1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
|
%-----------------------------------------------------------------------------%
% Copyright (C) 1997-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%
%
% term_util.m
% Main author: crs.
%
% This module:
%
% - defines the types used by termination analysis
% - defines predicates for computing functor norms
% - defines some utility predicates
%
%-----------------------------------------------------------------------------%
:- module term_util.
:- interface.
:- import_module term_errors, prog_data.
:- import_module hlds_module, hlds_pred, hlds_data, hlds_goal.
:- import_module std_util, bool, int, list, map, bag.
%-----------------------------------------------------------------------------%
%
% The types `arg_size_info' and `termination_info' hold information
% about procedures which is used for termination analysis.
% These types are stored as fields in the HLDS proc_info.
% For cross-module analysis, the information is written out as
% `pragma termination_info(...)' declarations in the
% `.opt' and `.trans_opt' files. The module prog_data.m defines
% types similar to these two (but without the `list(term_errors__error)')
% which are used when parsing `termination_info' pragmas.
%
% The arg size info defines an upper bound on the difference
% between the sizes of the output arguments of a procedure and the sizes
% of the input arguments:
%
% | input arguments | + constant >= | output arguments |
%
% where | | represents a semilinear norm.
:- type arg_size_info
---> finite(int, list(bool))
% The termination constant is a finite integer.
% The list of bool has a 1:1 correspondence
% with the input arguments of the procedure.
% It stores whether the argument contributes
% to the size of the output arguments.
; infinite(list(term_errors__error)).
% There is no finite integer for which the
% above equation is true. The argument says
% why the analysis failed to find a finite
% constant.
:- type termination_info
---> cannot_loop % This procedure terminates for all
% possible inputs.
; can_loop(list(term_errors__error)).
% The analysis could not prove that the
% procedure terminates.
% The type `used_args' holds a mapping which specifies for each procedure
% which of its arguments are used.
:- type used_args == map(pred_proc_id, list(bool)).
%-----------------------------------------------------------------------------%
% We use semilinear norms (denoted by ||) to compute the sizes of terms.
% These have the form
%
% | f(t1, ... tn) | = weight(f) + sum of | ti |
% where i is an element of a set I, and I is a subset of {1, ... n}
%
% We currently support four kinds of semilinear norms.
:- type functor_info
---> simple % All non-constant functors have weight 1,
% while constants have weight 0.
% Use the size of all subterms (I = {1, ..., n}.
; total % All functors have weight = arity of the functor.
% Use the size of all subterms (I = {1, ..., n}.
; use_map(weight_table)
% The weight of each functor is given by the table.
% Use the size of all subterms (I = {1, ..., n}.
; use_map_and_args(weight_table).
% The weight of each functor is given by the table,
% and so is the set of arguments of the functor whose
% size should be counted (I is given by the table
% entry of the functor).
:- type unify_info == pair(map(prog_var, type), functor_info).
:- type weight_info ---> weight(int, list(bool)).
:- type weight_table == map(pair(type_id, cons_id), weight_info).
:- pred find_weights(module_info::in, weight_table::out) is det.
% This predicate is computes the weight of a functor and the set of arguments
% of that functor whose sizes should be counted towards the size of the whole
% term.
:- pred functor_norm(functor_info::in, type_id::in, cons_id::in,
module_info::in, int::out, list(prog_var)::in, list(prog_var)::out,
list(uni_mode)::in, list(uni_mode)::out) is det.
:- type pass_info
---> pass_info(
functor_info,
int, % Max number of errors to gather.
int % Max number of paths to analyze.
).
%-----------------------------------------------------------------------------%
% This predicate partitions the arguments of a call into a list of input
% variables and a list of output variables,
:- pred partition_call_args(module_info::in, list(mode)::in, list(prog_var)::in,
bag(prog_var)::out, bag(prog_var)::out) is det.
% Given a list of variables from a unification, this predicate divides the
% list into a bag of input variables, and a bag of output variables.
:- pred split_unification_vars(list(prog_var)::in, list(uni_mode)::in,
module_info::in, bag(prog_var)::out, bag(prog_var)::out) is det.
% Used to create lists of boolean values, which are used for used_args.
% make_bool_list(HeadVars, BoolIn, BoolOut) creates a bool list which is
% (length(HeadVars) - length(BoolIn)) `no' followed by BoolIn. This is
% used to set the used args for compiler generated predicates. The no's
% at the start are because the Type infos are not used. length(BoolIn)
% should equal the arity of the predicate, and the difference in length
% between the arity of the procedure and the arity of the predicate is
% the number of type infos.
:- pred term_util__make_bool_list(list(_T)::in, list(bool)::in,
list(bool)::out) is det.
% Removes variables from the InVarBag that are not used in the call.
% remove_unused_args(InVarBag0, VarList, BoolList, InVarBag)
% VarList and BoolList are corresponding lists. Any variable in VarList
% that has a `no' in the corresponding place in the BoolList is removed
% from InVarBag.
:- pred remove_unused_args(bag(prog_var), list(prog_var), list(bool),
bag(prog_var)).
:- mode remove_unused_args(in, in, in, out) is det.
% This predicate sets the argument size info of a given a list of procedures.
:- pred set_pred_proc_ids_arg_size_info(list(pred_proc_id)::in,
arg_size_info::in, module_info::in, module_info::out) is det.
% This predicate sets the termination info of a given a list of procedures.
:- pred set_pred_proc_ids_termination_info(list(pred_proc_id)::in,
termination_info::in, module_info::in, module_info::out) is det.
:- pred lookup_proc_termination_info(module_info::in, pred_proc_id::in,
maybe(termination_info)::out) is det.
:- pred lookup_proc_arg_size_info(module_info::in, pred_proc_id::in,
maybe(arg_size_info)::out) is det.
% Succeeds if one or more variables in the list are higher order.
:- pred horder_vars(list(prog_var), map(prog_var, type)).
:- mode horder_vars(in, in) is semidet.
% Succeeds if all values of the given type are zero size (for all norms).
:- pred zero_size_type(type, module_info).
:- mode zero_size_type(in, in) is semidet.
:- pred get_context_from_scc(list(pred_proc_id)::in, module_info::in,
prog_context::out) is det.
%-----------------------------------------------------------------------------%
% Convert a prog_data__pragma_termination_info into a
% term_util__termination_info, by adding the appropriate context.
:- pred add_context_to_termination_info(maybe(pragma_termination_info),
prog_context, maybe(termination_info)).
:- mode add_context_to_termination_info(in, in, out) is det.
% Convert a prog_data__pragma_arg_size_info into a
% term_util__arg_size_info, by adding the appropriate context.
:- pred add_context_to_arg_size_info(maybe(pragma_arg_size_info),
prog_context, maybe(arg_size_info)).
:- mode add_context_to_arg_size_info(in, in, out) is det.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
:- implementation.
:- import_module inst_match, prog_out, mode_util, type_util.
:- import_module globals, options.
:- import_module assoc_list, require.
%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%
% Calculate the weight to be assigned to each function symbol for the
% use_map and use_map_and_args semilinear norms.
%
% Given a type definition such as
%
% :- type t(Tk) ---> f1(a11, ... a1n1) where n1 is the arity of f1
% ; ...
% ; fm(am1, ... amnm) where nm is the arity of fm
%
% we check, for each aij, whether its type is recursive (i.e. it is t with
% type variable arguments that are a permutation of Tk). The weight info
% we compute for each functor will have a boolean list that has a `yes'
% for each recursive argument and a `no' for each nonrecursive argument.
% The weight to be assigned to the functor is the number of nonrecursive
% arguments, except that we assign a weight of at least 1 to all functors
% which are not constants.
find_weights(ModuleInfo, Weights) :-
module_info_types(ModuleInfo, TypeTable),
map__to_assoc_list(TypeTable, TypeList),
map__init(Weights0),
find_weights_for_type_list(TypeList, Weights0, Weights).
:- pred find_weights_for_type_list(assoc_list(type_id, hlds_type_defn)::in,
weight_table::in, weight_table::out) is det.
find_weights_for_type_list([], Weights, Weights).
find_weights_for_type_list([TypeId - TypeDefn | TypeList], Weights0, Weights) :-
find_weights_for_type(TypeId, TypeDefn, Weights0, Weights1),
find_weights_for_type_list(TypeList, Weights1, Weights).
:- pred find_weights_for_type(type_id::in, hlds_type_defn::in,
weight_table::in, weight_table::out) is det.
find_weights_for_type(TypeId, TypeDefn, Weights0, Weights) :-
hlds_data__get_type_defn_body(TypeDefn, TypeBody),
(
TypeBody = du_type(Constructors, _, _, _),
hlds_data__get_type_defn_tparams(TypeDefn, TypeParams),
find_weights_for_cons_list(Constructors, TypeId, TypeParams,
Weights0, Weights)
;
TypeBody = uu_type(_),
error("undiscriminated union types not yet implemented")
;
% This type does not introduce any functors
TypeBody = eqv_type(_),
Weights = Weights0
;
% This type may introduce some functors,
% but we will never see them in this analysis
TypeBody = abstract_type,
Weights = Weights0
).
:- pred find_weights_for_cons_list(list(constructor)::in,
type_id::in, list(type_param)::in,
weight_table::in, weight_table::out) is det.
find_weights_for_cons_list([], _, _, Weights, Weights).
find_weights_for_cons_list([Constructor | Constructors], TypeId, Params,
Weights0, Weights) :-
find_weights_for_cons(Constructor, TypeId, Params, Weights0, Weights1),
find_weights_for_cons_list(Constructors, TypeId, Params,
Weights1, Weights).
:- pred find_weights_for_cons(constructor::in,
type_id::in, list(type_param)::in,
weight_table::in, weight_table::out) is det.
find_weights_for_cons(Ctor, TypeId, Params, Weights0, Weights) :-
% XXX should we do something about ExistQVars here?
Ctor = ctor(_ExistQVars, _Constraints, SymName, Args),
list__length(Args, Arity),
( Arity > 0 ->
find_and_count_nonrec_args(Args, TypeId, Params,
NumNonRec, ArgInfos0),
( NumNonRec = 0 ->
Weight = 1,
list__duplicate(Arity, yes, ArgInfos)
;
Weight = NumNonRec,
ArgInfos = ArgInfos0
),
WeightInfo = weight(Weight, ArgInfos)
;
WeightInfo = weight(0, [])
),
ConsId = cons(SymName, Arity),
map__det_insert(Weights0, TypeId - ConsId, WeightInfo, Weights).
:- pred find_and_count_nonrec_args(list(constructor_arg)::in,
type_id::in, list(type_param)::in,
int::out, list(bool)::out) is det.
find_and_count_nonrec_args([], _, _, 0, []).
find_and_count_nonrec_args([Arg | Args], Id, Params, NonRecArgs, ArgInfo) :-
find_and_count_nonrec_args(Args, Id, Params, NonRecArgs0, ArgInfo0),
( is_arg_recursive(Arg, Id, Params) ->
NonRecArgs = NonRecArgs0,
ArgInfo = [yes | ArgInfo0]
;
NonRecArgs is NonRecArgs0 + 1,
ArgInfo = [no | ArgInfo0]
).
:- pred is_arg_recursive(constructor_arg::in,
type_id::in, list(type_param)::in) is semidet.
is_arg_recursive(Arg, Id, Params) :-
Arg = _Name - ArgType,
type_to_type_id(ArgType, ArgTypeId, ArgTypeParams),
Id = ArgTypeId,
list__perm(Params, ArgTypeParams).
%-----------------------------------------------------------------------------%
% Although the module info is not used in either of these norms, it could
% be needed for other norms, so it should not be removed.
functor_norm(simple, _, ConsId, _, Int, Args, Args, Modes, Modes) :-
(
ConsId = cons(_, Arity),
Arity \= 0
->
Int = 1
;
Int = 0
).
functor_norm(total, _, ConsId, _Module, Int, Args, Args, Modes, Modes) :-
( ConsId = cons(_, Arity) ->
Int = Arity
;
Int = 0
).
functor_norm(use_map(WeightMap), TypeId, ConsId, _Module, Int,
Args, Args, Modes, Modes) :-
( map__search(WeightMap, TypeId - ConsId, WeightInfo) ->
WeightInfo = weight(Int, _)
;
Int = 0
).
functor_norm(use_map_and_args(WeightMap), TypeId, ConsId, _Module, Int,
Args0, Args, Modes0, Modes) :-
( map__search(WeightMap, TypeId - ConsId, WeightInfo) ->
WeightInfo = weight(Int, UseArgList),
(
functor_norm_filter_args(UseArgList, Args0, Args1,
Modes0, Modes1)
->
Modes = Modes1,
Args = Args1
;
error("Unmatched lists in functor_norm_filter_args.")
)
;
Int = 0,
Modes = Modes0,
Args = Args0
).
% This predicate will fail if the length of the input lists are not matched.
:- pred functor_norm_filter_args(list(bool), list(prog_var), list(prog_var),
list(uni_mode), list(uni_mode)).
:- mode functor_norm_filter_args(in, in, out, in, out) is semidet.
functor_norm_filter_args([], [], [], [], []).
functor_norm_filter_args([yes | Bools], [Arg0 | Args0], [Arg0 | Args],
[Mode0 | Modes0], [Mode0 | Modes]) :-
functor_norm_filter_args(Bools, Args0, Args, Modes0, Modes).
functor_norm_filter_args([no | Bools], [_Arg0 | Args0], Args,
[_Mode0 | Modes0], Modes) :-
functor_norm_filter_args(Bools, Args0, Args, Modes0, Modes).
%-----------------------------------------------------------------------------%
partition_call_args(Module, ArgModes, Args, InVarsBag, OutVarsBag) :-
partition_call_args_2(Module, ArgModes, Args, InVars, OutVars),
bag__from_list(InVars, InVarsBag),
bag__from_list(OutVars, OutVarsBag).
:- pred partition_call_args_2(module_info::in, list(mode)::in,
list(prog_var)::in, list(prog_var)::out, list(prog_var)::out) is det.
partition_call_args_2(_, [], [], [], []).
partition_call_args_2(_, [], [_ | _], _, _) :-
error("Unmatched variables in term_util:partition_call_args").
partition_call_args_2(_, [_ | _], [], _, _) :-
error("Unmatched variables in term_util__partition_call_args").
partition_call_args_2(ModuleInfo, [ArgMode | ArgModes], [Arg | Args],
InputArgs, OutputArgs) :-
partition_call_args_2(ModuleInfo, ArgModes, Args,
InputArgs1, OutputArgs1),
( mode_is_input(ModuleInfo, ArgMode) ->
InputArgs = [Arg | InputArgs1],
OutputArgs = OutputArgs1
; mode_is_output(ModuleInfo, ArgMode) ->
InputArgs = InputArgs1,
OutputArgs = [Arg | OutputArgs1]
;
InputArgs = InputArgs1,
OutputArgs = OutputArgs1
).
% For these next two predicates (split_unification_vars and
% partition_call_args) there is a problem of what needs to be done for
% partially instantiated data structures. The correct answer is that the
% system shoud use a norm such that the size of the uninstantiated parts of
% a partially instantiated structure have no effect on the size of the data
% structure according to the norm. For example when finding the size of a
% list-skeleton, list-length norm should be used. Therefore, the size of
% any term must be given by
% sizeof(term) = constant + sum of the size of each
% (possibly partly) instantiated subterm.
% It is probably easiest to implement this by modifying term_weights.
% The current implementation does not correctly handle partially
% instantiated data structures.
split_unification_vars([], Modes, _ModuleInfo, Vars, Vars) :-
bag__init(Vars),
( Modes = [] ->
true
;
error("term_util:split_unification_vars: Unmatched Variables")
).
split_unification_vars([Arg | Args], Modes, ModuleInfo,
InVars, OutVars):-
( Modes = [UniMode | UniModes] ->
split_unification_vars(Args, UniModes, ModuleInfo,
InVars0, OutVars0),
UniMode = ((_VarInit - ArgInit) -> (_VarFinal - ArgFinal)),
( % if
inst_is_bound(ModuleInfo, ArgInit)
->
% Variable is an input variable
bag__insert(InVars0, Arg, InVars),
OutVars = OutVars0
; % else if
inst_is_free(ModuleInfo, ArgInit),
inst_is_bound(ModuleInfo, ArgFinal)
->
% Variable is an output variable
InVars = InVars0,
bag__insert(OutVars0, Arg, OutVars)
; % else
InVars = InVars0,
OutVars = OutVars0
)
;
error("term_util__split_unification_vars: Unmatched Variables")
).
%-----------------------------------------------------------------------------%
term_util__make_bool_list(HeadVars0, Bools, Out) :-
list__length(Bools, Arity),
( list__drop(Arity, HeadVars0, HeadVars1) ->
HeadVars = HeadVars1
;
error("Unmatched variables in term_util:make_bool_list")
),
term_util__make_bool_list_2(HeadVars, Bools, Out).
:- pred term_util__make_bool_list_2(list(_T), list(bool), list(bool)).
:- mode term_util__make_bool_list_2(in, in, out) is det.
term_util__make_bool_list_2([], Bools, Bools).
term_util__make_bool_list_2([ _ | Vars ], Bools, [no | Out]) :-
term_util__make_bool_list_2(Vars, Bools, Out).
remove_unused_args(Vars, [], [], Vars).
remove_unused_args(Vars, [], [_X | _Xs], Vars) :-
error("Unmatched variables in term_util:remove_unused_args").
remove_unused_args(Vars, [_X | _Xs], [], Vars) :-
error("Unmatched variables in term_util__remove_unused_args").
remove_unused_args(Vars0, [ Arg | Args ], [ UsedVar | UsedVars ], Vars) :-
( UsedVar = yes ->
% The variable is used, so leave it
remove_unused_args(Vars0, Args, UsedVars, Vars)
;
% The variable is not used in producing output vars, so
% dont include it as an input variable.
bag__delete(Vars0, Arg, Vars1),
remove_unused_args(Vars1, Args, UsedVars, Vars)
).
%-----------------------------------------------------------------------------%
set_pred_proc_ids_arg_size_info([], _ArgSize, Module, Module).
set_pred_proc_ids_arg_size_info([PPId | PPIds], ArgSize, Module0, Module) :-
PPId = proc(PredId, ProcId),
module_info_preds(Module0, PredTable0),
map__lookup(PredTable0, PredId, PredInfo0),
pred_info_procedures(PredInfo0, ProcTable0),
map__lookup(ProcTable0, ProcId, ProcInfo0),
proc_info_set_maybe_arg_size_info(ProcInfo0, yes(ArgSize), ProcInfo),
map__det_update(ProcTable0, ProcId, ProcInfo, ProcTable),
pred_info_set_procedures(PredInfo0, ProcTable, PredInfo),
map__det_update(PredTable0, PredId, PredInfo, PredTable),
module_info_set_preds(Module0, PredTable, Module1),
set_pred_proc_ids_arg_size_info(PPIds, ArgSize, Module1, Module).
set_pred_proc_ids_termination_info([], _Termination, Module, Module).
set_pred_proc_ids_termination_info([PPId | PPIds], Termination,
Module0, Module) :-
PPId = proc(PredId, ProcId),
module_info_preds(Module0, PredTable0),
map__lookup(PredTable0, PredId, PredInfo0),
pred_info_procedures(PredInfo0, ProcTable0),
map__lookup(ProcTable0, ProcId, ProcInfo0),
proc_info_set_maybe_termination_info(ProcInfo0, yes(Termination),
ProcInfo),
map__det_update(ProcTable0, ProcId, ProcInfo, ProcTable),
pred_info_set_procedures(PredInfo0, ProcTable, PredInfo),
map__det_update(PredTable0, PredId, PredInfo, PredTable),
module_info_set_preds(Module0, PredTable, Module1),
set_pred_proc_ids_termination_info(PPIds, Termination,
Module1, Module).
lookup_proc_termination_info(Module, PredProcId, MaybeTermination) :-
PredProcId = proc(PredId, ProcId),
module_info_pred_proc_info(Module, PredId, ProcId, _, ProcInfo),
proc_info_get_maybe_termination_info(ProcInfo, MaybeTermination).
lookup_proc_arg_size_info(Module, PredProcId, MaybeArgSize) :-
PredProcId = proc(PredId, ProcId),
module_info_pred_proc_info(Module, PredId, ProcId, _, ProcInfo),
proc_info_get_maybe_arg_size_info(ProcInfo, MaybeArgSize).
horder_vars([Arg | Args], VarType) :-
(
map__lookup(VarType, Arg, Type),
type_is_higher_order(Type, _, _, _)
;
horder_vars(Args, VarType)
).
zero_size_type(Type, Module) :-
classify_type(Type, Module, TypeCategory),
zero_size_type_category(TypeCategory, Type, Module, yes).
:- pred zero_size_type_category(builtin_type, type, module_info, bool).
:- mode zero_size_type_category(in, in, in, out) is det.
zero_size_type_category(int_type, _, _, yes).
zero_size_type_category(char_type, _, _, yes).
zero_size_type_category(str_type, _, _, yes).
zero_size_type_category(float_type, _, _, yes).
zero_size_type_category(pred_type, _, _, no).
zero_size_type_category(enum_type, _, _, yes).
zero_size_type_category(polymorphic_type, _, _, no).
zero_size_type_category(user_type, _, _, no).
%-----------------------------------------------------------------------------%
get_context_from_scc(SCC, Module, Context) :-
( SCC = [proc(PredId, _) | _] ->
module_info_pred_info(Module, PredId, PredInfo),
pred_info_context(PredInfo, Context)
;
error("Empty SCC in pass 2 of termination analysis")
).
%-----------------------------------------------------------------------------%
add_context_to_termination_info(no, _, no).
add_context_to_termination_info(yes(cannot_loop), _, yes(cannot_loop)).
add_context_to_termination_info(yes(can_loop), Context,
yes(can_loop([Context - imported_pred]))).
add_context_to_arg_size_info(no, _, no).
add_context_to_arg_size_info(yes(finite(A, B)), _, yes(finite(A, B))).
add_context_to_arg_size_info(yes(infinite), Context,
yes(infinite([Context - imported_pred]))).
%-----------------------------------------------------------------------------%
|