVar, NewVar, Vars),
prog_util__rename_in_goal(Cond0, OldVar, NewVar, Cond),
prog_util__rename_in_goal(Then0, OldVar, NewVar, Then).
prog_util__rename_in_goal_expr(if_then_else(Vars0, Cond0, Then0, Else0),
OldVar, NewVar, if_then_else(Vars, Cond, Then, Else)) :-
prog_util__rename_in_vars(Vars0, OldVar, NewVar, Vars),
prog_util__rename_in_goal(Cond0, OldVar, NewVar, Cond),
prog_util__rename_in_goal(Then0, OldVar, NewVar, Then),
prog_util__rename_in_goal(Else0, OldVar, NewVar, Else).
prog_util__rename_in_goal_expr(call(SymName, Terms0, Purity), OldVar, NewVar,
call(SymName, Terms, Purity)) :-
term__substitute_list(Terms0, OldVar, term__variable(NewVar),
Terms).
prog_util__rename_in_goal_expr(unify(TermA0, TermB0), OldVar, NewVar,
unify(TermA, TermB)) :-
term__substitute(TermA0, OldVar, term__variable(NewVar),
TermA),
term__substitute(TermB0, OldVar, term__variable(NewVar),
TermB).
:- pred prog_util__rename_in_vars(list(prog_var), prog_var, prog_var,
list(prog_var)).
:- mode prog_util__rename_in_vars(in, in, in, out) is det.
prog_util__rename_in_vars([], _, _, []).
prog_util__rename_in_vars([Var0 | Vars0], OldVar, NewVar, [Var | Vars]) :-
( Var0 = OldVar ->
Var = NewVar
;
Var = Var0
),
prog_util__rename_in_vars(Vars0, OldVar, NewVar, Vars).
%-----------------------------------------------------------------------------%
% This would be simpler if we had a string__rev_sub_string_search/3 pred.
% With that, we could search for underscores right-to-left,
% and construct the resulting symbol directly.
% Instead, we search for them left-to-right, and then call
% insert_module_qualifier to fix things up.
string_to_sym_name(String, ModuleSeparator, Result) :-
(
string__sub_string_search(String, ModuleSeparator, LeftLength),
LeftLength > 0
->
string__left(String, LeftLength, ModuleName),
string__length(String, StringLength),
string__length(ModuleSeparator, SeparatorLength),
RightLength is StringLength - LeftLength - SeparatorLength,
string__right(String, RightLength, Name),
string_to_sym_name(Name, ModuleSeparator, NameSym),
insert_module_qualifier(ModuleName, NameSym, Result)
;
Result = unqualified(String)
).
insert_module_qualifier(ModuleName, unqualified(PlainName),
qualified(unqualified(ModuleName), PlainName)).
insert_module_qualifier(ModuleName, qualified(ModuleQual0, PlainName),
qualified(ModuleQual, PlainName)) :-
insert_module_qualifier(ModuleName, ModuleQual0, ModuleQual).
%-----------------------------------------------------------------------------%
% match_sym_name(PartialSymName, CompleteSymName):
% succeeds iff there is some sequence of module qualifiers
% which when prefixed to PartialSymName gives CompleteSymName.
match_sym_name(qualified(Module1, Name), qualified(Module2, Name)) :-
match_sym_name(Module1, Module2).
match_sym_name(unqualified(Name), unqualified(Name)).
match_sym_name(unqualified(Name), qualified(_, Name)).
%-----------------------------------------------------------------------------%
make_pred_name_with_context(ModuleName, Prefix,
PredOrFunc, PredName, Line, Counter, SymName) :-
make_pred_name(ModuleName, Prefix, yes(PredOrFunc), PredName,
counter(Line, Counter), SymName).
make_pred_name(ModuleName, Prefix, MaybePredOrFunc, PredName,
NewPredId, SymName) :-
(
MaybePredOrFunc = yes(PredOrFunc),
(
PredOrFunc = predicate,
PFS = "pred"
;
PredOrFunc = function,
PFS = "func"
)
;
MaybePredOrFunc = no,
PFS = "pred_or_func"
),
(
NewPredId = counter(Line, Counter),
string__format("%d__%d", [i(Line), i(Counter)], PredIdStr)
;
NewPredId = type_subst(VarSet, TypeSubst),
SubstToString = lambda([SubstElem::in, SubstStr::out] is det, (
SubstElem = Var - Type,
varset__lookup_name(VarSet, Var, VarName),
mercury_type_to_string(VarSet, Type, TypeString),
string__append_list([VarName, " = ", TypeString],
SubstStr)
)),
list_to_string(SubstToString, TypeSubst, PredIdStr)
),
string__format("%s__%s__%s__%s",
[s(Prefix), s(PFS), s(PredName), s(PredIdStr)], Name),
SymName = qualified(ModuleName, Name).
:- pred list_to_string(pred(T, string), list(T), string).
:- mode list_to_string(pred(in, out) is det, in, out) is det.
list_to_string(Pred, List, String) :-
list_to_string_2(Pred, List, Strings, ["]"]),
string__append_list(["[" | Strings], String).
:- pred list_to_string_2(pred(T, string), list(T), list(string), list(string)).
:- mode list_to_string_2(pred(in, out) is det, in, out, in) is det.
list_to_string_2(_, []) --> [].
list_to_string_2(Pred, [T | Ts]) -->
{ call(Pred, T, String) },
[String],
( { Ts = [] } ->
[]
;
[", "],
list_to_string_2(Pred, Ts)
).
%-----------------------------------------------------------------------------%
|