1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
|
%-----------------------------------------------------------------------------
% Copyright (C) 1997-1998 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------
%
% term_pass2.m
%
% Main author of original version: crs.
% Main author of this version: zs.
%
% This file contains the code that tries to prove that procedures terminate.
%
% For details, please refer to the papers mentioned in termination.m.
%-----------------------------------------------------------------------------
:- module term_pass2.
:- interface.
:- import_module hlds_module, hlds_pred, term_util.
:- import_module list.
:- pred prove_termination_in_scc(list(pred_proc_id)::in, module_info::in,
pass_info::in, int::in, termination_info::out) is det.
:- implementation.
:- import_module term_traversal, term_errors.
:- import_module hlds_goal, prog_data, type_util, mode_util.
:- import_module std_util, bool, int, assoc_list.
:- import_module set, bag, map, term, require.
:- type fixpoint_dir
---> up
; down.
:- type call_weight_info
== pair(list(term_errors__error), call_weight_graph).
:- type call_weight_graph
== map(pred_proc_id, % The max noninfinite weight
% call from this proc
map(pred_proc_id, % to this proc
pair(prog_context, int))).
% is at this context and with
% this weight.
:- type pass2_result
---> ok(
call_weight_info,
used_args
)
; error(
list(term_errors__error)
).
%-----------------------------------------------------------------------------
prove_termination_in_scc(SCC, Module, PassInfo, SingleArgs, Termination) :-
init_rec_input_suppliers(SCC, Module, InitRecSuppliers),
prove_termination_in_scc_trial(SCC, InitRecSuppliers, down,
Module, PassInfo, Termination1),
(
Termination1 = can_loop(Errors),
(
% On large SCCs, single arg analysis can require
% many iterations, so we allow the user to limit
% the size of the SCCs we will try it on.
list__length(SCC, ProcCount),
ProcCount =< SingleArgs,
% Don't try single arg analysis if it cannot cure
% the reason for the failure of the main analysis.
\+ (
member(Error, Errors),
Error = _ - imported_pred
),
prove_termination_in_scc_single_arg(SCC,
Module, PassInfo)
->
Termination = cannot_loop
;
Termination = Termination1
)
;
Termination1 = cannot_loop,
Termination = Termination1
).
% Initialise the set of recursive input suppliers to be the set
% of all input variables in all procedures of the SCC.
:- pred init_rec_input_suppliers(list(pred_proc_id)::in, module_info::in,
used_args::out) is det.
init_rec_input_suppliers([], _, InitMap) :-
map__init(InitMap).
init_rec_input_suppliers([PPId | PPIds], Module, RecSupplierMap) :-
init_rec_input_suppliers(PPIds, Module, RecSupplierMap0),
PPId = proc(PredId, ProcId),
module_info_pred_proc_info(Module, PredId, ProcId, _, ProcInfo),
proc_info_headvars(ProcInfo, HeadVars),
proc_info_argmodes(ProcInfo, ArgModes),
partition_call_args(Module, ArgModes, HeadVars, InArgs, _OutVars),
MapIsInput = lambda([HeadVar::in, Bool::out] is det,
(
( bag__contains(InArgs, HeadVar) ->
Bool = yes
;
Bool = no
)
)),
list__map(MapIsInput, HeadVars, BoolList),
map__det_insert(RecSupplierMap0, PPId, BoolList, RecSupplierMap).
%-----------------------------------------------------------------------------
% Perform single arg analysis on the SCC.
%
% We pick one procedure in the SCC (one of those with minimal arity).
% We set the recursive input suppliers of this procedure to contain
% only the first input argument, and the recursive input suppliers
% of the other procedures to the empty set, and try a fixpoint
% iteration. If it works, great, if not, try again with the next
% input arg of the selected procedure, until we run out of input
% arguments of that procedure.
%
% While the fixpoint iteration in the main algorithm looks for the
% greatest fixpoint, in which the recursive input supplier sets
% cannot increase, in single arg analysis we are looking for a
% smallest fixpoint starting from a given location, so we must
% make sure that the recursive input supplier sets cannot decrease.
:- pred prove_termination_in_scc_single_arg(list(pred_proc_id)::in,
module_info::in, pass_info::in) is semidet.
prove_termination_in_scc_single_arg(SCC, Module, PassInfo) :-
( SCC = [FirstPPId | LaterPPIds] ->
lookup_proc_arity(FirstPPId, Module, FirstArity),
find_min_arity_proc(LaterPPIds, FirstPPId, FirstArity, Module,
TrialPPId, RestSCC),
prove_termination_in_scc_single_arg_2(TrialPPId, RestSCC, 1,
Module, PassInfo)
;
error("empty SCC in prove_termination_in_scc_single_arg")
).
% Find a procedure of minimum arity among the given list and the
% tentative guess.
:- pred find_min_arity_proc(list(pred_proc_id)::in, pred_proc_id::in, int::in,
module_info::in, pred_proc_id::out, list(pred_proc_id)::out) is det.
find_min_arity_proc([], BestSofarPPId, _, _, BestSofarPPId, []).
find_min_arity_proc([PPId | PPIds], BestSofarPPId, BestSofarArity, Module,
BestPPId, RestSCC) :-
lookup_proc_arity(PPId, Module, Arity),
( Arity < BestSofarArity ->
find_min_arity_proc(PPIds, PPId, Arity,
Module, BestPPId, RestSCC0),
RestSCC = [BestSofarPPId | RestSCC0]
;
find_min_arity_proc(PPIds, BestSofarPPId, BestSofarArity,
Module, BestPPId, RestSCC0),
RestSCC = [PPId | RestSCC0]
).
% Perform single arg analysis on the SCC.
:- pred prove_termination_in_scc_single_arg_2(pred_proc_id::in,
list(pred_proc_id)::in, int::in, module_info::in, pass_info::in)
is semidet.
prove_termination_in_scc_single_arg_2(TrialPPId, RestSCC, ArgNum0,
Module, PassInfo) :-
init_rec_input_suppliers_single_arg(TrialPPId, RestSCC,
ArgNum0, Module, InitRecSuppliers),
prove_termination_in_scc_trial([TrialPPId | RestSCC], InitRecSuppliers,
up, Module, PassInfo, Termination),
( Termination = cannot_loop ->
true
;
ArgNum1 is ArgNum0 + 1,
prove_termination_in_scc_single_arg_2(TrialPPId, RestSCC,
ArgNum1, Module, PassInfo)
).
:- pred init_rec_input_suppliers_single_arg(pred_proc_id::in,
list(pred_proc_id)::in, int::in, module_info::in, used_args::out)
is semidet.
init_rec_input_suppliers_single_arg(TrialPPId, RestSCC, ArgNum, Module,
RecSupplierMap) :-
TrialPPId = proc(PredId, ProcId),
module_info_pred_proc_info(Module, PredId, ProcId, _, ProcInfo),
proc_info_argmodes(ProcInfo, ArgModes),
init_rec_input_suppliers_add_single_arg(ArgModes, ArgNum,
Module, TrialPPIdRecSuppliers),
map__init(RecSupplierMap0),
map__det_insert(RecSupplierMap0, TrialPPId, TrialPPIdRecSuppliers,
RecSupplierMap1),
init_rec_input_suppliers_single_arg_others(RestSCC, Module,
RecSupplierMap1, RecSupplierMap).
:- pred init_rec_input_suppliers_add_single_arg(list(mode)::in, int::in,
module_info::in, list(bool)::out) is semidet.
init_rec_input_suppliers_add_single_arg([Mode | Modes], ArgNum, Module,
BoolList) :-
(
mode_is_input(Module, Mode),
ArgNum = 1
->
MapToNo = lambda([_Mode::in, Bool::out] is det,
(
Bool = no
)),
list__map(MapToNo, Modes, BoolList1),
BoolList = [yes | BoolList1]
;
(
mode_is_output(Module, Mode)
->
NextArgNum = ArgNum
;
mode_is_input(Module, Mode),
ArgNum > 1
->
NextArgNum is ArgNum - 1
;
fail
)
->
init_rec_input_suppliers_add_single_arg(Modes, NextArgNum,
Module, BoolList1),
BoolList = [no | BoolList1]
;
fail
).
:- pred init_rec_input_suppliers_single_arg_others(list(pred_proc_id)::in,
module_info::in, used_args::in, used_args::out) is det.
init_rec_input_suppliers_single_arg_others([], _,
RecSupplierMap, RecSupplierMap).
init_rec_input_suppliers_single_arg_others([PPId | PPIds], Module,
RecSupplierMap0, RecSupplierMap) :-
PPId = proc(PredId, ProcId),
module_info_pred_proc_info(Module, PredId, ProcId, _, ProcInfo),
proc_info_headvars(ProcInfo, HeadVars),
MapToNo = lambda([_HeadVar::in, Bool::out] is det,
(
Bool = no
)),
list__map(MapToNo, HeadVars, BoolList),
map__det_insert(RecSupplierMap0, PPId, BoolList, RecSupplierMap1),
init_rec_input_suppliers_single_arg_others(PPIds, Module,
RecSupplierMap1, RecSupplierMap).
:- pred lookup_proc_arity(pred_proc_id::in, module_info::in, int::out) is det.
lookup_proc_arity(PPId, Module, Arity) :-
PPId = proc(PredId, ProcId),
module_info_pred_proc_info(Module, PredId, ProcId, _, ProcInfo),
proc_info_headvars(ProcInfo, HeadVars),
list__length(HeadVars, Arity).
%-----------------------------------------------------------------------------
:- pred prove_termination_in_scc_trial(list(pred_proc_id)::in, used_args::in,
fixpoint_dir::in, module_info::in, pass_info::in,
termination_info::out) is det.
prove_termination_in_scc_trial(SCC, InitRecSuppliers, FixDir, Module,
PassInfo, Termination) :-
prove_termination_in_scc_fixpoint(SCC, FixDir, Module, PassInfo,
InitRecSuppliers, Result),
(
Result = ok(CallInfo, _),
CallInfo = InfCalls - CallWeights,
(
InfCalls \= []
->
PassInfo = pass_info(_, MaxErrors, _),
list__take_upto(MaxErrors, InfCalls, ReportedInfCalls),
Termination = can_loop(ReportedInfCalls)
;
zero_or_positive_weight_cycles(CallWeights, Module,
Cycles),
Cycles \= []
->
PassInfo = pass_info(_, MaxErrors, _),
list__take_upto(MaxErrors, Cycles, ReportedCycles),
Termination = can_loop(ReportedCycles)
;
Termination = cannot_loop
)
;
Result = error(Errors),
Termination = can_loop(Errors)
).
%-----------------------------------------------------------------------------
:- pred prove_termination_in_scc_fixpoint(list(pred_proc_id)::in,
fixpoint_dir::in, module_info::in, pass_info::in, used_args::in,
pass2_result::out) is det.
prove_termination_in_scc_fixpoint(SCC, FixDir, Module, PassInfo,
RecSupplierMap0, Result) :-
% unsafe_perform_io(io__write_string("prove_termination_in_scc\n")),
% unsafe_perform_io(io__write(RecSupplierMap0)),
% unsafe_perform_io(io__write_string("\n")),
map__init(NewRecSupplierMap0),
map__init(CallWeightGraph0),
CallInfo0 = [] - CallWeightGraph0,
prove_termination_in_scc_pass(SCC, FixDir, Module, PassInfo,
RecSupplierMap0, NewRecSupplierMap0, CallInfo0, Result1),
(
Result1 = ok(_, RecSupplierMap1),
( RecSupplierMap1 = RecSupplierMap0 ->
% We are at a fixed point, so further analysis
% will not get any better results.
Result = Result1
;
prove_termination_in_scc_fixpoint(SCC, FixDir,
Module, PassInfo, RecSupplierMap1, Result)
)
;
Result1 = error(_),
Result = Result1
).
%-----------------------------------------------------------------------------
% Process a whole SCC, to determine the termination property of each
% procedure in that SCC.
:- pred prove_termination_in_scc_pass(list(pred_proc_id)::in, fixpoint_dir::in,
module_info::in, pass_info::in, used_args::in, used_args::in,
call_weight_info::in, pass2_result::out) is det.
prove_termination_in_scc_pass([], _, _, _, _, NewRecSupplierMap, CallInfo,
ok(CallInfo, NewRecSupplierMap)).
prove_termination_in_scc_pass([PPId | PPIds], FixDir, Module, PassInfo,
RecSupplierMap, NewRecSupplierMap0, CallInfo0, Result) :-
% Get the goal info.
PPId = proc(PredId, ProcId),
module_info_pred_proc_info(Module, PredId, ProcId, PredInfo, ProcInfo),
pred_info_context(PredInfo, Context),
proc_info_goal(ProcInfo, Goal),
proc_info_vartypes(ProcInfo, VarTypes),
map__init(EmptyMap),
PassInfo = pass_info(FunctorInfo, MaxErrors, MaxPaths),
init_traversal_params(Module, FunctorInfo, PPId, Context, VarTypes,
EmptyMap, RecSupplierMap, MaxErrors, MaxPaths, Params),
set__init(PathSet0),
Info0 = ok(PathSet0, []),
traverse_goal(Goal, Params, Info0, Info),
(
Info = ok(Paths, CanLoop),
require(unify(CanLoop, []),
"can_loop detected in pass2 but not pass1"),
set__to_sorted_list(Paths, PathList),
upper_bound_active_vars(PathList, ActiveVars),
map__lookup(RecSupplierMap, PPId, RecSuppliers0),
proc_info_headvars(ProcInfo, Args),
bag__init(EmptyBag),
update_rec_input_suppliers(Args, ActiveVars, FixDir,
RecSuppliers0, RecSuppliers,
EmptyBag, RecSuppliers0Bag),
map__det_insert(NewRecSupplierMap0, PPId, RecSuppliers,
NewRecSupplierMap1),
add_call_arcs(PathList, RecSuppliers0Bag,
CallInfo0, CallInfo1),
prove_termination_in_scc_pass(PPIds, FixDir, Module,
PassInfo, RecSupplierMap,
NewRecSupplierMap1, CallInfo1, Result)
;
Info = error(Errors, CanLoop),
require(unify(CanLoop, []),
"can_loop detected in pass2 but not pass1"),
Result = error(Errors)
).
%-----------------------------------------------------------------------------
:- pred update_rec_input_suppliers(list(prog_var)::in, bag(prog_var)::in,
fixpoint_dir::in, list(bool)::in, list(bool)::out,
bag(prog_var)::in, bag(prog_var)::out) is det.
update_rec_input_suppliers([], _, _, [], [], RecBag, RecBag).
update_rec_input_suppliers([_ | _], _, _, [], [], _, _) :-
error("update_rec_input_suppliers: Unmatched variables").
update_rec_input_suppliers([], _, _, [_ | _], [], _, _) :-
error("update_rec_input_suppliers: Unmatched variables").
update_rec_input_suppliers([Arg | Args], ActiveVars, FixDir,
[RecInputSupplier0 | RecInputSuppliers0],
[RecInputSupplier | RecInputSuppliers],
RecBag0, RecBag) :-
(
RecInputSupplier0 = yes,
bag__insert(RecBag0, Arg, RecBag1)
;
RecInputSupplier0 = no,
RecBag1 = RecBag0
),
(
FixDir = down,
% This guarantees that the set of rec input suppliers
% can only decrease.
( bag__contains(ActiveVars, Arg) ->
RecInputSupplier = RecInputSupplier0
;
RecInputSupplier = no
)
;
FixDir = up,
% This guarantees that the set of rec input suppliers
% can only increase.
( bag__contains(ActiveVars, Arg) ->
RecInputSupplier = yes
;
RecInputSupplier = RecInputSupplier0
)
),
update_rec_input_suppliers(Args, ActiveVars, FixDir,
RecInputSuppliers0, RecInputSuppliers, RecBag1, RecBag).
%-----------------------------------------------------------------------------
% This adds the information from a stage 2 traversal to the graph.
% The graph's nodes are the procedures in the current SCC.
% The graph's edges represent calls from one procedure in the SCC to another.
% The number attached to the edge from p to q shows the upper bound
% on the difference between the size of the recursive input supplier arguments
% in the call to q and the size of the recursive input supplier arguments
% in the head of p. If there is no finite upper bound, then we insert the
% details of the call into the list of "infinite" calls.
:- pred add_call_arcs(list(path_info)::in,
bag(prog_var)::in, call_weight_info::in, call_weight_info::out) is det.
add_call_arcs([], _RecInputSuppliers, CallInfo, CallInfo).
add_call_arcs([Path | Paths], RecInputSuppliers, CallInfo0, CallInfo) :-
Path = path_info(PPId, CallSite, GammaConst, GammaVars, ActiveVars),
( CallSite = yes(CallPPIdPrime - ContextPrime) ->
CallPPId = CallPPIdPrime,
Context = ContextPrime
;
error("no call site in path in stage 2")
),
( GammaVars = [] ->
true
;
error("gamma variables in path in stage 2")
),
CallInfo0 = InfCalls0 - CallWeights0,
( bag__is_subbag(ActiveVars, RecInputSuppliers) ->
( map__search(CallWeights0, PPId, NeighbourMap0) ->
( map__search(NeighbourMap0, CallPPId, OldEdgeInfo) ->
OldEdgeInfo = _OldContext - OldWeight,
( OldWeight >= GammaConst ->
EdgeInfo = OldEdgeInfo
;
EdgeInfo = Context - GammaConst
),
map__det_update(NeighbourMap0, CallPPId,
EdgeInfo, NeighbourMap)
;
map__det_insert(NeighbourMap0, CallPPId,
Context - GammaConst, NeighbourMap)
),
map__det_update(CallWeights0, PPId, NeighbourMap,
CallWeights1)
;
map__init(NeighbourMap0),
map__det_insert(NeighbourMap0, CallPPId,
Context - GammaConst, NeighbourMap),
map__det_insert(CallWeights0, PPId, NeighbourMap,
CallWeights1)
),
CallInfo1 = InfCalls0 - CallWeights1
;
InfCalls1 = [Context - inf_call(PPId, CallPPId) | InfCalls0],
CallInfo1 = InfCalls1 - CallWeights0
),
add_call_arcs(Paths, RecInputSuppliers, CallInfo1, CallInfo).
%-----------------------------------------------------------------------------
% We use a simple depth first search to find and return the list
% of all cycles in the call graph of the SCC where the change in
% the size of the recursive input supplier arguments of the procedure
% that serves as the start and end point of the circularity are
% not guaranteed to decrease.
%
% Finding one such cycle is enough for us to conclude that we
% cannot prove termination of the procedures in the SCC; we collect
% all cycles because it may be useful to print them out (if not
% all, then maybe a limited set).
:- pred zero_or_positive_weight_cycles(call_weight_graph::in,
module_info::in, list(term_errors__error)::out) is det.
zero_or_positive_weight_cycles(CallWeights, Module, Cycles) :-
map__keys(CallWeights, PPIds),
zero_or_positive_weight_cycles_2(PPIds, CallWeights, Module, Cycles).
:- pred zero_or_positive_weight_cycles_2(list(pred_proc_id)::in,
call_weight_graph::in, module_info::in,
list(term_errors__error)::out) is det.
zero_or_positive_weight_cycles_2([], _, _, []).
zero_or_positive_weight_cycles_2([PPId | PPIds], CallWeights, Module, Cycles) :-
zero_or_positive_weight_cycles_from(PPId, CallWeights, Module, Cycles1),
zero_or_positive_weight_cycles_2(PPIds, CallWeights, Module, Cycles2),
list__append(Cycles1, Cycles2, Cycles).
:- pred zero_or_positive_weight_cycles_from(pred_proc_id::in,
call_weight_graph::in, module_info::in,
list(term_errors__error)::out) is det.
zero_or_positive_weight_cycles_from(PPId, CallWeights, Module, Cycles) :-
map__lookup(CallWeights, PPId, NeighboursMap),
map__to_assoc_list(NeighboursMap, NeighboursList),
PPId = proc(PredId, _ProcId),
module_info_pred_info(Module, PredId, PredInfo),
pred_info_context(PredInfo, Context),
zero_or_positive_weight_cycles_from_neighbours(NeighboursList,
PPId, Context, 0, [], CallWeights, Cycles).
:- pred zero_or_positive_weight_cycles_from_neighbours(assoc_list(pred_proc_id,
pair(prog_context, int))::in, pred_proc_id::in, prog_context::in,
int::in, assoc_list(pred_proc_id, prog_context)::in,
call_weight_graph::in, list(term_errors__error)::out) is det.
zero_or_positive_weight_cycles_from_neighbours([], _, _, _, _, _, []).
zero_or_positive_weight_cycles_from_neighbours([Neighbour | Neighbours],
LookforPPId, Context, WeightSoFar, VisitedCalls, CallWeights,
Cycles) :-
zero_or_positive_weight_cycles_from_neighbour(Neighbour, LookforPPId,
Context, WeightSoFar, VisitedCalls, CallWeights, Cycles1),
zero_or_positive_weight_cycles_from_neighbours(Neighbours, LookforPPId,
Context, WeightSoFar, VisitedCalls, CallWeights, Cycles2),
list__append(Cycles1, Cycles2, Cycles).
:- pred zero_or_positive_weight_cycles_from_neighbour(pair(pred_proc_id,
pair(prog_context, int))::in, pred_proc_id::in, prog_context::in,
int::in, assoc_list(pred_proc_id, prog_context)::in,
call_weight_graph::in, list(term_errors__error)::out) is det.
zero_or_positive_weight_cycles_from_neighbour(CurPPId - (Context - EdgeWeight),
LookforPPId, ProcContext, WeightSoFar0, VisitedCalls,
CallWeights, Cycles) :-
WeightSoFar1 is WeightSoFar0 + EdgeWeight,
(
CurPPId = LookforPPId
->
% We have a cycle on the looked for ppid.
( WeightSoFar1 >= 0 ->
FinalVisitedCalls = [CurPPId - Context | VisitedCalls],
list__reverse(FinalVisitedCalls, RevFinalVisitedCalls),
Cycles = [ProcContext -
cycle(LookforPPId, RevFinalVisitedCalls)]
;
Cycles = []
)
;
assoc_list__keys(VisitedCalls, VisitedPPIds),
list__member(CurPPId, VisitedPPIds)
->
% We have a cycle, but not on the looked for ppid.
% We ignore it here; it will be picked up when we process
% that ppid.
Cycles = []
;
% No cycle; try all possible edges from this node.
NewVisitedCalls = [CurPPId - Context | VisitedCalls],
map__lookup(CallWeights, CurPPId, NeighboursMap),
map__to_assoc_list(NeighboursMap, NeighboursList),
zero_or_positive_weight_cycles_from_neighbours(NeighboursList,
LookforPPId, ProcContext, WeightSoFar1,
NewVisitedCalls, CallWeights, Cycles)
).
%-----------------------------------------------------------------------------
|