File: term_util.m

package info (click to toggle)
mercury 0.9-1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 18,488 kB
  • ctags: 9,800
  • sloc: objc: 146,680; ansic: 51,418; sh: 6,436; lisp: 1,567; cpp: 1,040; perl: 854; makefile: 450; asm: 232; awk: 203; exp: 32; fortran: 3; csh: 1
file content (598 lines) | stat: -rw-r--r-- 21,760 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
%-----------------------------------------------------------------------------%
% Copyright (C) 1997-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% term_util.m
% Main author: crs.
%
% This module:
%
% -	defines the types used by termination analysis
% -	defines predicates for computing functor norms
% -	defines some utility predicates
%
%-----------------------------------------------------------------------------%

:- module term_util.

:- interface.

:- import_module term_errors, prog_data.
:- import_module hlds_module, hlds_pred, hlds_data, hlds_goal.

:- import_module std_util, bool, int, list, map, bag.

%-----------------------------------------------------------------------------%
%
% The types `arg_size_info' and `termination_info' hold information
% about procedures which is used for termination analysis.
% These types are stored as fields in the HLDS proc_info.
% For cross-module analysis, the information is written out as
% `pragma termination_info(...)' declarations in the
% `.opt' and `.trans_opt' files.  The module prog_data.m defines
% types similar to these two (but without the `list(term_errors__error)')
% which are used when parsing `termination_info' pragmas.
%

% The arg size info defines an upper bound on the difference
% between the sizes of the output arguments of a procedure and the sizes
% of the input arguments:
%
% | input arguments | + constant >= | output arguments |
%
% where | | represents a semilinear norm.

:- type arg_size_info
	--->	finite(int, list(bool))
				% The termination constant is a finite integer.
				% The list of bool has a 1:1 correspondence
				% with the input arguments of the procedure.
				% It stores whether the argument contributes
				% to the size of the output arguments.

	;	infinite(list(term_errors__error)).
				% There is no finite integer for which the
				% above equation is true. The argument says
				% why the analysis failed to find a finite
				% constant.

:- type termination_info
	---> 	cannot_loop	% This procedure terminates for all
				% possible inputs.

	;	can_loop(list(term_errors__error)).
				% The analysis could not prove that the
				% procedure terminates.

% The type `used_args' holds a mapping which specifies for each procedure
% which of its arguments are used.

:- type used_args	==	map(pred_proc_id, list(bool)).

%-----------------------------------------------------------------------------%

% We use semilinear norms (denoted by ||) to compute the sizes of terms.
% These have the form
%
% | f(t1, ... tn) | = weight(f) + sum of | ti |
% where i is an element of a set I, and I is a subset of {1, ... n}
%
% We currently support four kinds of semilinear norms.

:- type functor_info
	--->	simple	% All non-constant functors have weight 1,
			% while constants have weight 0.
			% Use the size of all subterms (I = {1, ..., n}.

	;	total	% All functors have weight = arity of the functor.
			% Use the size of all subterms (I = {1, ..., n}.

	;	use_map(weight_table)
			% The weight of each functor is given by the table.
			% Use the size of all subterms (I = {1, ..., n}.

	;	use_map_and_args(weight_table).
			% The weight of each functor is given by the table,
			% and so is the set of arguments of the functor whose
			% size should be counted (I is given by the table
			% entry of the functor).

:- type unify_info	==	pair(map(prog_var, type), functor_info).

:- type weight_info	--->	weight(int, list(bool)).
:- type weight_table	==	map(pair(type_id, cons_id), weight_info).

:- pred find_weights(module_info::in, weight_table::out) is det.

% This predicate is computes the weight of a functor and the set of arguments
% of that functor whose sizes should be counted towards the size of the whole
% term.

:- pred functor_norm(functor_info::in, type_id::in, cons_id::in,
	module_info::in, int::out, list(prog_var)::in, list(prog_var)::out,
	list(uni_mode)::in, list(uni_mode)::out) is det.

:- type pass_info
	--->	pass_info(
			functor_info,
			int,		% Max number of errors to gather.
			int		% Max number of paths to analyze.
		).

%-----------------------------------------------------------------------------%

% This predicate partitions the arguments of a call into a list of input
% variables and a list of output variables,

:- pred partition_call_args(module_info::in, list(mode)::in, list(prog_var)::in,
	bag(prog_var)::out, bag(prog_var)::out) is det.

% Given a list of variables from a unification, this predicate divides the
% list into a bag of input variables, and a bag of output variables.

:- pred split_unification_vars(list(prog_var)::in, list(uni_mode)::in,
	module_info::in, bag(prog_var)::out, bag(prog_var)::out) is det.

%  Used to create lists of boolean values, which are used for used_args.
%  make_bool_list(HeadVars, BoolIn, BoolOut) creates a bool list which is
%  (length(HeadVars) - length(BoolIn)) `no' followed by BoolIn.  This is
%  used to set the used args for compiler generated predicates.  The no's
%  at the start are because the Type infos are not used. length(BoolIn)
%  should equal the arity of the predicate, and the difference in length
%  between the arity of the procedure and the arity of the predicate is
%  the number of type infos.

:- pred term_util__make_bool_list(list(_T)::in, list(bool)::in,
	list(bool)::out) is det.

% Removes variables from the InVarBag that are not used in the call.
% remove_unused_args(InVarBag0, VarList, BoolList, InVarBag)
% VarList and BoolList are corresponding lists.  Any variable in VarList
% that has a `no' in the corresponding place in the BoolList is removed
% from InVarBag.

:- pred remove_unused_args(bag(prog_var), list(prog_var), list(bool),
		bag(prog_var)).
:- mode remove_unused_args(in, in, in, out) is det.

% This predicate sets the argument size info of a given a list of procedures.

:- pred set_pred_proc_ids_arg_size_info(list(pred_proc_id)::in,
	arg_size_info::in, module_info::in, module_info::out) is det.

% This predicate sets the termination info of a given a list of procedures.

:- pred set_pred_proc_ids_termination_info(list(pred_proc_id)::in,
	termination_info::in, module_info::in, module_info::out) is det.

:- pred lookup_proc_termination_info(module_info::in, pred_proc_id::in,
	maybe(termination_info)::out) is det.

:- pred lookup_proc_arg_size_info(module_info::in, pred_proc_id::in,
	maybe(arg_size_info)::out) is det.

% Succeeds if one or more variables in the list are higher order.

:- pred horder_vars(list(prog_var), map(prog_var, type)).
:- mode horder_vars(in, in) is semidet.

% Succeeds if all values of the given type are zero size (for all norms).

:- pred zero_size_type(type, module_info).
:- mode zero_size_type(in, in) is semidet.

:- pred get_context_from_scc(list(pred_proc_id)::in, module_info::in,
	prog_context::out) is det.

%-----------------------------------------------------------------------------%

% Convert a prog_data__pragma_termination_info into a
% term_util__termination_info, by adding the appropriate context.

:- pred add_context_to_termination_info(maybe(pragma_termination_info),
		prog_context, maybe(termination_info)).
:- mode add_context_to_termination_info(in, in, out) is det.

% Convert a prog_data__pragma_arg_size_info into a
% term_util__arg_size_info, by adding the appropriate context.

:- pred add_context_to_arg_size_info(maybe(pragma_arg_size_info),
		prog_context, maybe(arg_size_info)).
:- mode add_context_to_arg_size_info(in, in, out) is det.

%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%

:- implementation.

:- import_module inst_match, prog_out, mode_util, type_util.
:- import_module globals, options.

:- import_module assoc_list, require.

%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%

% Calculate the weight to be assigned to each function symbol for the
% use_map and use_map_and_args semilinear norms.
%
% Given a type definition such as
%
% :- type t(Tk)	--->	f1(a11, ... a1n1)	where n1 is the arity of f1
%		;	...
%		;	fm(am1, ... amnm)	where nm is the arity of fm
%
% we check, for each aij, whether its type is recursive (i.e. it is t with
% type variable arguments that are a permutation of Tk). The weight info
% we compute for each functor will have a boolean list that has a `yes'
% for each recursive argument and a `no' for each nonrecursive argument.
% The weight to be assigned to the functor is the number of nonrecursive
% arguments, except that we assign a weight of at least 1 to all functors
% which are not constants.

find_weights(ModuleInfo, Weights) :-
	module_info_types(ModuleInfo, TypeTable),
	map__to_assoc_list(TypeTable, TypeList),
	map__init(Weights0),
	find_weights_for_type_list(TypeList, Weights0, Weights).

:- pred find_weights_for_type_list(assoc_list(type_id, hlds_type_defn)::in,
	weight_table::in, weight_table::out) is det.

find_weights_for_type_list([], Weights, Weights).
find_weights_for_type_list([TypeId - TypeDefn | TypeList], Weights0, Weights) :-
	find_weights_for_type(TypeId, TypeDefn, Weights0, Weights1),
	find_weights_for_type_list(TypeList, Weights1, Weights).

:- pred find_weights_for_type(type_id::in, hlds_type_defn::in,
	weight_table::in, weight_table::out) is det.

find_weights_for_type(TypeId, TypeDefn, Weights0, Weights) :-
	hlds_data__get_type_defn_body(TypeDefn, TypeBody),
	(
		TypeBody = du_type(Constructors, _, _, _),
		hlds_data__get_type_defn_tparams(TypeDefn, TypeParams),
		find_weights_for_cons_list(Constructors, TypeId, TypeParams,
			Weights0, Weights)
	;
		TypeBody = uu_type(_),
		error("undiscriminated union types not yet implemented")
	;
		% This type does not introduce any functors
		TypeBody = eqv_type(_),
		Weights = Weights0
	;
		% This type may introduce some functors,
		% but we will never see them in this analysis
		TypeBody = abstract_type,
		Weights = Weights0
	).

:- pred find_weights_for_cons_list(list(constructor)::in,
	type_id::in, list(type_param)::in,
	weight_table::in, weight_table::out) is det.

find_weights_for_cons_list([], _, _, Weights, Weights).
find_weights_for_cons_list([Constructor | Constructors], TypeId, Params,
		Weights0, Weights) :-
	find_weights_for_cons(Constructor, TypeId, Params, Weights0, Weights1),
	find_weights_for_cons_list(Constructors, TypeId, Params,
		Weights1, Weights).

:- pred find_weights_for_cons(constructor::in,
	type_id::in, list(type_param)::in,
	weight_table::in, weight_table::out) is det.

find_weights_for_cons(Ctor, TypeId, Params, Weights0, Weights) :-
	% XXX should we do something about ExistQVars here?
 	Ctor = ctor(_ExistQVars, _Constraints, SymName, Args),
	list__length(Args, Arity),
	( Arity > 0 ->
		find_and_count_nonrec_args(Args, TypeId, Params,
			NumNonRec, ArgInfos0),
		( NumNonRec = 0 ->
			Weight = 1,
			list__duplicate(Arity, yes, ArgInfos)
		;
			Weight = NumNonRec,
			ArgInfos = ArgInfos0
		),
		WeightInfo = weight(Weight, ArgInfos)
	;
		WeightInfo = weight(0, [])
	),
	ConsId = cons(SymName, Arity),
	map__det_insert(Weights0, TypeId - ConsId, WeightInfo, Weights).

:- pred find_and_count_nonrec_args(list(constructor_arg)::in,
	type_id::in, list(type_param)::in,
	int::out, list(bool)::out) is det.

find_and_count_nonrec_args([], _, _, 0, []).
find_and_count_nonrec_args([Arg | Args], Id, Params, NonRecArgs, ArgInfo) :-
	find_and_count_nonrec_args(Args, Id, Params, NonRecArgs0, ArgInfo0),
	( is_arg_recursive(Arg, Id, Params) ->
		NonRecArgs = NonRecArgs0,
		ArgInfo = [yes | ArgInfo0]
	;
		NonRecArgs is NonRecArgs0 + 1,
		ArgInfo = [no | ArgInfo0]
	).

:- pred is_arg_recursive(constructor_arg::in,
	type_id::in, list(type_param)::in) is semidet.

is_arg_recursive(Arg, Id, Params) :-
	Arg = _Name - ArgType,
	type_to_type_id(ArgType, ArgTypeId, ArgTypeParams),
	Id = ArgTypeId,
	list__perm(Params, ArgTypeParams).

%-----------------------------------------------------------------------------%

% Although the module info is not used in either of these norms, it could
% be needed for other norms, so it should not be removed.

functor_norm(simple, _, ConsId, _, Int, Args, Args, Modes, Modes) :-
	(
		ConsId = cons(_, Arity),
		Arity \= 0
	->
		Int = 1
	;
		Int = 0
	).
functor_norm(total, _, ConsId, _Module, Int, Args, Args, Modes, Modes) :-
	( ConsId = cons(_, Arity) ->
		Int = Arity
	;
		Int = 0
	).
functor_norm(use_map(WeightMap), TypeId, ConsId, _Module, Int,
		Args, Args, Modes, Modes) :-
	( map__search(WeightMap, TypeId - ConsId, WeightInfo) ->
		WeightInfo = weight(Int, _)
	;
		Int = 0
	).
functor_norm(use_map_and_args(WeightMap), TypeId, ConsId, _Module, Int,
		Args0, Args, Modes0, Modes) :-
	( map__search(WeightMap, TypeId - ConsId, WeightInfo) ->
		WeightInfo = weight(Int, UseArgList),
		(
			functor_norm_filter_args(UseArgList, Args0, Args1,
				Modes0, Modes1)
		->
			Modes = Modes1,
			Args = Args1
		;
			error("Unmatched lists in functor_norm_filter_args.")
		)
	;
		Int = 0,
		Modes = Modes0,
		Args = Args0
	).

% This predicate will fail if the length of the input lists are not matched.

:- pred functor_norm_filter_args(list(bool), list(prog_var), list(prog_var),
	list(uni_mode), list(uni_mode)).
:- mode functor_norm_filter_args(in, in, out, in, out) is semidet.

functor_norm_filter_args([], [], [], [], []).
functor_norm_filter_args([yes | Bools], [Arg0 | Args0], [Arg0 | Args],
		[Mode0 | Modes0], [Mode0 | Modes]) :-
	functor_norm_filter_args(Bools, Args0, Args, Modes0, Modes).
functor_norm_filter_args([no | Bools], [_Arg0 | Args0], Args,
		[_Mode0 | Modes0], Modes) :-
	functor_norm_filter_args(Bools, Args0, Args, Modes0, Modes).

%-----------------------------------------------------------------------------%

partition_call_args(Module, ArgModes, Args, InVarsBag, OutVarsBag) :-
	partition_call_args_2(Module, ArgModes, Args, InVars, OutVars),
	bag__from_list(InVars, InVarsBag),
	bag__from_list(OutVars, OutVarsBag).

:- pred partition_call_args_2(module_info::in, list(mode)::in,
	list(prog_var)::in, list(prog_var)::out, list(prog_var)::out) is det.

partition_call_args_2(_, [], [], [], []).
partition_call_args_2(_, [], [_ | _], _, _) :-
	error("Unmatched variables in term_util:partition_call_args").
partition_call_args_2(_, [_ | _], [], _, _) :-
	error("Unmatched variables in term_util__partition_call_args").
partition_call_args_2(ModuleInfo, [ArgMode | ArgModes], [Arg | Args],
		InputArgs, OutputArgs) :-
	partition_call_args_2(ModuleInfo, ArgModes, Args,
		InputArgs1, OutputArgs1),
	( mode_is_input(ModuleInfo, ArgMode) ->
		InputArgs = [Arg | InputArgs1],
		OutputArgs = OutputArgs1
	; mode_is_output(ModuleInfo, ArgMode) ->
		InputArgs = InputArgs1,
		OutputArgs = [Arg | OutputArgs1]
	;
		InputArgs = InputArgs1,
		OutputArgs = OutputArgs1
	).

% For these next two predicates (split_unification_vars and
% partition_call_args) there is a problem of what needs to be done for
% partially instantiated data structures.  The correct answer is that the
% system shoud use a norm such that the size of the uninstantiated parts of
% a partially instantiated structure have no effect on the size of the data
% structure according to the norm.  For example when finding the size of a
% list-skeleton, list-length norm should be used.  Therefore, the size of
% any term must be given by
% sizeof(term) = constant + sum of the size of each
% 			(possibly partly) instantiated subterm.
% It is probably easiest to implement this by modifying term_weights.
% The current implementation does not correctly handle partially
% instantiated data structures.

split_unification_vars([], Modes, _ModuleInfo, Vars, Vars) :-
	bag__init(Vars),
	( Modes = [] ->
		true
	;
		error("term_util:split_unification_vars: Unmatched Variables")
	).
split_unification_vars([Arg | Args], Modes, ModuleInfo,
		InVars, OutVars):-
	( Modes = [UniMode | UniModes] ->
		split_unification_vars(Args, UniModes, ModuleInfo,
			InVars0, OutVars0),
		UniMode = ((_VarInit - ArgInit) -> (_VarFinal - ArgFinal)),
		( % if
			inst_is_bound(ModuleInfo, ArgInit)
		->
			% Variable is an input variable
			bag__insert(InVars0, Arg, InVars),
			OutVars = OutVars0
		; % else if
			inst_is_free(ModuleInfo, ArgInit),
			inst_is_bound(ModuleInfo, ArgFinal)
		->
			% Variable is an output variable
			InVars = InVars0,
			bag__insert(OutVars0, Arg, OutVars)
		; % else
			InVars = InVars0,
			OutVars = OutVars0
		)
	;
		error("term_util__split_unification_vars: Unmatched Variables")
	).

%-----------------------------------------------------------------------------%

term_util__make_bool_list(HeadVars0, Bools, Out) :-
	list__length(Bools, Arity),
	( list__drop(Arity, HeadVars0, HeadVars1) ->
		HeadVars = HeadVars1
	;
		error("Unmatched variables in term_util:make_bool_list")
	),
	term_util__make_bool_list_2(HeadVars, Bools, Out).

:- pred term_util__make_bool_list_2(list(_T), list(bool), list(bool)).
:- mode term_util__make_bool_list_2(in, in, out) is det.

term_util__make_bool_list_2([], Bools, Bools).
term_util__make_bool_list_2([ _ | Vars ], Bools, [no | Out]) :-
	term_util__make_bool_list_2(Vars, Bools, Out).

remove_unused_args(Vars, [], [], Vars).
remove_unused_args(Vars, [], [_X | _Xs], Vars) :-
	error("Unmatched variables in term_util:remove_unused_args").
remove_unused_args(Vars, [_X | _Xs], [], Vars) :-
	error("Unmatched variables in term_util__remove_unused_args").
remove_unused_args(Vars0, [ Arg | Args ], [ UsedVar | UsedVars ], Vars) :-
	( UsedVar = yes ->
		% The variable is used, so leave it
		remove_unused_args(Vars0, Args, UsedVars, Vars)
	;
		% The variable is not used in producing output vars, so
		% dont include it as an input variable.
		bag__delete(Vars0, Arg, Vars1),
		remove_unused_args(Vars1, Args, UsedVars, Vars)
	).

%-----------------------------------------------------------------------------%

set_pred_proc_ids_arg_size_info([], _ArgSize, Module, Module).
set_pred_proc_ids_arg_size_info([PPId | PPIds], ArgSize, Module0, Module) :-
	PPId = proc(PredId, ProcId),
	module_info_preds(Module0, PredTable0),
	map__lookup(PredTable0, PredId, PredInfo0),
	pred_info_procedures(PredInfo0, ProcTable0),
	map__lookup(ProcTable0, ProcId, ProcInfo0),

	proc_info_set_maybe_arg_size_info(ProcInfo0, yes(ArgSize), ProcInfo),

	map__det_update(ProcTable0, ProcId, ProcInfo, ProcTable),
	pred_info_set_procedures(PredInfo0, ProcTable, PredInfo),
	map__det_update(PredTable0, PredId, PredInfo, PredTable),
	module_info_set_preds(Module0, PredTable, Module1),
	set_pred_proc_ids_arg_size_info(PPIds, ArgSize, Module1, Module).

set_pred_proc_ids_termination_info([], _Termination, Module, Module).
set_pred_proc_ids_termination_info([PPId | PPIds], Termination,
		Module0, Module) :-
	PPId = proc(PredId, ProcId),
	module_info_preds(Module0, PredTable0),
	map__lookup(PredTable0, PredId, PredInfo0),
	pred_info_procedures(PredInfo0, ProcTable0),
	map__lookup(ProcTable0, ProcId, ProcInfo0),

	proc_info_set_maybe_termination_info(ProcInfo0, yes(Termination),
		ProcInfo),

	map__det_update(ProcTable0, ProcId, ProcInfo, ProcTable),
	pred_info_set_procedures(PredInfo0, ProcTable, PredInfo),
	map__det_update(PredTable0, PredId, PredInfo, PredTable),
	module_info_set_preds(Module0, PredTable, Module1),
	set_pred_proc_ids_termination_info(PPIds, Termination,
		Module1, Module).

lookup_proc_termination_info(Module, PredProcId, MaybeTermination) :-
	PredProcId = proc(PredId, ProcId),
	module_info_pred_proc_info(Module, PredId, ProcId, _, ProcInfo),
	proc_info_get_maybe_termination_info(ProcInfo, MaybeTermination).

lookup_proc_arg_size_info(Module, PredProcId, MaybeArgSize) :-
	PredProcId = proc(PredId, ProcId),
	module_info_pred_proc_info(Module, PredId, ProcId, _, ProcInfo),
	proc_info_get_maybe_arg_size_info(ProcInfo, MaybeArgSize).

horder_vars([Arg | Args], VarType) :-
	(
		map__lookup(VarType, Arg, Type),
		type_is_higher_order(Type, _, _, _)
	;
		horder_vars(Args, VarType)
	).

zero_size_type(Type, Module) :-
	classify_type(Type, Module, TypeCategory),
	zero_size_type_category(TypeCategory, Type, Module, yes).

:- pred zero_size_type_category(builtin_type, type, module_info, bool).
:- mode zero_size_type_category(in, in, in, out) is det.

zero_size_type_category(int_type, _, _, yes).
zero_size_type_category(char_type, _, _, yes).
zero_size_type_category(str_type, _, _, yes).
zero_size_type_category(float_type, _, _, yes).
zero_size_type_category(pred_type, _, _, no).
zero_size_type_category(enum_type, _, _, yes).
zero_size_type_category(polymorphic_type, _, _, no).
zero_size_type_category(user_type, _, _, no).

%-----------------------------------------------------------------------------%

get_context_from_scc(SCC, Module, Context) :-
	( SCC = [proc(PredId, _) | _] ->
		module_info_pred_info(Module, PredId, PredInfo),
		pred_info_context(PredInfo, Context)
	;
		error("Empty SCC in pass 2 of termination analysis")
	).

%-----------------------------------------------------------------------------%

add_context_to_termination_info(no, _, no).
add_context_to_termination_info(yes(cannot_loop), _, yes(cannot_loop)).
add_context_to_termination_info(yes(can_loop), Context,
		yes(can_loop([Context - imported_pred]))).

add_context_to_arg_size_info(no, _, no).
add_context_to_arg_size_info(yes(finite(A, B)), _, yes(finite(A, B))).
add_context_to_arg_size_info(yes(infinite), Context,
				yes(infinite([Context - imported_pred]))).

%-----------------------------------------------------------------------------%