File: stack_layout.m

package info (click to toggle)
mercury 0.9-1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 18,488 kB
  • ctags: 9,800
  • sloc: objc: 146,680; ansic: 51,418; sh: 6,436; lisp: 1,567; cpp: 1,040; perl: 854; makefile: 450; asm: 232; awk: 203; exp: 32; fortran: 3; csh: 1
file content (1793 lines) | stat: -rw-r--r-- 70,967 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
%---------------------------------------------------------------------------%
% Copyright (C) 1997-1999 University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% This module generates the LLDS code that defines global constants to
% hold the `stack_layout' structures of the stack frames defined by the
% current module.
%
% The tables generated have a number of `create' rvals within them.
% llds_common.m converts these into static data structures.
%
% We can create several types of stack layouts. Which kind we generate
% depends on the values of several options.
%
% Main authors: trd, zs.
%
% NOTE: If you make changes in this file, you may also need to modify
% runtime/mercury_stack_layout.h.
%
%---------------------------------------------------------------------------%
%
% Data Stucture: stack_layouts
%
% If the option basic_stack_layout is set, we generate a MR_Stack_Layout_Entry
% for each procedure. This will be stored in the global variable whose name is
%	mercury_data__layout__mercury__<proc_label>.
% This structure will always contain stack tracing information:
%
%	code address		(Code *) - address of entry
% 	succip stack location	(uint_least32_t) actually, type MR_Long_Lval
% 					(the location will be set to -1
% 					if there is no succip available).
% 	number of stack slots	(uint_least16_t)
% 	determinism		(uint_least16_t) actually, type MR_Determinism
%
% If the option procid_stack_layout is set, i.e. if we are doing stack
% tracing, execution tracing or profiling, the structure will also include
% information on the identity of the procedure. This information will take
% one of two forms. Almost all procedures use the first form:
%
%	predicate/function	(Integer) actually, MR_pred_func
%	declaring module name	(String)
%	defining module name	(String)
%	predicate name		(String)
%	predicate arity		(int_least16_t)
%	procedure number	(int_least16_t)
%
% Automatically generated unification, index and comparison predicates
% use the second form:
%
%	type name		(String)
%	type module's name	(String)
%	defining module name	(String)
%	predicate name		(String)
%	predicate arity		(int_least16_t)
%	procedure number	(int_least16_t)
%
% The runtime system can figure out which form is present by testing
% the value of the first slot. A value of 0 or 1 indicates the first form;
% any higher value indicates the second form. The distinguished value -1
% indicates that procid_stack_layout is not set, and that the later fields
% are not present.
%
% The meanings of the fields in both forms are the same as in procedure labels.
%
% If the option trace_stack_layout is set, i.e. if we are doing execution
% tracing, the structure will also include some extra fields:
%
%	call trace info		(MR_Stack_Layout_Label *) - points to the
%				layout structure of the call event
%	module layout		(MR_Module_Layout *) - points to the layout
%				struct of the containing module.
%	max reg at trace event	(int_least16_t) - the number of the highest
%				numbered rN register live at a trace event
%				inside the procedure
%	maybe from full		(int_least8_t) - number of the stack slot of
%				the from_full flag, if the procedure is
%				shallow traced
%	maybe trail		(int_least8_t) - number of the first of two
%				stack slots used for recording the state of
%				the trail, if trailing is enabled
%	maybe decl debug	(int_least8_t) - number of the first of two
%				stack slots used by the declarative debugger,
%				if --trace-decl is set
%
% The first will point to the per-label layout info for the label associated
% with the call event at the entry to the procedure. The purpose of this
% information is to allow the runtime debugger to find out which variables
% are where on entry, so it can reexecute the procedure if asked to do so
% and if the values of the required variables are still available.
% (If trace_stack_layout is not set, this field will be present,
% but it will be set to NULL.)
%
% If the procedure is compiled with deep tracing, the fourth field will contain
% a negative number. If it is compiled with shallow tracing, it will contain
% the number of the stack slot that holds the flag that says whether this
% incarnation of the procedure was called from deeply traced code or not.
% (The determinism of the procedure decides whether the stack slot refers
% to a stackvar or a framevar.)
%
% If --trace-decl is not set, the sixth field will contain a negative number.
% If it is set, it will contain the number of the first of two stack slots
% used by the declarative debugger; the other slot is the next higher numbered
% one. (The determinism of the procedure decides whether the stack slot refers
% to a stackvar or a framevar.)
%
% If the option basic_stack_layout is set, we generate stack layout tables
% for some labels internal to the procedure. This table will be stored in the
% global variable whose name is
%	mercury_data__layout__mercury__<proc_label>_i<label_number>.
% This table has the following format:
%
%	proc layout		(Word *) - pointer to the layout structure of
%				the procedure containing this label
% 	trace port		(int_least16) - a representation of the trace
%				port associated with the label, or -1
% 	goal path		(int_least16) - an index into the module's
%				string table giving the goal path associated
%				with the trace port of the label, or -1
% 	# of live data items	(Integer) - an encoded representation of
%				the number of live data items at the label
% 	live data types locns 	(void *) - pointer to an area of memory
%				containing information about where the live
%				data items are and what their types are
% 	live data names	 	(MR_Var_Name *) - pointer to vector of
%				MR_Var_Name structs giving the HLDS var numbers
%				as well as the names of live data items
%	type parameters		(MR_Long_Lval *) - pointer to vector of
%			 	MR_Long_Lval giving the locations of the
%				typeinfos for the type parameters that may
%				be referred to by the types of the live data
%				items; the first word of the vector is an
%				integer giving the number of entries in the
%				vector; a NULL pointer means no type parameters
%
% The layout of the memory area containing information about the locations
% and types of live data items is somewhat complicated, due to our desire
% to make this information compact. We can represent a location in one of
% two ways, as an 8-bit MR_Short_Lval or as a 32-bit MR_Long_Lval.
% We prefer representing a location as an MR_Short_Lval, but of course
% not all locations can be represented in this way, so those other locations
% are represented as MR_Long_Lvals.
%
% The field containing the number of live data items is encoded by the
% formula (#Long << short_count_bits + #Short), where #Short is the number
% data items whose descriptions fit into an MR_Short_Lval and #Long is the
% number of data items whose descriptions do not. (The field is not an integer
% so that people who attempt to use it without going through the decoding
% macros in runtime/mercury_stack_layout.h get an error from the C compiler.
% The number of distinct values that fit into a uint_least_t also fits into
% 8 bits, but since some locations hold the value of more than one variable
% at a time, not all the values need to be distinct; this is why
% short_count_bits is more than 8.)
%
% The memory area contains three vectors back to back. The first vector
% has #Long + #Short word-sized elements, each of which is a pointer to a
% MR_PseudoTypeInfo giving the type of a live data item, with a small
% integer instead of a pointer representing a special kind of live data item
% (e.g. a saved succip or hp). The second vector is an array of #Long
% MR_Long_Lvals, and the third is an array of #Short MR_Short_Lvals,
% each of which describes a location. The pseudotypeinfo pointed to by
% the slot at subscript i in the first vector describes the type of
% the data stored in slot i in the second vector if i < #Long, and
% the type of the data stored in slot i - #Long in the third vector
% otherwise.
%
% The live data pair vector will have an entry for each live variable.
% The entry will give the location of the variable and its type.
%
% The live data name vector pointer may be NULL. If it is not, the vector
% will have an entry consisting of two 16-bit numbers for each live data item.
% The first is the live data item's HLDS variable number, or one of two
% special values. Zero means that the live data item is not a variable
% (e.g. it is a saved copy of succip). The largest possible 16-bit number
% on the other hand means "the number of this variable does not fit into
% 16 bits". With the exception of these special values, the value in this
% slot uniquely identifies the variable. The second 16-bit number is an offset
% into the module-wide string table; the string at that offset is the
% variable's name. If the variable or data item has no name, the offset
% will be zero (at which offset one will find an empty string). The string
% table is restricted to be small enough to be addressed with 16 bits;
% a string is reserved near the start for a string that says "too many
% variables". Stack_layout.m will generate a reference to this string
% instead of generating an offset that does not fit into 16 bits.
% Therefore using the stored offset to index into the string table
% is always safe.
%
% If the number of type parameters is not zero, we store the number,
% so that the code that needs the type parameters can materialize
% all the type parameters from their location descriptions in one go.
% This is an optimization, since the type parameter vector could simply
% be indexed on demand by the type variable's variable number stored within
% pseudo-typeinfos inside the elements of the live data pairs vectors.
%
% Since we allocate type variable numbers sequentially, the type parameter
% vector will usually be dense. However, after all variables whose types
% include e.g. type variable 2 have gone out of scope, variables whose
% types include type variable 3 may still be around. In cases like this,
% the entry for type variable 2 will be zero; this signals to the code
% in the internal debugger that materializes typeinfo structures that
% this typeinfo structure need not be materialized.
%
% We need detailed information about the variables that are live at an
% internal label in two kinds of circumstances. Stack layout information
% will be present only for labels that fall into one or both of these
% circumstances.
%
% -	The option trace_stack_layout is set, and the label represents
%	a traced event at which variable info is needed (call, exit,
%	or entrance to one branch of a branched control structure;
%	fail events have no variable information).
%
% -	The option agc_stack_layout is set or the trace level specifies
%	a capability for uplevel printing, and the label represents
% 	a point where execution can resume after a procedure call or
%	after backtracking.
%
% For labels that do not fall into one of these two categories, the
% "# of live vars" field will be negative to indicate the absence of
% information about the variables live at this label, and the last
% four fields will not be present.
%
% For labels that do fall into one of these two categories, the
% "# of live vars" field will hold the number of live variables, which
% will not be negative. If it is zero, the last four fields will not be
% present. Even if it is not zero, however, the pointer to the live data
% names vector will be NULL unless the label is used in execution tracing.
%
% XXX: Presently, inst information is ignored. We also do not yet enable
% procid stack layouts for profiling, since profiling does not yet use
% stack layouts.
%
%---------------------------------------------------------------------------%

:- module stack_layout.

:- interface.

:- import_module continuation_info, hlds_module, llds.
:- import_module std_util, list, set_bbbtree.

:- pred stack_layout__generate_llds(module_info::in, module_info::out,
	global_data::in,
	list(comp_gen_c_data)::out, list(comp_gen_c_data)::out,
	set_bbbtree(label)::out) is det.

:- pred stack_layout__construct_closure_layout(proc_label::in,
	closure_layout_info::in, list(maybe(rval))::out,
	create_arg_types::out, int::in, int::out) is det.

:- implementation.

:- import_module globals, options, llds_out, trace.
:- import_module hlds_data, hlds_pred, base_type_layout, prog_data, prog_out.
:- import_module (inst), code_util.
:- import_module assoc_list, bool, string, int, require.
:- import_module map, term, set.

%---------------------------------------------------------------------------%

	% Process all the continuation information stored in the HLDS,
	% converting it into LLDS data structures.

stack_layout__generate_llds(ModuleInfo0, ModuleInfo, GlobalData,
		PossiblyDynamicLayouts, StaticLayouts, LayoutLabels) :-
	global_data_get_all_proc_layouts(GlobalData, ProcLayoutList),

	module_info_name(ModuleInfo0, ModuleName),
	module_info_get_cell_count(ModuleInfo0, CellCount),
	module_info_globals(ModuleInfo0, Globals),
	globals__lookup_bool_option(Globals, agc_stack_layout, AgcLayout),
	globals__lookup_bool_option(Globals, trace_stack_layout, TraceLayout),
	globals__lookup_bool_option(Globals, procid_stack_layout,
		ProcIdLayout),
	globals__have_static_code_addresses(Globals, StaticCodeAddr),
	set_bbbtree__init(LayoutLabels0),

	map__init(StringMap0),
	map__init(LabelTables0),
	StringTable0 = string_table(StringMap0, [], 0),
	LayoutInfo0 = stack_layout_info(ModuleName, CellCount,
		AgcLayout, TraceLayout, ProcIdLayout, StaticCodeAddr,
		[], [], LayoutLabels0, [], StringTable0, LabelTables0),
	stack_layout__lookup_string_in_table("", _, LayoutInfo0, LayoutInfo1),
	stack_layout__lookup_string_in_table("<too many variables>", _,
		LayoutInfo1, LayoutInfo2),
	list__foldl(stack_layout__construct_layouts, ProcLayoutList,
		LayoutInfo2, LayoutInfo3),
		% This version of the layout info structure is final in all
		% respects except the cell count.
	LayoutInfo3 = stack_layout_info(_, _, _, _, _, _, ProcLayouts,
		InternalLayouts, LayoutLabels, ProcLayoutArgs,
		StringTable, LabelTables),
	StringTable = string_table(_, RevStringList, StringOffset),
	list__reverse(RevStringList, StringList),
	stack_layout__concat_string_list(StringList, StringOffset,
		ConcatStrings),

	( TraceLayout = yes ->
		Exported = no,	% ignored; see linkage/2 in llds_out.m
		list__length(ProcLayoutList, NumProcLayouts),
		llds_out__sym_name_mangle(ModuleName, ModuleNameStr),
		stack_layout__get_next_cell_number(ProcVectorCellNum,
			LayoutInfo3, LayoutInfo4),
		ProcLayoutVector = create(0, ProcLayoutArgs,
			uniform(yes(data_ptr)), must_be_static, 
			ProcVectorCellNum, "proc_layout_vector"),
		globals__lookup_bool_option(Globals, rtti_line_numbers,
			LineNumbers),
		( LineNumbers = yes ->
			EffLabelTables = LabelTables
		;
			map__init(EffLabelTables)
		),
		stack_layout__format_label_tables(EffLabelTables,
			NumSourceFiles, SourceFileVectors,
			LayoutInfo4, LayoutInfo),
		Rvals = [yes(const(string_const(ModuleNameStr))),
			yes(const(int_const(StringOffset))),
			yes(const(multi_string_const(StringOffset,
				ConcatStrings))),
			yes(const(int_const(NumProcLayouts))),
			yes(ProcLayoutVector),
			yes(const(int_const(NumSourceFiles))),
			yes(SourceFileVectors)],
		ModuleLayouts = comp_gen_c_data(ModuleName, module_layout,
			Exported, Rvals, uniform(no), []),
		StaticLayouts = [ModuleLayouts | InternalLayouts]
	;
		StaticLayouts = InternalLayouts,
		LayoutInfo = LayoutInfo3
	),
	PossiblyDynamicLayouts = ProcLayouts,
	stack_layout__get_cell_number(FinalCellCount, LayoutInfo, _),
	module_info_set_cell_count(ModuleInfo0, FinalCellCount, ModuleInfo).

%---------------------------------------------------------------------------%

:- pred stack_layout__concat_string_list(list(string)::in, int::in,
	string::out) is det.

:- pragma c_code(stack_layout__concat_string_list(StringList::in,
		ArenaSize::in, Arena::out),
		[will_not_call_mercury, thread_safe], "{
	Word	cur_node;
	Integer	cur_offset;
	Word	tmp;

	incr_hp_atomic(tmp, (ArenaSize + sizeof(Word)) / sizeof(Word));
	Arena = (char *) tmp;

	cur_offset = 0;
	cur_node = StringList;

	while (! MR_list_is_empty(cur_node)) {
		(void) strcpy(&Arena[cur_offset],
			(char *) MR_list_head(cur_node));
		cur_offset += strlen((char *) MR_list_head(cur_node)) + 1;
		cur_node = MR_list_tail(cur_node);
	}

	if (cur_offset != ArenaSize) {
		char	msg[256];

		sprintf(msg, ""internal error in creating string table;\\n""
			""cur_offset = %ld, ArenaSize = %ld\\n"",
			(long) cur_offset, (long) ArenaSize);
		fatal_error(msg);
	}
}").

%---------------------------------------------------------------------------%

:- pred stack_layout__format_label_tables(map(string, label_table)::in,
	int::out, rval::out, stack_layout_info::in, stack_layout_info::out)
	is det.

stack_layout__format_label_tables(LabelTableMap, NumSourceFiles,
		SourceFilesVector, LayoutInfo0, LayoutInfo) :-
	map__to_assoc_list(LabelTableMap, LabelTableList),
	list__length(LabelTableList, NumSourceFiles),
	list__map_foldl(stack_layout__format_label_table, LabelTableList,
		SourceFileRvals, LayoutInfo0, LayoutInfo1),
	stack_layout__get_next_cell_number(SourceFileVectorCellNum,
		LayoutInfo1, LayoutInfo),
	SourceFilesVector = create(0, SourceFileRvals,
		uniform(yes(data_ptr)), must_be_static, 
		SourceFileVectorCellNum, "source_files_vector").

:- pred stack_layout__format_label_table(pair(string, label_table)::in,
	maybe(rval)::out, stack_layout_info::in, stack_layout_info::out) is det.

stack_layout__format_label_table(FileName - LineNoMap, yes(SourceFileVector),
		LayoutInfo0, LayoutInfo) :-
		% This step should produce a list ordered on line numbers.
	map__to_assoc_list(LineNoMap, LineNoList),
		% And this step should preserve that order.
	stack_layout__flatten_label_table(LineNoList, [], FlatLineNoList),
	list__length(FlatLineNoList, VectorLength),
	stack_layout__get_module_name(CurrentModule, LayoutInfo0, LayoutInfo1),

	ProjectLineNos = lambda([LabelInfo::in, LineNoRval::out] is det, (
		LabelInfo = LineNo - (_Label - _IsReturn),
		LineNoRval = yes(const(int_const(LineNo)))
	)),
	ProjectLabels = lambda([LabelInfo::in, LabelRval::out] is det, (
		LabelInfo = _LineNo - (Label - _IsReturn),
		DataAddr = data_addr(CurrentModule, internal_layout(Label)),
		LabelRval = yes(const(data_addr_const(DataAddr)))
	)),
% See the comment below.
%	ProjectCallees = lambda([LabelInfo::in, CalleeRval::out] is det, (
%		LabelInfo = _LineNo - (_Label - IsReturn),
%		(
%			IsReturn = not_a_return,
%			CalleeRval = yes(const(int_const(0)))
%		;
%			IsReturn = unknown_callee,
%			CalleeRval = yes(const(int_const(1)))
%		;
%			IsReturn = known_callee(Label),
%			code_util__extract_proc_label_from_label(Label,
%				ProcLabel),
%			(
%				ProcLabel = proc(ModuleName, _, _, _, _, _)
%			;
%				ProcLabel = special_proc(ModuleName, _, _,
%					_, _, _)
%			),
%			DataAddr = data_addr(ModuleName, proc_layout(Label)),
%			CalleeRval = yes(const(data_addr_const(DataAddr)))
%		)
%	)),

	list__map(ProjectLineNos, FlatLineNoList, LineNoRvals),
	stack_layout__get_next_cell_number(LineNoVectorCellNum,
		LayoutInfo1, LayoutInfo2),
	LineNoVector = create(0, LineNoRvals,
		uniform(yes(int_least16)), must_be_static, 
		LineNoVectorCellNum, "line_number_vector"),

	list__map(ProjectLabels, FlatLineNoList, LabelRvals),
	stack_layout__get_next_cell_number(LabelsVectorCellNum,
		LayoutInfo2, LayoutInfo3),
	LabelsVector = create(0, LabelRvals,
		uniform(yes(data_ptr)), must_be_static, 
		LabelsVectorCellNum, "label_vector"),

% We do not include the callees vector in the table because it makes references
% to the proc layouts of procedures from other modules without knowing whether
% those modules were compiled with debugging. This works only if all procedures
% always have a proc layout structure, which we don't want to require yet.
%
% Callees vectors would allow us to use faster code to check at every event
% whether a breakpoint applies to that event, in the usual case that no context
% breakpoint is on a line contains a higher order call. Instead of always
% searching a separate data structure, as we now do, to check for the
% applicability of context breakpoints, the code could search this data
% structure only if the proc layout matched the proc layout of the caller
% Since we already search a table of proc layouts in order to check for plain,
% non-context breakpoints on procedures, this would incur no extra cost
% in most cases.
%
%	list__map(ProjectCallees, FlatLineNoList, CalleeRvals),
%	stack_layout__get_next_cell_number(CalleesVectorCellNum,
%		LayoutInfo3, LayoutInfo4),
%	CalleesVector = create(0, CalleeRvals,
%		uniform(no), must_be_static, 
%		CalleesVectorCellNum, "callee_vector"),

	SourceFileRvals = [
		yes(const(string_const(FileName))),
		yes(const(int_const(VectorLength))),
		yes(LineNoVector),
		yes(LabelsVector)
%		yes(CalleesVector)
	],
	stack_layout__get_next_cell_number(SourceFileVectorCellNum,
		LayoutInfo3, LayoutInfo),
	SourceFileVector = create(0, SourceFileRvals,
		initial([1 - yes(string), 1 - yes(integer),
			2 - yes(data_ptr)], none),
		must_be_static, 
		SourceFileVectorCellNum, "source_file_vector").

:- pred stack_layout__flatten_label_table(
	assoc_list(int, list(line_no_info))::in,
	assoc_list(int, line_no_info)::in,
	assoc_list(int, line_no_info)::out) is det.

stack_layout__flatten_label_table([], RevList, List) :-
	list__reverse(RevList, List).
stack_layout__flatten_label_table([LineNo - LinesInfos | Lines],
		RevList0, List) :-
	list__foldl(stack_layout__add_line_no(LineNo), LinesInfos,
		RevList0, RevList1),
	stack_layout__flatten_label_table(Lines, RevList1, List).

:- pred stack_layout__add_line_no(int::in, line_no_info::in,
	assoc_list(int, line_no_info)::in,
	assoc_list(int, line_no_info)::out) is det.

stack_layout__add_line_no(LineNo, LineInfo, RevList0, RevList) :-
	RevList = [LineNo - LineInfo | RevList0].

%---------------------------------------------------------------------------%

	% Construct the layouts that concern a single procedure:
	% the procedure-specific layout and the layouts of the labels
	% inside that procedure. Also update the module-wide label table
	% with the labels defined in this procedure.

:- pred stack_layout__construct_layouts(proc_layout_info::in,
	stack_layout_info::in, stack_layout_info::out) is det.

stack_layout__construct_layouts(ProcLayoutInfo) -->
	{ ProcLayoutInfo = proc_layout_info(EntryLabel, Detism,
		StackSlots, SuccipLoc, MaybeCallLabel, MaxTraceReg,
		TraceSlotInfo, ForceProcIdLayout, InternalMap) },
	stack_layout__construct_proc_layout(EntryLabel, Detism,
		StackSlots, SuccipLoc, MaybeCallLabel, MaxTraceReg,
		TraceSlotInfo, ForceProcIdLayout),
	{ map__to_assoc_list(InternalMap, Internals) },
	list__foldl(stack_layout__construct_internal_layout(EntryLabel),
		Internals),
	list__foldl(stack_layout__update_label_table, Internals).

%---------------------------------------------------------------------------%

	% Add the given label to the module-wide label tables.

:- pred stack_layout__update_label_table(pair(label, internal_layout_info)::in,
	stack_layout_info::in, stack_layout_info::out) is det.

stack_layout__update_label_table(Label - InternalInfo) -->
	{ InternalInfo = internal_layout_info(Port, _, Return) },
	(
		{ Return = yes(return_layout_info(TargetsContexts, _)) },
		{ stack_layout__find_valid_return_context(TargetsContexts,
			Target, Context) }
	->
		{ Target = label(TargetLabel) ->
			IsReturn = known_callee(TargetLabel)
		;
			IsReturn = unknown_callee
		},
		stack_layout__update_label_table_2(Label, Context, IsReturn)
	;
		{ Port = yes(trace_port_layout_info(Context, _, _, _)) },
		{ stack_layout__context_is_valid(Context) }
	->
		stack_layout__update_label_table_2(Label, Context,
			not_a_return)
	;
		[]
	).

:- pred stack_layout__update_label_table_2(label::in, context::in,
	is_label_return::in, stack_layout_info::in, stack_layout_info::out)
	is det.

stack_layout__update_label_table_2(Label, Context, IsReturn) -->
	{ term__context_file(Context, File) },
	{ term__context_line(Context, Line) },
	stack_layout__get_label_tables(LabelTables0),
	{ map__search(LabelTables0, File, LabelTable0) ->
		( map__search(LabelTable0, Line, LineInfo0) ->
			LineInfo = [Label - IsReturn | LineInfo0],
			map__det_update(LabelTable0, Line, LineInfo,
				LabelTable),
			map__det_update(LabelTables0, File, LabelTable,
				LabelTables)
		;
			LineInfo = [Label - IsReturn],
			map__det_insert(LabelTable0, Line, LineInfo,
				LabelTable),
			map__det_update(LabelTables0, File, LabelTable,
				LabelTables)
		)
	; stack_layout__context_is_valid(Context) ->
		map__init(LabelTable0),
		LineInfo = [Label - IsReturn],
		map__det_insert(LabelTable0, Line, LineInfo, LabelTable),
		map__det_insert(LabelTables0, File, LabelTable, LabelTables)
	;
			% We don't have a valid context for this label,
			% so we don't enter it into any tables.
		LabelTables = LabelTables0
	},
	stack_layout__set_label_tables(LabelTables).

:- pred stack_layout__find_valid_return_context(
	assoc_list(code_addr, prog_context)::in,
	code_addr::out, prog_context::out) is semidet.

stack_layout__find_valid_return_context([Target - Context | TargetContexts],
		ValidTarget, ValidContext) :-
	( stack_layout__context_is_valid(Context) ->
		ValidTarget = Target,
		ValidContext = Context
	;
		stack_layout__find_valid_return_context(TargetContexts,
			ValidTarget, ValidContext)
	).

:- pred stack_layout__context_is_valid(prog_context::in) is semidet.

stack_layout__context_is_valid(Context) :-
	term__context_file(Context, File),
	term__context_line(Context, Line),
	File \= "",
	Line > 0.

%---------------------------------------------------------------------------%

	% Construct a procedure-specific layout.

:- pred stack_layout__construct_proc_layout(label::in, determinism::in,
	int::in, maybe(int)::in, maybe(label)::in, int::in,
	trace_slot_info::in, bool::in,
	stack_layout_info::in, stack_layout_info::out) is det.

stack_layout__construct_proc_layout(EntryLabel, Detism, StackSlots,
		MaybeSuccipLoc, MaybeCallLabel, MaxTraceReg, TraceSlotInfo,
		ForceProcIdLayout) -->
	{
		MaybeSuccipLoc = yes(Location0)
	->
		Location = Location0
	;
			% Use a dummy location of -1 if there is
			% no succip on the stack.
			%
			% This case can arise in two circumstances.
			% First, procedures that use the nondet stack
			% have a special slot for the succip, so the
			% succip is not stored in a general purpose
			% slot. Second, procedures that use the det stack
			% but which do not call other procedures
			% do not save the succip on the stack.
			%
			% The tracing system does not care about the
			% location of the saved succip. The accurate
			% garbage collector does. It should know from
			% the determinism that the procedure uses the
			% nondet stack, which takes care of the first
			% possibility above. Procedures that do not call
			% other procedures do not establish resumption
			% points and thus agc is not interested in them.
			% As far as stack dumps go, calling error counts
			% as a call, so any procedure that may call error
			% (directly or indirectly) will have its saved succip
			% location recorded, so the stack dump will work.
			%
			% Future uses of stack layouts will have to have
			% similar constraints.
		Location = -1
	},
	stack_layout__get_static_code_addresses(StaticCodeAddr),
	{ StaticCodeAddr = yes ->
		CodeAddrRval = const(code_addr_const(label(EntryLabel)))
	;
		% This is a lie; the slot will be filled in for real
		% at initialization time.
		CodeAddrRval = const(int_const(0))
	},
	{ determinism_components(Detism, _, at_most_many) ->
		SuccipLval = framevar(Location)
	;
		SuccipLval = stackvar(Location)
	},
	{ stack_layout__represent_locn_as_int(direct(SuccipLval), SuccipRval) },
	{ StackSlotsRval = const(int_const(StackSlots)) },
	{ stack_layout__represent_determinism(Detism, DetismRval) },
	{ TraversalRvals = [yes(CodeAddrRval), yes(SuccipRval),
		yes(StackSlotsRval), yes(DetismRval)] },
	{ TraversalArgTypes = [1 - yes(code_ptr), 1 - yes(uint_least32),
		2 - yes(uint_least16)] },

	stack_layout__get_procid_stack_layout(ProcIdLayout0),
	{ bool__or(ProcIdLayout0, ForceProcIdLayout, ProcIdLayout) },
	(
		{ ProcIdLayout = yes }
	->
		{ code_util__extract_proc_label_from_label(EntryLabel,
			ProcLabel) },
		{ stack_layout__construct_procid_rvals(ProcLabel, IdRvals,
			IdArgTypes) },
		stack_layout__construct_trace_layout(MaybeCallLabel,
			MaxTraceReg, TraceSlotInfo, TraceRvals, TraceArgTypes),
		{ list__append(IdRvals, TraceRvals, IdTraceRvals) },
		{ IdTraceArgTypes = initial(IdArgTypes, TraceArgTypes) }
	;
		% Indicate the absence of the proc id and exec trace fields.
		{ IdTraceRvals = [yes(const(int_const(-1)))] },
		{ IdTraceArgTypes = initial([1 - yes(integer)], none) }
	),

	{ Exported = no },	% XXX With the new profiler, we will need to
				% set this to `yes' if the profiling option
				% is given and if the procedure is exported.
				% Beware however that linkage/2 in llds_out.m
				% assumes that this is `no'.
	{ list__append(TraversalRvals, IdTraceRvals, Rvals) },
	{ ArgTypes = initial(TraversalArgTypes, IdTraceArgTypes) },
	stack_layout__get_module_name(ModuleName),
	{ CDataName = proc_layout(EntryLabel) },
	{ CData = comp_gen_c_data(ModuleName, CDataName, Exported,
		Rvals, ArgTypes, []) },
	stack_layout__add_proc_layout_data(CData, CDataName, EntryLabel).

:- pred stack_layout__construct_trace_layout(maybe(label)::in, int::in,
	trace_slot_info::in, list(maybe(rval))::out, create_arg_types::out,
	stack_layout_info::in, stack_layout_info::out) is det.

stack_layout__construct_trace_layout(MaybeCallLabel, MaxTraceReg,
		TraceSlotInfo, Rvals, ArgTypes) -->
	stack_layout__get_module_name(ModuleName),
	stack_layout__get_trace_stack_layout(TraceLayout),
	{
		TraceLayout = yes
	->
		( MaybeCallLabel = yes(CallLabel) ->
			CallRval = yes(const(data_addr_const(
					data_addr(ModuleName,
						internal_layout(CallLabel)))))
		;
			error("stack_layout__construct_trace_layout: call label not present")
		),
		ModuleRval = yes(const(data_addr_const(
				data_addr(ModuleName, module_layout)))),
		MaxTraceRegRval = yes(const(int_const(MaxTraceReg))),
		TraceSlotInfo = trace_slot_info(MaybeFromFullSlot,
			MaybeDeclSlots, MaybeTrailSlot),
		( MaybeFromFullSlot = yes(FromFullSlot) ->
			FromFullRval = yes(const(int_const(FromFullSlot)))
		;
			FromFullRval = yes(const(int_const(-1)))
		),
		( MaybeDeclSlots = yes(DeclSlot) ->
			DeclRval = yes(const(int_const(DeclSlot)))
		;
			DeclRval = yes(const(int_const(-1)))
		),
		( MaybeTrailSlot = yes(TrailSlot) ->
			TrailRval = yes(const(int_const(TrailSlot)))
		;
			TrailRval = yes(const(int_const(-1)))
		),
		Rvals = [CallRval, ModuleRval,
			MaxTraceRegRval, FromFullRval, TrailRval, DeclRval],
		ArgTypes = initial([
			2 - yes(data_ptr),
			1 - yes(int_least16),
			3 - yes(int_least8)],
			none)
	;
		% Indicate the absence of the trace layout fields.
		Rvals = [yes(const(int_const(0)))],
		ArgTypes = initial([1 - yes(integer)], none)
	}.

%---------------------------------------------------------------------------%

:- pred stack_layout__construct_procid_rvals(proc_label::in,
	list(maybe(rval))::out, initial_arg_types::out) is det.

stack_layout__construct_procid_rvals(ProcLabel, Rvals, ArgTypes) :-
	(
		ProcLabel = proc(DefModule, PredFunc, DeclModule,
			PredName, Arity, ProcId),
		stack_layout__represent_pred_or_func(PredFunc, PredFuncCode),
		prog_out__sym_name_to_string(DefModule, DefModuleString),
		prog_out__sym_name_to_string(DeclModule, DeclModuleString),
		proc_id_to_int(ProcId, Mode),
		Rvals = [
				yes(const(int_const(PredFuncCode))),
				yes(const(string_const(DeclModuleString))),
				yes(const(string_const(DefModuleString))),
				yes(const(string_const(PredName))),
				yes(const(int_const(Arity))),
				yes(const(int_const(Mode)))
			],
		ArgTypes = [4 - no, 2 - yes(int_least16)]
	;
		ProcLabel = special_proc(DefModule, PredName, TypeModule,
			TypeName, Arity, ProcId),
		prog_out__sym_name_to_string(TypeModule, TypeModuleString),
		prog_out__sym_name_to_string(DefModule, DefModuleString),
		proc_id_to_int(ProcId, Mode),
		Rvals = [
				yes(const(string_const(TypeName))),
				yes(const(string_const(TypeModuleString))),
				yes(const(string_const(DefModuleString))),
				yes(const(string_const(PredName))),
				yes(const(int_const(Arity))),
				yes(const(int_const(Mode)))
			],
		ArgTypes = [4 - no, 2 - yes(int_least16)]
	).

:- pred stack_layout__represent_pred_or_func(pred_or_func::in, int::out) is det.

stack_layout__represent_pred_or_func(predicate, 0).
stack_layout__represent_pred_or_func(function, 1).

%---------------------------------------------------------------------------%

	% Construct the layout describing a single internal label.

:- pred stack_layout__construct_internal_layout(label::in,
	pair(label, internal_layout_info)::in,
	stack_layout_info::in, stack_layout_info::out) is det.

stack_layout__construct_internal_layout(EntryLabel, Label - Internal) -->
		% generate the required rvals
	stack_layout__get_module_name(ModuleName),
	{ EntryAddrRval = const(data_addr_const(data_addr(ModuleName,
		proc_layout(EntryLabel)))) },
	stack_layout__construct_internal_rvals(Internal, VarInfoRvals,
		VarInfoRvalTypes),
	{ LayoutRvals = [yes(EntryAddrRval) | VarInfoRvals] },
	{ ArgTypes = initial([1 - no], VarInfoRvalTypes) },
	{ CData = comp_gen_c_data(ModuleName, internal_layout(Label),
		no, LayoutRvals, ArgTypes, []) },
	stack_layout__add_internal_layout_data(CData, Label).

	% Construct the rvals required for accurate GC or for tracing.

:- pred stack_layout__construct_internal_rvals(internal_layout_info::in,
	list(maybe(rval))::out, create_arg_types::out,
	stack_layout_info::in, stack_layout_info::out) is det.

stack_layout__construct_internal_rvals(Internal, RvalList, ArgTypes) -->
	{ Internal = internal_layout_info(Trace, Resume, Return) },
	(
		{ Trace = no },
		{ set__init(TraceLiveVarSet) },
		{ map__init(TraceTypeVarMap) }
	;
		{ Trace = yes(trace_port_layout_info(_, _, _, TraceLayout)) },
		{ TraceLayout = layout_label_info(TraceLiveVarSet,
			TraceTypeVarMap) }
	),
	{ TraceArgTypes = [2 - yes(int_least16)] },
	{
		Resume = no,
		set__init(ResumeLiveVarSet),
		map__init(ResumeTypeVarMap)
	;
		Resume = yes(ResumeLayout),
		ResumeLayout = layout_label_info(ResumeLiveVarSet,
			ResumeTypeVarMap)
	},
	(
		{ Trace = yes(trace_port_layout_info(_, Port, Path, _)) },
		{ Return = no },
		{ llds_out__trace_port_to_num(Port, PortNum) },
		{ trace__path_to_string(Path, PathStr) },
		stack_layout__lookup_string_in_table(PathStr, PathNum)
	;
		{ Trace = no },
		{ Return = yes(_) },
			% We only ever use the port and path fields of these
			% layout structures when we process exception events.
		{ llds_out__trace_port_to_num(exception, PortNum) },
		{ PathNum = 0 }
	;
		{ Trace = no },
		{ Return = no },
		{ PortNum = -1 },
		{ PathNum = -1 }
	;
		{ Trace = yes(_) },
		{ Return = yes(_) },
		{ error("label has both trace and return layout info") }
	),
	{ TraceRvals = [yes(const(int_const(PortNum))),
			yes(const(int_const(PathNum)))] },
	stack_layout__get_agc_stack_layout(AgcStackLayout),
	{
		Return = no,
		set__init(ReturnLiveVarSet),
		map__init(ReturnTypeVarMap)
	;
		Return = yes(return_layout_info(_, ReturnLayout)),
		ReturnLayout = layout_label_info(ReturnLiveVarSet0,
			ReturnTypeVarMap0),
		( AgcStackLayout = yes ->
			ReturnLiveVarSet = ReturnLiveVarSet0,
			ReturnTypeVarMap = ReturnTypeVarMap0
		;
			% This set of variables must be for uplevel printing
			% in execution tracing, so we are interested only
			% in (a) variables, not temporaries, (b) only named
			% variables, and (c) only those on the stack, not
			% the return values.
			set__to_sorted_list(ReturnLiveVarSet0,
				ReturnLiveVarList0),
			stack_layout__select_trace_return(
				ReturnLiveVarList0, ReturnTypeVarMap0,
				ReturnLiveVarList, ReturnTypeVarMap),
			set__list_to_set(ReturnLiveVarList, ReturnLiveVarSet)
		)
	},
	(
		{ Trace = no },
		{ Resume = no },
		{ Return = no }
	->
			% The -1 says that there is no info available
			% about variables at this label. (Zero would say
			% that there are no variables live at this label,
			% which may not be true.)
		{ RvalList = [yes(const(int_const(-1)))] },
		{ ArgTypes = initial([1 - yes(integer)], none) }
	;
			% XXX ignore differences in insts inside var_infos
		{ set__union(TraceLiveVarSet, ResumeLiveVarSet, LiveVarSet0) },
		{ set__union(LiveVarSet0, ReturnLiveVarSet, LiveVarSet) },
		{ map__union(set__intersect, TraceTypeVarMap, ResumeTypeVarMap,
			TypeVarMap0) },
		{ map__union(set__intersect, TypeVarMap0, ReturnTypeVarMap,
			TypeVarMap) },
		stack_layout__construct_livelval_rvals(LiveVarSet,
			TypeVarMap, LivelvalRvalList, LivelvalArgTypes),
		{ append(TraceRvals, LivelvalRvalList, RvalList) },
		{ ArgTypes = initial(TraceArgTypes, LivelvalArgTypes) }
	).

%---------------------------------------------------------------------------%

:- pred stack_layout__construct_livelval_rvals(set(var_info)::in,
	map(tvar, set(layout_locn))::in, list(maybe(rval))::out,
	create_arg_types::out, stack_layout_info::in, stack_layout_info::out)
	is det.

stack_layout__construct_livelval_rvals(LiveLvalSet, TVarLocnMap,
		RvalList, ArgTypes) -->
	{ set__to_sorted_list(LiveLvalSet, LiveLvals) },
	{ list__length(LiveLvals, Length) },
	( { Length > 0 } ->
		{ stack_layout__sort_livevals(LiveLvals, SortedLiveLvals) },
		stack_layout__construct_liveval_arrays(SortedLiveLvals,
			VarLengthRval, LiveValRval, NamesRval),
		stack_layout__get_cell_number(CNum0),
		{ stack_layout__construct_tvar_vector(TVarLocnMap,
			TypeParamRval, CNum0, CNum) },
		stack_layout__set_cell_number(CNum),
		{ RvalList = [yes(VarLengthRval), yes(LiveValRval),
			yes(NamesRval), yes(TypeParamRval)] },
		{ ArgTypes = initial([1 - yes(integer), 3 - yes(data_ptr)],
			none) }
	;
		{ RvalList = [yes(const(int_const(0)))] },
		{ ArgTypes = initial([1 - yes(integer)], none) }
	).

:- pred stack_layout__construct_tvar_vector(map(tvar, set(layout_locn))::in,
	rval::out, int::in, int::out) is det.

stack_layout__construct_tvar_vector(TVarLocnMap, TypeParamRval, CNum0, CNum) :-
	( map__is_empty(TVarLocnMap) ->
		TypeParamRval = const(int_const(0)),
		CNum = CNum0
	;
		stack_layout__construct_tvar_rvals(TVarLocnMap,
			Vector, VectorTypes),
		CNum is CNum0 + 1,
		TypeParamRval = create(0, Vector, VectorTypes,
			must_be_static, CNum,
			"stack_layout_type_param_locn_vector")
	).

:- pred stack_layout__construct_tvar_rvals(map(tvar, set(layout_locn))::in,
	list(maybe(rval))::out, create_arg_types::out) is det.

stack_layout__construct_tvar_rvals(TVarLocnMap, Vector, VectorTypes) :-
	map__to_assoc_list(TVarLocnMap, TVarLocns),
	stack_layout__construct_type_param_locn_vector(TVarLocns, 1,
		TypeParamLocs),
	list__length(TypeParamLocs, TypeParamsLength),
	LengthRval = const(int_const(TypeParamsLength)),
	Vector = [yes(LengthRval) | TypeParamLocs],
	VectorTypes = uniform(yes(uint_least32)).

%---------------------------------------------------------------------------%

	% Given a list of var_infos and the type variables that occur in them,
	% select only the var_infos that may be required by up-level printing
	% in the trace-based debugger. At the moment the typeinfo list we
	% return may be bigger than necessary, but this does not compromise
	% correctness; we do this to avoid having to scan the types of all
	% the selected var_infos.

:- pred stack_layout__select_trace_return(
	list(var_info)::in, map(tvar, set(layout_locn))::in,
	list(var_info)::out, map(tvar, set(layout_locn))::out) is det.

stack_layout__select_trace_return(Infos, TVars, TraceReturnInfos, TVars) :-
	IsNamedReturnVar = lambda([LocnInfo::in] is semidet, (
		LocnInfo = var_info(Locn, LvalType),
		LvalType = var(_, Name, _, _),
		Name \= "",
		( Locn = direct(Lval) ; Locn = indirect(Lval, _)),
		( Lval = stackvar(_) ; Lval = framevar(_) )
	)),
	list__filter(IsNamedReturnVar, Infos, TraceReturnInfos).

	% Given a list of var_infos, put the ones that tracing can be
	% interested in (whether at an internal port or for uplevel printing)
	% in a block at the start, and both this block and the remaining
	% block. The division into two blocks can make the job of the
	% debugger somewhat easier, the sorting of the named var block makes
	% the output of the debugger look nicer, and the sorting of the both
	% blocks makes it more likely that different labels' layout structures
	% will have common parts (e.g. name vectors) that can be optimized
	% by llds_common.m.

:- pred stack_layout__sort_livevals(list(var_info)::in, list(var_info)::out)
	is det.

stack_layout__sort_livevals(OrigInfos, FinalInfos) :-
	IsNamedVar = lambda([LvalInfo::in] is semidet, (
		LvalInfo = var_info(_Lval, LvalType),
		LvalType = var(_, Name, _, _),
		Name \= ""
	)),
	list__filter(IsNamedVar, OrigInfos, NamedVarInfos0, OtherInfos0),
	CompareVarInfos = lambda([Var1::in, Var2::in, Result::out] is det, (
		Var1 = var_info(Lval1, LiveType1),
		Var2 = var_info(Lval2, LiveType2),
		stack_layout__get_name_from_live_value_type(LiveType1, Name1),
		stack_layout__get_name_from_live_value_type(LiveType2, Name2),
		compare(NameResult, Name1, Name2),
		( NameResult = (=) ->
			compare(Result, Lval1, Lval2)
		;
			Result = NameResult
		)
	)),
	list__sort(CompareVarInfos, NamedVarInfos0, NamedVarInfos),
	list__sort(CompareVarInfos, OtherInfos0, OtherInfos),
	list__append(NamedVarInfos, OtherInfos, FinalInfos).

:- pred stack_layout__get_name_from_live_value_type(live_value_type::in,
	string::out) is det.

stack_layout__get_name_from_live_value_type(LiveType, Name) :-
	( LiveType = var(_, NamePrime, _, _) ->
		Name = NamePrime
	;
		Name = ""
	).

%---------------------------------------------------------------------------%

	% Given a association list of type variables and their locations
	% sorted on the type variables, represent them in an array of
	% location descriptions indexed by the type variable. The next
	% slot to fill is given by the second argument.

:- pred stack_layout__construct_type_param_locn_vector(
	assoc_list(tvar, set(layout_locn))::in,
	int::in, list(maybe(rval))::out) is det.

stack_layout__construct_type_param_locn_vector([], _, []).
stack_layout__construct_type_param_locn_vector([TVar - Locns | TVarLocns],
		CurSlot, Vector) :-
	term__var_to_int(TVar, TVarNum),
	NextSlot is CurSlot + 1,
	( TVarNum = CurSlot ->
		( set__remove_least(Locns, LeastLocn, _) ->
			Locn = LeastLocn
		;
			error("tvar has empty set of locations")
		),
		stack_layout__represent_locn_as_int(Locn, Rval),
		stack_layout__construct_type_param_locn_vector(TVarLocns,
			NextSlot, VectorTail),
		Vector = [yes(Rval) | VectorTail]
	; TVarNum > CurSlot ->
		stack_layout__construct_type_param_locn_vector(TVarLocns,
			NextSlot, VectorTail),
			% This slot will never be referred to.
		Vector = [yes(const(int_const(0))) | VectorTail]
	;

		error("unsorted tvars in construct_type_param_locn_vector")
	).

%---------------------------------------------------------------------------%

:- type liveval_array_info
	--->	live_array_info(
			rval,	% Rval describing the location of a live value.
				% Always of llds type uint_least8 if the cell
				% is in the byte array, and uint_least32 if it
				% is in the int array.
			rval,	% Rval describing the type of a live value.
			llds_type, % The llds type of the rval describing the
				% type.
			rval,	% Rval describing the variable number of a
				% live value. Always of llds uint_least16.
				% Contains zero if the live value is not
				% a variable. Contains the hightest possible
				% uint_least16 value if the variable number
				% does not fit in 16 bits.
			rval	% Rval describing the variable name of a
				% live value. Always of llds uint_least16.
				% Contains zero if the live value is not
				% a variable, or if it is a variable with
				% no name.
		).

	% Construct a vector of (locn, live_value_type) pairs,
	% and a corresponding vector of variable names.

:- pred stack_layout__construct_liveval_arrays(list(var_info)::in,
	rval::out, rval::out, rval::out,
	stack_layout_info::in, stack_layout_info::out) is det.

stack_layout__construct_liveval_arrays(VarInfos, LengthRval,
		TypeLocnVector, NameVector) -->
	{ int__pow(2, stack_layout__short_count_bits, BytesLimit) },
	stack_layout__construct_liveval_array_infos(VarInfos,
		0, BytesLimit, IntArrayInfo, ByteArrayInfo),

	{ list__length(IntArrayInfo, IntArrayLength) },
	{ list__length(ByteArrayInfo, ByteArrayLength) },
	{ list__append(IntArrayInfo, ByteArrayInfo, AllArrayInfo) },

	{ EncodedLength is IntArrayLength << stack_layout__short_count_bits
		+ ByteArrayLength },
	{ LengthRval = const(int_const(EncodedLength)) },

	{ SelectLocns = lambda([ArrayInfo::in, MaybeLocnRval::out] is det, (
		ArrayInfo = live_array_info(LocnRval, _, _, _, _),
		MaybeLocnRval = yes(LocnRval)
	)) },
	{ SelectTypes = lambda([ArrayInfo::in, MaybeTypeRval::out] is det, (
		ArrayInfo = live_array_info(_, TypeRval, _, _, _),
		MaybeTypeRval = yes(TypeRval)
	)) },
	{ SelectTypeTypes = lambda([ArrayInfo::in, CountTypeType::out] is det,(
		ArrayInfo = live_array_info(_, _, TypeType, _, _),
		CountTypeType = 1 - yes(TypeType)
	)) },
	{ AddRevNumsNames = lambda([ArrayInfo::in, NumNameRvals0::in,
			NumNameRvals::out] is det, (
		ArrayInfo = live_array_info(_, _, _, NumRval, NameRval),
		NumNameRvals = [yes(NameRval), yes(NumRval) | NumNameRvals0]
	)) },

	{ list__map(SelectTypes, AllArrayInfo, AllTypes) },
	{ list__map(SelectTypeTypes, AllArrayInfo, AllTypeTypes) },
	{ list__map(SelectLocns, IntArrayInfo, IntLocns) },
	{ list__map(SelectLocns, ByteArrayInfo, ByteLocns) },
	{ list__append(IntLocns, ByteLocns, AllLocns) },
	{ list__append(AllTypes, AllLocns, TypeLocnVectorRvals) },
	{ LocnArgTypes = [IntArrayLength - yes(uint_least32),
			ByteArrayLength - yes(uint_least8)] },
	{ list__append(AllTypeTypes, LocnArgTypes, ArgTypes) },
	stack_layout__get_next_cell_number(CNum1),
	{ TypeLocnVector = create(0, TypeLocnVectorRvals,
		initial(ArgTypes, none), must_be_static, CNum1,
		"stack_layout_locn_vector") },

	stack_layout__get_trace_stack_layout(TraceStackLayout),
	( { TraceStackLayout = yes } ->
		{ list__foldl(AddRevNumsNames, AllArrayInfo,
			[], RevVarNumNameRvals) },
		{ list__reverse(RevVarNumNameRvals, VarNumNameRvals) },
		stack_layout__get_next_cell_number(CNum2),
		{ NameVector = create(0, VarNumNameRvals,
			uniform(yes(uint_least16)), must_be_static,
			CNum2, "stack_layout_num_name_vector") }
	;
		{ NameVector = const(int_const(0)) }
	).

:- pred stack_layout__construct_liveval_array_infos(list(var_info)::in,
	int::in, int::in,
	list(liveval_array_info)::out, list(liveval_array_info)::out,
	stack_layout_info::in, stack_layout_info::out) is det.

stack_layout__construct_liveval_array_infos([], _, _, [], []) --> [].
stack_layout__construct_liveval_array_infos([VarInfo | VarInfos],
		BytesSoFar, BytesLimit, IntVars, ByteVars) -->
	{ VarInfo = var_info(Locn, LiveValueType) },
	stack_layout__represent_live_value_type(LiveValueType, TypeRval,
		TypeRvalType),
	stack_layout__construct_liveval_name_rvals(VarInfo,
		VarNumRval, VarNameRval),
	(
		{ BytesSoFar < BytesLimit },
		{ stack_layout__represent_locn_as_byte(Locn, LocnByteRval) }
	->
		{ Var = live_array_info(LocnByteRval, TypeRval, TypeRvalType,
			VarNumRval, VarNameRval) },
		stack_layout__construct_liveval_array_infos(VarInfos,
			BytesSoFar + 1, BytesLimit, IntVars, ByteVars0),
		{ ByteVars = [Var | ByteVars0] }
	;
		{ stack_layout__represent_locn_as_int(Locn, LocnRval) },
		{ Var = live_array_info(LocnRval, TypeRval, TypeRvalType,
			VarNumRval, VarNameRval) },
		stack_layout__construct_liveval_array_infos(VarInfos,
			BytesSoFar, BytesLimit, IntVars0, ByteVars),
		{ IntVars = [Var | IntVars0] }
	).

:- pred stack_layout__construct_liveval_name_rvals(var_info::in, rval::out,
	rval::out, stack_layout_info::in, stack_layout_info::out) is det.

stack_layout__construct_liveval_name_rvals(var_info(_, LiveValueType),
		VarNumRval, VarNameRval, SLI0, SLI) :-
	( LiveValueType = var(Var, Name, _, _) ->
		term__var_to_int(Var, VarNum0),
			% The variable number has to fit into two bytes.
			% We reserve the largest such number (Limit)
			% to mean that the variable number is too large
			% to be represented. This ought not to happen,
			% since compilation would be glacial at best
			% for procedures with that many variables.
		Limit = (1 << (2 * stack_layout__byte_bits)) - 1,
		int__min(VarNum0, Limit, VarNum),
		VarNumRval = const(int_const(VarNum)),
		stack_layout__lookup_string_in_table(Name, Offset, SLI0, SLI),
		VarNameRval = const(int_const(Offset))
	;
		VarNumRval = const(int_const(0)),
		VarNameRval = const(int_const(0)),
		SLI = SLI0
	).

%---------------------------------------------------------------------------%

	% The representation we build here should be kept in sync
	% with runtime/mercury_ho_call.h, which contains macros to access
	% the data structures we build here.

stack_layout__construct_closure_layout(ProcLabel, ClosureLayoutInfo,
		Rvals, ArgTypes, CNum0, CNum) :-
	stack_layout__construct_procid_rvals(ProcLabel, ProcIdRvals,
		ProcIdTypes),
	ClosureLayoutInfo = closure_layout_info(ClosureArgs,
		TVarLocnMap),
	stack_layout__construct_closure_arg_rvals(ClosureArgs,
		ClosureArgRvals, ClosureArgTypes, CNum0, CNum1),
	stack_layout__construct_tvar_vector(TVarLocnMap, TVarVectorRval,
		CNum1, CNum),
	TVarVectorRvals = [yes(TVarVectorRval)],
	TVarVectorTypes = [1 - yes(data_ptr)],
	list__append(TVarVectorRvals, ClosureArgRvals, LayoutRvals),
	list__append(ProcIdRvals, LayoutRvals, Rvals),
	ArgTypes = initial(ProcIdTypes, initial(TVarVectorTypes,
		initial(ClosureArgTypes, none))).

:- pred stack_layout__construct_closure_arg_rvals(list(closure_arg_info)::in,
	list(maybe(rval))::out, initial_arg_types::out, int::in, int::out)
	is det.

stack_layout__construct_closure_arg_rvals(ClosureArgs, ClosureArgRvals,
		ClosureArgTypes, CNum0, CNum) :-
	list__map_foldl(stack_layout__construct_closure_arg_rval,
		ClosureArgs, MaybeArgRvalsTypes, CNum0, CNum),
	assoc_list__keys(MaybeArgRvalsTypes, MaybeArgRvals),
	AddOne = lambda([Pair::in, CountLldsType::out] is det, (
		Pair = _ - LldsType,
		CountLldsType = 1 - yes(LldsType)
	)),
	list__map(AddOne, MaybeArgRvalsTypes, ArgRvalTypes),
	list__length(MaybeArgRvals, Length),
	ClosureArgRvals = [yes(const(int_const(Length))) | MaybeArgRvals],
	ClosureArgTypes = [1 - yes(integer) | ArgRvalTypes].

:- pred stack_layout__construct_closure_arg_rval(closure_arg_info::in,
	pair(maybe(rval), llds_type)::out, int::in, int::out) is det.

stack_layout__construct_closure_arg_rval(ClosureArg,
		yes(ArgRval) - ArgRvalType, CNum0, CNum) :-
	ClosureArg = closure_arg_info(Type, _Inst),

		% For a stack layout, we can treat all type variables as
		% universally quantified. This is not the argument of a
		% constructor, so we do not need to distinguish between type
		% variables that are and aren't in scope; we can take the
		% variable number directly from the procedure's tvar set.
	ExistQTvars = [],
	base_type_layout__max_varint(Max),
	NumUnivQTvars = Max - 1,

	base_type_layout__construct_typed_pseudo_type_info(Type, 
		NumUnivQTvars, ExistQTvars, ArgRval, ArgRvalType, CNum0, CNum).

%---------------------------------------------------------------------------%

	% Construct a representation of the type of a value.
	%
	% For values representing variables, this will be a pseudo_type_info
	% describing the type of the variable.
	%
	% For the kinds of values used internally by the compiler,
	% this will be a pointer to a specific type_ctor_info (acting as a
	% type_info) defined by hand in builtin.m to stand for values of
	% each such kind; one for succips, one for hps, etc.

:- pred stack_layout__represent_live_value_type(live_value_type, rval,
	llds_type, stack_layout_info, stack_layout_info).
:- mode stack_layout__represent_live_value_type(in, out, out, in, out) is det.

stack_layout__represent_live_value_type(succip, Rval, data_ptr) -->
	{ TypeCtor = type_ctor(info, "succip", 0) },
	{ AddrConst = data_addr_const(data_addr(unqualified(""), TypeCtor)) },
	{ Rval = const(AddrConst) }.
stack_layout__represent_live_value_type(hp, Rval, data_ptr) -->
	{ TypeCtor = type_ctor(info, "hp", 0) },
	{ AddrConst = data_addr_const(data_addr(unqualified(""), TypeCtor)) },
	{ Rval = const(AddrConst) }.
stack_layout__represent_live_value_type(curfr, Rval, data_ptr) -->
	{ TypeCtor = type_ctor(info, "curfr", 0) },
	{ AddrConst = data_addr_const(data_addr(unqualified(""), TypeCtor)) },
	{ Rval = const(AddrConst) }.
stack_layout__represent_live_value_type(maxfr, Rval, data_ptr) -->
	{ TypeCtor = type_ctor(info, "maxfr", 0) },
	{ AddrConst = data_addr_const(data_addr(unqualified(""), TypeCtor)) },
	{ Rval = const(AddrConst) }.
stack_layout__represent_live_value_type(redofr, Rval, data_ptr) -->
	{ TypeCtor = type_ctor(info, "redofr", 0) },
	{ AddrConst = data_addr_const(data_addr(unqualified(""), TypeCtor)) },
	{ Rval = const(AddrConst) }.
stack_layout__represent_live_value_type(redoip, Rval, data_ptr) -->
	{ TypeCtor = type_ctor(info, "redoip", 0) },
	{ AddrConst = data_addr_const(data_addr(unqualified(""), TypeCtor)) },
	{ Rval = const(AddrConst) }.
stack_layout__represent_live_value_type(trail_ptr, Rval, data_ptr) -->
	{ TypeCtor = type_ctor(info, "trail_ptr", 0) },
	{ AddrConst = data_addr_const(data_addr(unqualified(""), TypeCtor)) },
	{ Rval = const(AddrConst) }.
stack_layout__represent_live_value_type(ticket, Rval, data_ptr) -->
	{ TypeCtor = type_ctor(info, "ticket", 0) },
	{ AddrConst = data_addr_const(data_addr(unqualified(""), TypeCtor)) },
	{ Rval = const(AddrConst) }.
stack_layout__represent_live_value_type(unwanted, Rval, data_ptr) -->
	{ TypeCtor = type_ctor(info, "succip", 0) },
	{ AddrConst = data_addr_const(data_addr(unqualified(""), TypeCtor)) },
	{ Rval = const(AddrConst) }.
stack_layout__represent_live_value_type(var(_, _, Type, _), Rval, LldsType)
		-->
	stack_layout__get_cell_number(CNum0),

		% For a stack layout, we can treat all type variables as
		% universally quantified. This is not the argument of a
		% constructor, so we do not need to distinguish between type
		% variables that are and aren't in scope; we can take the
		% variable number directly from the procedure's tvar set.
	{ ExistQTvars = [] },
	{ base_type_layout__max_varint(Max) },
	{ NumUnivQTvars = Max - 1 },
	{ base_type_layout__construct_typed_pseudo_type_info(Type,
		NumUnivQTvars, ExistQTvars,
		Rval, LldsType, CNum0, CNum) },
	stack_layout__set_cell_number(CNum).

%---------------------------------------------------------------------------%

	% Construct a representation of a variable location as a 32-bit
	% integer.
	%
	% Most of the time, a layout specifies a location as an lval.
	% However, a type_info variable may be hidden inside a typeclass_info,
	% In this case, accessing the type_info requires indirection.
	% The address of the typeclass_info is given as an lval, and
	% the location of the typeinfo within the typeclass_info as an index;
	% private_builtin:type_info_from_typeclass_info interprets the index.
	%
	% This one level of indirection is sufficient, since type_infos
	% cannot be nested inside typeclass_infos any deeper than this.
	% A more general representation that would allow more indirection
	% would be much harder to fit into one machine word.

:- pred stack_layout__represent_locn_as_int(layout_locn, rval).
:- mode stack_layout__represent_locn_as_int(in, out) is det.

stack_layout__represent_locn_as_int(direct(Lval), Rval) :-
	stack_layout__represent_lval(Lval, Word),
	Rval = const(int_const(Word)).
stack_layout__represent_locn_as_int(indirect(Lval, Offset), Rval) :-
	stack_layout__represent_lval(Lval, BaseWord),
	require((1 << stack_layout__long_lval_offset_bits) > Offset,
	"stack_layout__represent_locn: offset too large to be represented"),
	BaseAndOffset is (BaseWord << stack_layout__long_lval_offset_bits)
		+ Offset,
	stack_layout__make_tagged_word(lval_indirect, BaseAndOffset, Word),
	Rval = const(int_const(Word)).

	% Construct a four byte representation of an lval.

:- pred stack_layout__represent_lval(lval, int).
:- mode stack_layout__represent_lval(in, out) is det.

stack_layout__represent_lval(reg(r, Num), Word) :-
	stack_layout__make_tagged_word(lval_r_reg, Num, Word).
stack_layout__represent_lval(reg(f, Num), Word) :-
	stack_layout__make_tagged_word(lval_f_reg, Num, Word).

stack_layout__represent_lval(stackvar(Num), Word) :-
	stack_layout__make_tagged_word(lval_stackvar, Num, Word).
stack_layout__represent_lval(framevar(Num), Word) :-
	stack_layout__make_tagged_word(lval_framevar, Num, Word).

stack_layout__represent_lval(succip, Word) :-
	stack_layout__make_tagged_word(lval_succip, 0, Word).
stack_layout__represent_lval(maxfr, Word) :-
	stack_layout__make_tagged_word(lval_maxfr, 0, Word).
stack_layout__represent_lval(curfr, Word) :-
	stack_layout__make_tagged_word(lval_curfr, 0, Word).
stack_layout__represent_lval(hp, Word) :-
	stack_layout__make_tagged_word(lval_hp, 0, Word).
stack_layout__represent_lval(sp, Word) :-
	stack_layout__make_tagged_word(lval_sp, 0, Word).

stack_layout__represent_lval(temp(_, _), _) :-
	error("stack_layout: continuation live value stored in temp register").

stack_layout__represent_lval(succip(_), _) :-
	error("stack_layout: continuation live value stored in fixed slot").
stack_layout__represent_lval(redoip(_), _) :-
	error("stack_layout: continuation live value stored in fixed slot").
stack_layout__represent_lval(redofr(_), _) :-
	error("stack_layout: continuation live value stored in fixed slot").
stack_layout__represent_lval(succfr(_), _) :-
	error("stack_layout: continuation live value stored in fixed slot").
stack_layout__represent_lval(prevfr(_), _) :-
	error("stack_layout: continuation live value stored in fixed slot").

stack_layout__represent_lval(field(_, _, _), _) :-
	error("stack_layout: continuation live value stored in field").
stack_layout__represent_lval(mem_ref(_), _) :-
	error("stack_layout: continuation live value stored in mem_ref").
stack_layout__represent_lval(lvar(_), _) :-
	error("stack_layout: continuation live value stored in lvar").

	% Some things in this module are encoded using a low tag.
	% This is not done using the normal compiler mkword, but by
	% doing the bit shifting here.
	%
	% This allows us to use more than the usual 2 or 3 bits, but
	% we have to use low tags and cannot tag pointers this way.

:- pred stack_layout__make_tagged_word(locn_type::in, int::in, int::out) is det.

stack_layout__make_tagged_word(Locn, Value, TaggedValue) :-
	stack_layout__locn_type_code(Locn, Tag),
	TaggedValue is (Value << stack_layout__long_lval_tag_bits) + Tag.

:- type locn_type
	--->	lval_r_reg
	;	lval_f_reg
	;	lval_stackvar
	;	lval_framevar
	;	lval_succip
	;	lval_maxfr
	;	lval_curfr
	;	lval_hp
	;	lval_sp
	;	lval_indirect.

:- pred stack_layout__locn_type_code(locn_type::in, int::out) is det.

stack_layout__locn_type_code(lval_r_reg,    0).
stack_layout__locn_type_code(lval_f_reg,    1).
stack_layout__locn_type_code(lval_stackvar, 2).
stack_layout__locn_type_code(lval_framevar, 3).
stack_layout__locn_type_code(lval_succip,   4).
stack_layout__locn_type_code(lval_maxfr,    5).
stack_layout__locn_type_code(lval_curfr,    6).
stack_layout__locn_type_code(lval_hp,       7).
stack_layout__locn_type_code(lval_sp,       8).
stack_layout__locn_type_code(lval_indirect, 9).

:- func stack_layout__long_lval_tag_bits = int.

% This number of tag bits must be able to encode all values of
% stack_layout__locn_type_code.

stack_layout__long_lval_tag_bits = 4.

% This number of tag bits must be able to encode the largest offset
% of a type_info within a typeclass_info.

:- func stack_layout__long_lval_offset_bits = int.

stack_layout__long_lval_offset_bits = 6.

%---------------------------------------------------------------------------%

	% Construct a representation of a variable location as a byte,
	% if this is possible.

:- pred stack_layout__represent_locn_as_byte(layout_locn::in, rval::out)
	is semidet.

stack_layout__represent_locn_as_byte(LayoutLocn, Rval) :-
	LayoutLocn = direct(Lval),
	stack_layout__represent_lval_as_byte(Lval, Byte),
	Rval = const(int_const(Byte)).

	% Construct a representation of an lval in a byte, if possible.

:- pred stack_layout__represent_lval_as_byte(lval::in, int::out) is semidet.

stack_layout__represent_lval_as_byte(reg(r, Num), Byte) :-
	stack_layout__make_tagged_byte(0, Num, Byte).

stack_layout__represent_lval_as_byte(stackvar(Num), Byte) :-
	stack_layout__make_tagged_byte(1, Num, Byte).
stack_layout__represent_lval_as_byte(framevar(Num), Byte) :-
	stack_layout__make_tagged_byte(2, Num, Byte).

stack_layout__represent_lval_as_byte(succip, Byte) :-
	stack_layout__locn_type_code(lval_succip, Val),
	stack_layout__make_tagged_byte(3, Val, Byte).
stack_layout__represent_lval_as_byte(maxfr, Byte) :-
	stack_layout__locn_type_code(lval_maxfr, Val),
	stack_layout__make_tagged_byte(3, Val, Byte).
stack_layout__represent_lval_as_byte(curfr, Byte) :-
	stack_layout__locn_type_code(lval_curfr, Val),
	stack_layout__make_tagged_byte(3, Val, Byte).
stack_layout__represent_lval_as_byte(hp, Byte) :-
	stack_layout__locn_type_code(lval_hp, Val),
	stack_layout__make_tagged_byte(3, Val, Byte).
stack_layout__represent_lval_as_byte(sp, Byte) :-
	stack_layout__locn_type_code(lval_succip, Val),
	stack_layout__make_tagged_byte(3, Val, Byte).

:- pred stack_layout__make_tagged_byte(int::in, int::in, int::out) is semidet.

stack_layout__make_tagged_byte(Tag, Value, TaggedValue) :-
	Limit = 1 << (stack_layout__byte_bits -
		stack_layout__short_lval_tag_bits),
	Value < Limit,
	TaggedValue is unchecked_left_shift(Value,
		stack_layout__short_lval_tag_bits) + Tag.

:- func stack_layout__short_lval_tag_bits = int.

stack_layout__short_lval_tag_bits = 2.

:- func stack_layout__short_count_bits = int.

stack_layout__short_count_bits = 10.

:- func stack_layout__byte_bits = int.

stack_layout__byte_bits = 8.

%---------------------------------------------------------------------------%

	% Construct a representation of the interface determinism of a
	% procedure. The code we have chosen is not sequential; instead
	% it encodes the various properties of each determinism.
	%
	% The 8 bit is set iff the context is first_solution.
	% The 4 bit is set iff the min number of solutions is more than zero.
	% The 2 bit is set iff the max number of solutions is more than zero.
	% The 1 bit is set iff the max number of solutions is more than one.

:- pred stack_layout__represent_determinism(determinism::in, rval::out) is det.

stack_layout__represent_determinism(Detism, const(int_const(Code))) :-
	(
		Detism = det,
		Code = 6		/* 0110 */
	;
		Detism = semidet,	/* 0010 */
		Code = 2
	;
		Detism = nondet,
		Code = 3		/* 0011 */
	;
		Detism = multidet,
		Code = 7		/* 0111 */
	;
		Detism = erroneous,
		Code = 4		/* 0100 */
	;
		Detism = failure,
		Code = 0		/* 0000 */
	;
		Detism = cc_nondet,
		Code = 10 		/* 1010 */
	;
		Detism = cc_multidet,
		Code = 14		/* 1110 */
	).

%---------------------------------------------------------------------------%

	% Access to the stack_layout data structure.

	% The per-sourcefile label table maps line numbers to the list of
	% labels that correspond to that line. Each label is accompanied
	% by a flag that says whether the label is the return site of a call
	% or not, and if it is, whether the called procedure is known.

:- type is_label_return
	--->	known_callee(label)
	;	unknown_callee
	;	not_a_return.

:- type line_no_info == pair(label, is_label_return).

:- type label_table == map(int, list(line_no_info)).

:- type stack_layout_info 	--->
	stack_layout_info(
		module_name,	% module name
		int,		% next available cell number
		bool,		% generate agc layout info?
		bool,		% generate tracing layout info?
		bool,           % generate procedure id layout info?
		bool,		% have static code addresses?
		list(comp_gen_c_data),	% generated proc layouts
		list(comp_gen_c_data),	% generated internal layouts
		set_bbbtree(label),
				% the set of labels (both entry and internal)
				% with layouts
		list(maybe(rval)),
				% the list of proc_layouts in the module,
				% represented as create args
		string_table,
		map(string, label_table)
				% maps each filename that contributes labels
				% to this module to a table describing those
				% labels.
	).

:- pred stack_layout__get_module_name(module_name::out,
	stack_layout_info::in, stack_layout_info::out) is det.

:- pred stack_layout__get_cell_number(int::out,
	stack_layout_info::in, stack_layout_info::out) is det.

:- pred stack_layout__get_agc_stack_layout(bool::out,
	stack_layout_info::in, stack_layout_info::out) is det.

:- pred stack_layout__get_trace_stack_layout(bool::out,
	stack_layout_info::in, stack_layout_info::out) is det.

:- pred stack_layout__get_procid_stack_layout(bool::out,
	stack_layout_info::in, stack_layout_info::out) is det.

:- pred stack_layout__get_static_code_addresses(bool::out,
	stack_layout_info::in, stack_layout_info::out) is det.

:- pred stack_layout__get_proc_layout_data(list(comp_gen_c_data)::out,
	stack_layout_info::in, stack_layout_info::out) is det.

:- pred stack_layout__get_internal_layout_data(list(comp_gen_c_data)::out,
	stack_layout_info::in, stack_layout_info::out) is det.

:- pred stack_layout__get_label_set(set_bbbtree(label)::out,
	stack_layout_info::in, stack_layout_info::out) is det.

:- pred stack_layout__get_string_table(string_table::out,
	stack_layout_info::in, stack_layout_info::out) is det.

:- pred stack_layout__get_label_tables(map(string, label_table)::out,
	stack_layout_info::in, stack_layout_info::out) is det.

stack_layout__get_module_name(A, LayoutInfo, LayoutInfo) :-
	LayoutInfo = stack_layout_info(A, _, _, _, _, _, _, _, _, _, _, _).

stack_layout__get_cell_number(B, LayoutInfo, LayoutInfo) :-
	LayoutInfo = stack_layout_info(_, B, _, _, _, _, _, _, _, _, _, _).

stack_layout__get_agc_stack_layout(C, LayoutInfo, LayoutInfo) :-
	LayoutInfo = stack_layout_info(_, _, C, _, _, _, _, _, _, _, _, _).

stack_layout__get_trace_stack_layout(D, LayoutInfo, LayoutInfo) :-
	LayoutInfo = stack_layout_info(_, _, _, D, _, _, _, _, _, _, _, _).

stack_layout__get_procid_stack_layout(E, LayoutInfo, LayoutInfo) :-
	LayoutInfo = stack_layout_info(_, _, _, _, E, _, _, _, _, _, _, _).

stack_layout__get_static_code_addresses(F, LayoutInfo, LayoutInfo) :-
	LayoutInfo = stack_layout_info(_, _, _, _, _, F, _, _, _, _, _, _).

stack_layout__get_proc_layout_data(G, LayoutInfo, LayoutInfo) :-
	LayoutInfo = stack_layout_info(_, _, _, _, _, _, G, _, _, _, _, _).

stack_layout__get_internal_layout_data(H, LayoutInfo, LayoutInfo) :-
	LayoutInfo = stack_layout_info(_, _, _, _, _, _, _, H, _, _, _, _).

stack_layout__get_label_set(I, LayoutInfo, LayoutInfo) :-
	LayoutInfo = stack_layout_info(_, _, _, _, _, _, _, _, I, _, _, _).

stack_layout__get_string_table(K, LayoutInfo, LayoutInfo) :-
	LayoutInfo = stack_layout_info(_, _, _, _, _, _, _, _, _, _, K, _).

stack_layout__get_label_tables(L, LayoutInfo, LayoutInfo) :-
	LayoutInfo = stack_layout_info(_, _, _, _, _, _, _, _, _, _, _, L).

:- pred stack_layout__add_proc_layout_data(comp_gen_c_data::in, data_name::in,
	label::in, stack_layout_info::in, stack_layout_info::out) is det.

stack_layout__add_proc_layout_data(NewG, NewJ, NewI, LayoutInfo0, LayoutInfo) :-
	LayoutInfo0 = stack_layout_info(A, B, C, D, E, F, G0, H, I0, J0, K, L),
	G = [NewG | G0],
	set_bbbtree__insert(I0, NewI, I),
	J = [yes(const(data_addr_const(data_addr(A, NewJ)))) | J0],
	LayoutInfo  = stack_layout_info(A, B, C, D, E, F, G , H, I , J , K, L).

:- pred stack_layout__add_internal_layout_data(comp_gen_c_data::in,
	label::in, stack_layout_info::in, stack_layout_info::out) is det.

stack_layout__add_internal_layout_data(NewH, NewI, LayoutInfo0, LayoutInfo) :-
	LayoutInfo0 = stack_layout_info(A, B, C, D, E, F, G, H0, I0, J, K, L),
	H = [NewH | H0],
	set_bbbtree__insert(I0, NewI, I),
	LayoutInfo  = stack_layout_info(A, B, C, D, E, F, G, H , I , J, K, L).

:- pred stack_layout__get_next_cell_number(int::out,
	stack_layout_info::in, stack_layout_info::out) is det.

stack_layout__get_next_cell_number(B, LayoutInfo0, LayoutInfo) :-
	LayoutInfo0 = stack_layout_info(A, B0, C, D, E, F, G, H, I, J, K, L),
	B is B0 + 1,
	LayoutInfo  = stack_layout_info(A, B,  C, D, E, F, G, H, I, J, K, L).

:- pred stack_layout__set_cell_number(int::in,
	stack_layout_info::in, stack_layout_info::out) is det.

stack_layout__set_cell_number(B, LayoutInfo0, LayoutInfo) :-
	LayoutInfo0 = stack_layout_info(A, _, C, D, E, F, G, H, I, J, K, L),
	LayoutInfo  = stack_layout_info(A, B, C, D, E, F, G, H, I, J, K, L).

:- pred stack_layout__set_string_table(string_table::in,
	stack_layout_info::in, stack_layout_info::out) is det.

stack_layout__set_string_table(K, LayoutInfo0, LayoutInfo) :-
	LayoutInfo0 = stack_layout_info(A, B, C, D, E, F, G, H, I, J, _, L),
	LayoutInfo  = stack_layout_info(A, B, C, D, E, F, G, H, I, J, K, L).

:- pred stack_layout__set_label_tables(map(string, label_table)::in,
	stack_layout_info::in, stack_layout_info::out) is det.

stack_layout__set_label_tables(L, LayoutInfo0, LayoutInfo) :-
	LayoutInfo0 = stack_layout_info(A, B, C, D, E, F, G, H, I, J, K, _),
	LayoutInfo  = stack_layout_info(A, B, C, D, E, F, G, H, I, J, K, L).

%---------------------------------------------------------------------------%

	% Access to the string_table data structure.

:- type string_table 	--->
	string_table(
		map(string, int),	% Maps strings to their offsets.
		list(string),		% List of strings so far,
					% in reverse order.
		int			% Next available offset
	).

:- pred stack_layout__lookup_string_in_table(string::in, int::out,
	stack_layout_info::in, stack_layout_info::out) is det.

stack_layout__lookup_string_in_table(String, Offset) -->
	stack_layout__get_string_table(StringTable0),
	{ StringTable0 = string_table(TableMap0, TableList0, TableOffset0) },
	(
		{ map__search(TableMap0, String, OldOffset) }
	->
		{ Offset = OldOffset }
	;
		{ string__length(String, Length) },
		{ TableOffset is TableOffset0 + Length + 1 },
		{ TableOffset < (1 << (2 * stack_layout__byte_bits)) }
	->
		{ Offset = TableOffset0 },
		{ map__det_insert(TableMap0, String, TableOffset0,
			TableMap) },
		{ TableList = [String | TableList0] },
		{ StringTable = string_table(TableMap, TableList,
			TableOffset) },
		stack_layout__set_string_table(StringTable)
	;
		% Says that the name of the variable is "TOO_MANY_VARIABLES".
		{ Offset = 1 }
	).