1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
%-----------------------------------------------------------------------------%
% Copyright (C) 1994-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% File: switch_gen.m
% Authors: conway, fjh, zs
%
% This module handles the generation of code for switches, which are
% disjunctions that do not require backtracking. Switches are detected
% in switch_detection.m. This is the module that determines what
% sort of indexing to use for each switch and then actually generates the
% code.
%
% Currently the following forms of indexing are used:
%
% For switches on atomic data types (int, char, enums),
% if the cases are not sparse, we use the value of the switch variable
% to index into a jump table.
%
% If all the alternative goals for a switch on an atomic data type
% contain only construction unifications of constants, then we generate
% a dense lookup table (an array) for each output variable of the switch,
% rather than a dense jump table, so that executing the switch becomes
% a matter of doing an array index for each output variable - avoiding
% the branch overhead of the jump-table.
%
% For switches on discriminated union types, we generate code that does
% indexing first on the primary tag, and then on the secondary tag (if
% the primary tag is shared between several function symbols). The
% indexing code for switches on both primary and secondary tags can be
% in the form of a try-me-else chain, a try chain, a dense jump table
% or a binary search.
%
% For switches on strings, we lookup the address to jump to in a
% hash table, using open addressing to resolve hash collisions.
%
% For all other cases (or if the --smart-indexing option was
% disabled), we just generate a chain of if-then-elses.
%
%---------------------------------------------------------------------------%
:- module switch_gen.
:- interface.
:- import_module prog_data, hlds_goal, hlds_data, code_info, llds.
:- import_module list.
:- pred switch_gen__generate_switch(code_model, prog_var, can_fail, list(case),
store_map, hlds_goal_info, code_tree, code_info, code_info).
:- mode switch_gen__generate_switch(in, in, in, in, in, in, out, in, out)
is det.
% The following types are exported to the modules that implement
% specialized kinds of switches.
:- type extended_case ---> case(int, cons_tag, cons_id, hlds_goal).
:- type cases_list == list(extended_case).
%---------------------------------------------------------------------------%
:- implementation.
:- import_module dense_switch, string_switch, tag_switch, lookup_switch.
:- import_module code_gen, unify_gen, code_aux, type_util, code_util.
:- import_module trace, globals, options.
:- import_module bool, int, string, map, tree, std_util, require.
:- type switch_category
---> atomic_switch
; string_switch
; tag_switch
; other_switch.
%---------------------------------------------------------------------------%
% Choose which method to use to generate the switch.
% CanFail says whether the switch covers all cases.
switch_gen__generate_switch(CodeModel, CaseVar, CanFail, Cases, StoreMap,
GoalInfo, Code) -->
switch_gen__determine_category(CaseVar, SwitchCategory),
code_info__get_next_label(EndLabel),
switch_gen__lookup_tags(Cases, CaseVar, TaggedCases0),
{ list__sort_and_remove_dups(TaggedCases0, TaggedCases) },
code_info__get_globals(Globals),
{ globals__lookup_bool_option(Globals, smart_indexing,
Indexing) },
(
{ Indexing = yes },
{ SwitchCategory = atomic_switch },
code_info__get_maybe_trace_info(MaybeTraceInfo),
{ MaybeTraceInfo = no },
{ list__length(TaggedCases, NumCases) },
{ globals__lookup_int_option(Globals, lookup_switch_size,
LookupSize) },
{ NumCases >= LookupSize },
{ globals__lookup_int_option(Globals, lookup_switch_req_density,
ReqDensity) },
lookup_switch__is_lookup_switch(CaseVar, TaggedCases, GoalInfo,
CanFail, ReqDensity, CodeModel, FirstVal, LastVal,
NeedRangeCheck, NeedBitVecCheck,
OutVars, CaseVals, MLiveness)
->
lookup_switch__generate(CaseVar, OutVars, CaseVals,
FirstVal, LastVal, NeedRangeCheck, NeedBitVecCheck,
MLiveness, StoreMap, no, MaybeEnd, Code)
;
{ Indexing = yes },
{ SwitchCategory = atomic_switch },
{ list__length(TaggedCases, NumCases) },
{ globals__lookup_int_option(Globals, dense_switch_size,
DenseSize) },
{ NumCases >= DenseSize },
{ globals__lookup_int_option(Globals, dense_switch_req_density,
ReqDensity) },
dense_switch__is_dense_switch(CaseVar, TaggedCases, CanFail,
ReqDensity, FirstVal, LastVal, CanFail1)
->
dense_switch__generate(TaggedCases,
FirstVal, LastVal, CaseVar, CodeModel, CanFail1,
StoreMap, EndLabel, no, MaybeEnd, Code)
;
{ Indexing = yes },
{ SwitchCategory = string_switch },
{ list__length(TaggedCases, NumCases) },
{ globals__lookup_int_option(Globals, string_switch_size,
StringSize) },
{ NumCases >= StringSize }
->
string_switch__generate(TaggedCases, CaseVar, CodeModel,
CanFail, StoreMap, EndLabel, no, MaybeEnd, Code)
;
{ Indexing = yes },
{ SwitchCategory = tag_switch },
{ list__length(TaggedCases, NumCases) },
{ globals__lookup_int_option(Globals, tag_switch_size,
TagSize) },
{ NumCases >= TagSize }
->
tag_switch__generate(TaggedCases, CaseVar, CodeModel, CanFail,
StoreMap, EndLabel, no, MaybeEnd, Code)
;
% To generate a switch, first we flush the
% variable on whose tag we are going to switch, then we
% generate the cases for the switch.
switch_gen__generate_all_cases(TaggedCases, CaseVar,
CodeModel, CanFail, StoreMap, EndLabel, no, MaybeEnd,
Code)
),
code_info__after_all_branches(StoreMap, MaybeEnd).
%---------------------------------------------------------------------------%
% We categorize switches according to whether the value
% being switched on is an atomic type, a string, or
% something more complicated.
:- pred switch_gen__determine_category(prog_var, switch_category,
code_info, code_info).
:- mode switch_gen__determine_category(in, out, in, out) is det.
switch_gen__determine_category(CaseVar, SwitchCategory) -->
code_info__variable_type(CaseVar, Type),
code_info__get_module_info(ModuleInfo),
{ classify_type(Type, ModuleInfo, TypeCategory) },
{ switch_gen__type_cat_to_switch_cat(TypeCategory, SwitchCategory) }.
:- pred switch_gen__type_cat_to_switch_cat(builtin_type, switch_category).
:- mode switch_gen__type_cat_to_switch_cat(in, out) is det.
switch_gen__type_cat_to_switch_cat(enum_type, atomic_switch).
switch_gen__type_cat_to_switch_cat(int_type, atomic_switch).
switch_gen__type_cat_to_switch_cat(char_type, atomic_switch).
switch_gen__type_cat_to_switch_cat(float_type, other_switch).
switch_gen__type_cat_to_switch_cat(str_type, string_switch).
switch_gen__type_cat_to_switch_cat(pred_type, other_switch).
switch_gen__type_cat_to_switch_cat(user_type, tag_switch).
switch_gen__type_cat_to_switch_cat(polymorphic_type, other_switch).
%---------------------------------------------------------------------------%
:- pred switch_gen__lookup_tags(list(case), prog_var, cases_list,
code_info, code_info).
:- mode switch_gen__lookup_tags(in, in, out, in, out) is det.
switch_gen__lookup_tags([], _, []) --> [].
switch_gen__lookup_tags([Case | Cases], Var, [TaggedCase | TaggedCases]) -->
{ Case = case(ConsId, Goal) },
code_info__cons_id_to_tag(Var, ConsId, Tag),
{ switch_gen__priority(Tag, Priority) },
{ TaggedCase = case(Priority, Tag, ConsId, Goal) },
switch_gen__lookup_tags(Cases, Var, TaggedCases).
%---------------------------------------------------------------------------%
:- pred switch_gen__priority(cons_tag, int).
:- mode switch_gen__priority(in, out) is det.
% prioritize tag tests - the most efficient ones first.
switch_gen__priority(no_tag, 0). % should never occur
switch_gen__priority(int_constant(_), 1).
switch_gen__priority(shared_local_tag(_, _), 1).
switch_gen__priority(unshared_tag(_), 2).
switch_gen__priority(float_constant(_), 3).
switch_gen__priority(shared_remote_tag(_, _), 4).
switch_gen__priority(string_constant(_), 5).
switch_gen__priority(pred_closure_tag(_, _, _), 6). % should never occur
switch_gen__priority(code_addr_constant(_, _), 6). % should never occur
switch_gen__priority(type_ctor_info_constant(_, _, _), 6).% should never occur
switch_gen__priority(base_typeclass_info_constant(_, _, _), 6).% shouldn't occur
switch_gen__priority(tabling_pointer_constant(_, _), 6). % shouldn't occur
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
% Generate a switch as a chain of if-then-elses.
%
% To generate a case for a switch we generate
% code to do a tag-test and fall through to the next case in
% the event of failure.
%
% Each case except the last consists of
%
% a tag test, jumping to the next case if it fails
% the goal for that case
% code to move variables to where the store map says they
% ought to be
% a branch to the end of the switch.
%
% For the last case, if the switch covers all cases that can occur,
% we don't need to generate the tag test, and we never need to
% generate the branch to the end of the switch.
%
% After the last case, we put the end-of-switch label which other
% cases branch to after their case goals.
%
% In the important special case of a det switch with two cases,
% we try to find out which case will be executed more frequently,
% and put that one first. This minimizes the number of pipeline
% breaks caused by taken branches.
:- pred switch_gen__generate_all_cases(list(extended_case), prog_var,
code_model, can_fail, store_map, label, branch_end, branch_end,
code_tree, code_info, code_info).
:- mode switch_gen__generate_all_cases(in, in, in, in, in, in, in, out, out,
in, out) is det.
switch_gen__generate_all_cases(Cases0, Var, CodeModel, CanFail, StoreMap,
EndLabel, MaybeEnd0, MaybeEnd, Code) -->
code_info__produce_variable(Var, VarCode, _Rval),
(
{ CodeModel = model_det },
{ CanFail = cannot_fail },
{ Cases0 = [Case1, Case2] },
{ Case1 = case(_, _, _, Goal1) },
{ Case2 = case(_, _, _, Goal2) }
->
code_info__get_pred_id(PredId),
code_info__get_proc_id(ProcId),
{ code_util__count_recursive_calls(Goal1, PredId, ProcId,
Min1, Max1) },
{ code_util__count_recursive_calls(Goal2, PredId, ProcId,
Min2, Max2) },
{
Max1 = 0, % Goal1 is a base case
Min2 = 1 % Goal2 is probably singly recursive
->
Cases = [Case2, Case1]
;
Max2 = 0, % Goal2 is a base case
Min1 > 1 % Goal1 is at least doubly recursive
->
Cases = [Case2, Case1]
;
Cases = Cases0
}
;
{ Cases = Cases0 }
),
switch_gen__generate_cases(Cases, Var, CodeModel, CanFail,
StoreMap, EndLabel, MaybeEnd0, MaybeEnd, CasesCode),
{ Code = tree(VarCode, CasesCode) }.
:- pred switch_gen__generate_cases(list(extended_case), prog_var, code_model,
can_fail, store_map, label, branch_end, branch_end, code_tree,
code_info, code_info).
:- mode switch_gen__generate_cases(in, in, in, in, in, in, in, out, out,
in, out) is det.
% At the end of a locally semidet switch, we fail because we
% came across a tag which was not covered by one of the cases.
% It is followed by the end of switch label to which the cases
% branch.
switch_gen__generate_cases([], _Var, _CodeModel, CanFail, _StoreMap,
EndLabel, MaybeEnd, MaybeEnd, Code) -->
( { CanFail = can_fail } ->
code_info__generate_failure(FailCode)
;
{ FailCode = empty }
),
{ EndCode = node([
label(EndLabel) -
"end of switch"
]) },
{ Code = tree(FailCode, EndCode) }.
switch_gen__generate_cases([case(_, _, Cons, Goal) | Cases], Var, CodeModel,
CanFail, StoreMap, EndLabel, MaybeEnd0, MaybeEnd, CasesCode) -->
code_info__remember_position(BranchStart),
(
{ Cases = [_|_] ; CanFail = can_fail }
->
unify_gen__generate_tag_test(Var, Cons, branch_on_failure,
NextLabel, TestCode),
trace__maybe_generate_internal_event_code(Goal, TraceCode),
code_gen__generate_goal(CodeModel, Goal, GoalCode),
code_info__generate_branch_end(StoreMap, MaybeEnd0, MaybeEnd1,
SaveCode),
{ ElseCode = node([
goto(label(EndLabel)) -
"skip to the end of the switch",
label(NextLabel) -
"next case"
]) },
{ ThisCaseCode =
tree(TestCode,
tree(TraceCode,
tree(GoalCode,
tree(SaveCode,
ElseCode))))
}
;
trace__maybe_generate_internal_event_code(Goal, TraceCode),
code_gen__generate_goal(CodeModel, Goal, GoalCode),
code_info__generate_branch_end(StoreMap, MaybeEnd0, MaybeEnd1,
SaveCode),
{ ThisCaseCode =
tree(TraceCode,
tree(GoalCode,
SaveCode))
}
),
code_info__reset_to_position(BranchStart),
% generate the rest of the cases.
switch_gen__generate_cases(Cases, Var, CodeModel, CanFail, StoreMap,
EndLabel, MaybeEnd1, MaybeEnd, OtherCasesCode),
{ CasesCode = tree(ThisCaseCode, OtherCasesCode) }.
%------------------------------------------------------------------------------%
|