1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
%-----------------------------------------------------------------------------%
% Copyright (C) 1997-1998 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% term_pass1.m
%
% Main author: crs.
% Significant parts rewritten by zs.
%
% This file contains the first pass of the termination analysis,
% whose job is to discover an upper bound on the difference between
% the sizes of the output arguments of a procedure on the one hand and
% the sizes of a selected set of input arguments of the procedure
% on the other hand. We refer to this selected set of input arguments
% as the "output suppliers".
%
% For details, please refer to the papers mentioned in termination.m.
%
%-----------------------------------------------------------------------------%
:- module term_pass1.
:- interface.
:- import_module hlds_module, hlds_pred, term_util, term_errors.
:- import_module io, list, std_util.
:- type arg_size_result
---> ok(
list(pair(pred_proc_id, int)),
% Gives the gamma of each procedure
% in the SCC.
used_args
% Gives the output suppliers of
% each procedure in the SCC.
)
; error(
list(term_errors__error)
).
:- pred find_arg_sizes_in_scc(list(pred_proc_id)::in, module_info::in,
pass_info::in, arg_size_result::out, list(term_errors__error)::out,
io__state::di, io__state::uo) is det.
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module term_traversal, term_errors, hlds_goal, hlds_data, prog_data.
:- import_module mode_util, type_util, lp.
:- import_module int, float, char, string, bool, set, bag, map.
:- import_module term, varset, require.
%-----------------------------------------------------------------------------%
:- type pass1_result
---> ok(
list(path_info),
% One entry for each path through the
% code.
used_args,
% The next output_supplier map.
list(term_errors__error)
% There is an entry in this list for
% each procedure in the SCC in which
% the set of active vars is not
% a subset of the input arguments.
)
; error(
list(term_errors__error)
).
find_arg_sizes_in_scc(SCC, Module, PassInfo, ArgSize, TermErrors, S0, S) :-
init_output_suppliers(SCC, Module, InitOutputSupplierMap),
find_arg_sizes_in_scc_fixpoint(SCC, Module, PassInfo,
InitOutputSupplierMap, Result, TermErrors),
(
Result = ok(Paths, OutputSupplierMap, SubsetErrors),
( SubsetErrors = [_ | _] ->
ArgSize = error(SubsetErrors),
S = S0
; Paths = [] ->
get_context_from_scc(SCC, Module, Context),
ArgSize = error([Context - no_eqns]),
S = S0
;
solve_equations(Paths, SCC, MaybeSolution, S0, S),
(
MaybeSolution = yes(Solution),
ArgSize = ok(Solution, OutputSupplierMap)
;
MaybeSolution = no,
get_context_from_scc(SCC, Module, Context),
ArgSize = error([Context - solver_failed])
)
)
;
Result = error(Errors),
ArgSize = error(Errors),
S = S0
).
%-----------------------------------------------------------------------------%
% Initialise the output suppliers map.
% Initially, we consider that no input arguments contribute their size
% to the output arguments.
:- pred init_output_suppliers(list(pred_proc_id)::in, module_info::in,
used_args::out) is det.
init_output_suppliers([], _Module, InitMap) :-
map__init(InitMap).
init_output_suppliers([PPId | PPIds], Module, OutputSupplierMap) :-
init_output_suppliers(PPIds, Module, OutputSupplierMap0),
PPId = proc(PredId, ProcId),
module_info_pred_proc_info(Module, PredId, ProcId, _, ProcInfo),
proc_info_headvars(ProcInfo, HeadVars),
MapToNo = lambda([_HeadVar::in, Bool::out] is det, (Bool = no)),
list__map(MapToNo, HeadVars, BoolList),
map__det_insert(OutputSupplierMap0, PPId, BoolList, OutputSupplierMap).
%-----------------------------------------------------------------------------%
:- pred find_arg_sizes_in_scc_fixpoint(list(pred_proc_id)::in,
module_info::in, pass_info::in, used_args::in, pass1_result::out,
list(term_errors__error)::out) is det.
find_arg_sizes_in_scc_fixpoint(SCC, Module, PassInfo, OutputSupplierMap0,
Result, TermErrors) :-
% unsafe_perform_io(io__write_string("find_arg_sizes_in_scc_pass\n")),
% unsafe_perform_io(io__write(OutputSupplierMap0)),
% unsafe_perform_io(io__write_string("\n")),
find_arg_sizes_in_scc_pass(SCC, Module, PassInfo,
OutputSupplierMap0, [], [], Result1, [], TermErrors1),
(
Result1 = error(_),
Result = Result1,
TermErrors = TermErrors1
;
Result1 = ok(_, OutputSupplierMap1, _),
( OutputSupplierMap1 = OutputSupplierMap0 ->
Result = Result1,
TermErrors = TermErrors1
;
find_arg_sizes_in_scc_fixpoint(SCC, Module,
PassInfo, OutputSupplierMap1,
Result, TermErrors)
)
).
:- pred find_arg_sizes_in_scc_pass(list(pred_proc_id)::in,
module_info::in, pass_info::in, used_args::in,
list(path_info)::in, list(term_errors__error)::in, pass1_result::out,
list(term_errors__error)::in, list(term_errors__error)::out) is det.
find_arg_sizes_in_scc_pass([], _, _, OutputSupplierMap, Paths, SubsetErrors,
Result, TermErrors, TermErrors) :-
Result = ok(Paths, OutputSupplierMap, SubsetErrors).
find_arg_sizes_in_scc_pass([PPId | PPIds], Module, PassInfo,
OutputSupplierMap0, Paths0, SubsetErrors0, Result,
TermErrors0, TermErrors) :-
find_arg_sizes_pred(PPId, Module, PassInfo, OutputSupplierMap0,
Result1, TermErrors1),
list__append(TermErrors0, TermErrors1, TermErrors2),
PassInfo = pass_info(_, MaxErrors, _),
list__take_upto(MaxErrors, TermErrors2, TermErrors3),
(
Result1 = error(_),
Result = Result1,
TermErrors = TermErrors3
;
Result1 = ok(Paths1, OutputSupplierMap1, SubsetErrors1),
list__append(Paths0, Paths1, Paths),
list__append(SubsetErrors0, SubsetErrors1, SubsetErrors),
find_arg_sizes_in_scc_pass(PPIds, Module, PassInfo,
OutputSupplierMap1, Paths, SubsetErrors, Result,
TermErrors3, TermErrors)
).
%-----------------------------------------------------------------------------%
:- pred find_arg_sizes_pred(pred_proc_id::in, module_info::in,
pass_info::in, used_args::in, pass1_result::out,
list(term_errors__error)::out) is det.
find_arg_sizes_pred(PPId, Module, PassInfo, OutputSupplierMap0, Result,
TermErrors) :-
PPId = proc(PredId, ProcId),
module_info_pred_proc_info(Module, PredId, ProcId, PredInfo, ProcInfo),
pred_info_context(PredInfo, Context),
proc_info_headvars(ProcInfo, Args),
proc_info_argmodes(ProcInfo, ArgModes),
proc_info_vartypes(ProcInfo, VarTypes),
proc_info_goal(ProcInfo, Goal),
map__init(EmptyMap),
PassInfo = pass_info(FunctorInfo, MaxErrors, MaxPaths),
init_traversal_params(Module, FunctorInfo, PPId, Context, VarTypes,
OutputSupplierMap0, EmptyMap, MaxErrors, MaxPaths, Params),
partition_call_args(Module, ArgModes, Args, InVars, OutVars),
Path0 = path_info(PPId, no, 0, [], OutVars),
set__singleton_set(PathSet0, Path0),
Info0 = ok(PathSet0, []),
traverse_goal(Goal, Params, Info0, Info),
(
Info = ok(Paths, TermErrors),
set__to_sorted_list(Paths, PathList),
upper_bound_active_vars(PathList, AllActiveVars),
map__lookup(OutputSupplierMap0, PPId,
OutputSuppliers0),
update_output_suppliers(Args, AllActiveVars,
OutputSuppliers0, OutputSuppliers),
map__det_update(OutputSupplierMap0, PPId,
OutputSuppliers, OutputSupplierMap),
( bag__is_subbag(AllActiveVars, InVars) ->
SubsetErrors = []
;
SubsetErrors = [Context -
not_subset(PPId, AllActiveVars, InVars)]
),
Result = ok(PathList, OutputSupplierMap, SubsetErrors)
;
Info = error(Errors, TermErrors),
Result = error(Errors)
).
:- pred update_output_suppliers(list(prog_var)::in, bag(prog_var)::in,
list(bool)::in, list(bool)::out) is det.
update_output_suppliers([], _ActiveVars, [], []).
update_output_suppliers([_ | _], _ActiveVars, [], []) :-
error("update_output_suppliers: Unmatched variables").
update_output_suppliers([], _ActiveVars, [_ | _], []) :-
error("update_output_suppliers: Unmatched variables").
update_output_suppliers([Arg | Args], ActiveVars,
[OutputSupplier0 | OutputSuppliers0],
[OutputSupplier | OutputSuppliers]) :-
( bag__contains(ActiveVars, Arg) ->
OutputSupplier = yes
;
% This guarantees that the set of output suppliers can only
% increase, which in turn guarantees that our fixpoint
% computation is monotonic and therefore terminates.
OutputSupplier = OutputSupplier0
),
update_output_suppliers(Args, ActiveVars,
OutputSuppliers0, OutputSuppliers).
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% Solve the list of constraints
% output is of the form required by lp_solve.
% which is given the input = [eqn(Const, PPid, [PPidList])]
% max: .......
% c1: PPid - (PPidList) > Const;
% c2: PPid - (PPidList) > Const;
% where PPid (proc(PredId, ProcId)) is printed as ' aPredId_ProcId - b '
% The choice of the letter `a' is arbitrary, and is chosen as lp_solve does
% not allow variables to start with digits.
% The variable `b' is used as lp_solve will only solve for positive values
% of variables. replacing each variable occurance with ` a#_# - b ', this
% avoids the problem of only allowing positive variables as a#_# - b can
% be negative even when a#_# and b are both positive.
:- pred solve_equations(list(path_info)::in, list(pred_proc_id)::in,
maybe(list(pair(pred_proc_id, int)))::out,
io__state::di, io__state::uo) is det.
solve_equations(Paths, PPIds, Result, S0, S) :-
(
convert_equations(Paths, Varset, Equations,
Objective, PPVars)
->
map__values(PPVars, AllVars0),
list__sort_and_remove_dups(AllVars0, AllVars),
% unsafe_perform_io(io__write_string("before\n")),
% unsafe_perform_io(io__write(Equations)),
% unsafe_perform_io(io__write_string("\n")),
% unsafe_perform_io(io__write(Objective)),
% unsafe_perform_io(io__write_string("\n")),
% unsafe_perform_io(io__write(AllVars)),
% unsafe_perform_io(io__write_string("\n")),
lp_solve(Equations, min, Objective, Varset, AllVars, Soln,
S0, S),
% unsafe_perform_io(io__write_string("after\n")),
(
Soln = unsatisfiable,
Result = no
;
Soln = satisfiable(_ObjVal, SolnVal),
list__map(lookup_coeff(PPVars, SolnVal), PPIds,
SolutionList),
Result = yes(SolutionList)
)
;
Result = no,
S = S0
).
:- pred convert_equations(list(path_info)::in, varset::out, lp__equations::out,
objective::out, map(pred_proc_id, var)::out) is semidet.
convert_equations(Paths, Varset, Equations, Objective, PPVars) :-
varset__init(Varset0),
map__init(PredProcVars0),
set__init(EqnSet0),
convert_equations_2(Paths, PredProcVars0, PPVars, Varset0, Varset,
EqnSet0, EqnSet),
set__to_sorted_list(EqnSet, Equations),
map__values(PPVars, Vars),
Convert = lambda([Var::in, Coeff::out] is det,
(
Coeff = Var - 1.0
)),
list__map(Convert, Vars, Objective).
:- pred convert_equations_2(list(path_info)::in,
map(pred_proc_id, var)::in, map(pred_proc_id, var)::out,
varset::in, varset::out,
set(lp__equation)::in, set(lp__equation)::out) is semidet.
convert_equations_2([], PPVars, PPVars, Varset, Varset, Eqns, Eqns).
convert_equations_2([Path | Paths], PPVars0, PPVars, Varset0, Varset,
Eqns0, Eqns) :-
Path = path_info(ThisPPId, _, IntGamma, PPIds, _),
int__to_float(IntGamma, FloatGamma),
Eqn = eqn(Coeffs, (>=), FloatGamma),
pred_proc_var(ThisPPId, ThisVar, Varset0, Varset2, PPVars0, PPVars1),
Coeffs = [ThisVar - 1.0 | RestCoeffs],
Convert = lambda([PPId::in, Coeff::out, Pair0::in, Pair::out] is det,
(
Pair0 = VS0 - PPV0,
pred_proc_var(PPId, Var, VS0, VS, PPV0, PPV),
Coeff = Var - (-1.0),
Pair = VS - PPV
)),
list__map_foldl(Convert, PPIds, RestCoeffs, Varset2 - PPVars1,
Varset3 - PPVars2),
set__insert(Eqns0, Eqn, Eqns1),
convert_equations_2(Paths, PPVars2, PPVars, Varset3, Varset,
Eqns1, Eqns).
:- pred lookup_coeff(map(pred_proc_id, var)::in, map(var, float)::in,
pred_proc_id::in, pair(pred_proc_id, int)::out) is det.
lookup_coeff(PPIds, Soln, PPId, PPId - ICoeff) :-
map__lookup(PPIds, PPId, Var),
map__lookup(Soln, Var, Coeff),
ICoeff = float__ceiling_to_int(Coeff).
:- pred pred_proc_var(pred_proc_id::in, var::out, varset::in, varset::out,
map(pred_proc_id, var)::in, map(pred_proc_id, var)::out) is det.
pred_proc_var(PPId, Var, Varset0, Varset, PPVars0, PPVars) :-
( map__search(PPVars0, PPId, Var0) ->
Var = Var0,
Varset = Varset0,
PPVars = PPVars0
;
varset__new_var(Varset0, Var, Varset),
map__det_insert(PPVars0, PPId, Var, PPVars)
).
%-----------------------------------------------------------------------------%
|