File: type_util.m

package info (click to toggle)
mercury 0.9-1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 18,488 kB
  • ctags: 9,800
  • sloc: objc: 146,680; ansic: 51,418; sh: 6,436; lisp: 1,567; cpp: 1,040; perl: 854; makefile: 450; asm: 232; awk: 203; exp: 32; fortran: 3; csh: 1
file content (1264 lines) | stat: -rw-r--r-- 44,559 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
%-----------------------------------------------------------------------------%
% Copyright (C) 1994-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%-----------------------------------------------------------------------------%

% File: type_util.m.
% Main author: fjh.

% This file provides some utility predicates which operate on types.
% It is used by various stages of the compilation after type-checking,
% include the mode checker and the code generator.

%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%

:- module type_util.

:- interface.

:- import_module hlds_module, hlds_pred, hlds_data, prog_data.
:- import_module term.
:- import_module list, map.

%-----------------------------------------------------------------------------%

	% Succeed iff type is an "atomic" type - one which can be
	% unified using a simple_test rather than a complicated_unify.

:- pred type_is_atomic(type, module_info).
:- mode type_is_atomic(in, in) is semidet.

	% type_is_higher_order(Type, PredOrFunc, ArgTypes) succeeds iff
	% Type is a higher-order predicate or function type with the specified
	% argument types (for functions, the return type is appended to the
	% end of the argument types).

:- pred type_is_higher_order(type, pred_or_func,
		lambda_eval_method, list(type)).
:- mode type_is_higher_order(in, out, out, out) is semidet.

	% type_id_is_higher_order(TypeId, PredOrFunc) succeeds iff
	% TypeId is a higher-order predicate or function type.

:- pred type_id_is_higher_order(type_id, pred_or_func, lambda_eval_method).
:- mode type_id_is_higher_order(in, out, out) is semidet.

	% return true iff there was a `where equality is <predname>'
	% declaration for the specified type, and return the name of
	% the equality predicate and the context of the type declaration.
:- pred type_has_user_defined_equality_pred(module_info, (type), sym_name).
:- mode type_has_user_defined_equality_pred(in, in, out) is semidet.

	% Certain types, e.g. io__state and store__store(S),
	% are just dummy types used to ensure logical semantics;
	% there is no need to actually pass them, and so when
	% importing or exporting procedures to/from C, we don't
	% include arguments with these types.
:- pred type_util__is_dummy_argument_type(type).
:- mode type_util__is_dummy_argument_type(in) is semidet.

:- pred type_is_aditi_state(type).
:- mode type_is_aditi_state(in) is semidet.

	% Remove an `aditi:state' from the given list if one is present.
:- pred type_util__remove_aditi_state(list(type), list(T), list(T)).
:- mode type_util__remove_aditi_state(in, in, out) is det.

	% A test for types that are defined by hand (not including
	% the builtin types).  Don't generate type_ctor_*
	% for these types.

:- pred type_id_is_hand_defined(type_id).
:- mode type_id_is_hand_defined(in) is semidet.

	% A test for type_info-related types that are introduced by
	% polymorphism.m.  Mode inference never infers unique modes
	% for these types, since it would not be useful, and since we
	% want to minimize the number of different modes that we infer.

:- pred is_introduced_type_info_type(type).
:- mode is_introduced_type_info_type(in) is semidet.

	% In the forwards mode, this predicate checks for a "new " prefix
	% at the start of the functor name, and removes it if present;
	% it fails if there is no such prefix.
	% In the reverse mode, this predicate prepends such a prefix.
	% (These prefixes are used for construction unifications
	% with existentially typed functors.)
:- pred remove_new_prefix(sym_name, sym_name).
:- mode remove_new_prefix(in, out) is semidet.
:- mode remove_new_prefix(out, in) is det.

	% Given a type, determine what sort of type it is.

:- pred classify_type(type, module_info, builtin_type).
:- mode classify_type(in, in, out) is det.

:- type builtin_type	--->	int_type
			;	char_type
			;	str_type
			;	float_type
			;	pred_type
			;	enum_type
			;	polymorphic_type
			;	user_type.

	% Given a non-variable type, return its type-id and argument types.

:- pred type_to_type_id(type, type_id, list(type)).
:- mode type_to_type_id(in, out, out) is semidet.

	% Given a variable type, return its type variable.
	
:- pred type_util__var(type, tvar).
:- mode type_util__var(in, out) is semidet.
:- mode type_util__var(out, in) is det.

	% Given a type_id, a list of argument types and maybe a context,
	% construct a type.

:- pred construct_type(type_id, list(type), (type)).
:- mode construct_type(in, in, out) is det.

:- pred construct_type(type_id, list(type), prog_context, (type)).
:- mode construct_type(in, in, in, out) is det.

:- pred construct_higher_order_type(pred_or_func, lambda_eval_method,
		list(type), (type)).
:- mode construct_higher_order_type(in, in, in, out) is det.

:- pred construct_higher_order_pred_type(lambda_eval_method,
		list(type), (type)).
:- mode construct_higher_order_pred_type(in, in, out) is det.

:- pred construct_higher_order_func_type(lambda_eval_method,
		list(type), (type), (type)).
:- mode construct_higher_order_func_type(in, in, in, out) is det.

	% Construct builtin types.
:- func int_type = (type).
:- func string_type = (type).
:- func float_type = (type).
:- func char_type = (type).

	% Given a constant and an arity, return a type_id.
	% Fails if the constant is not an atom.

:- pred make_type_id(const, int, type_id).
:- mode make_type_id(in, in, out) is semidet.

	% Given a type_id, look up its module/name/arity

:- pred type_util__type_id_module(module_info, type_id, module_name).
:- mode type_util__type_id_module(in, in, out) is det.

:- pred type_util__type_id_name(module_info, type_id, string).
:- mode type_util__type_id_name(in, in, out) is det.

:- pred type_util__type_id_arity(module_info, type_id, arity).
:- mode type_util__type_id_arity(in, in, out) is det.

	% If the type is a du type, return the list of its constructors.

:- pred type_constructors(type, module_info, list(constructor)).
:- mode type_constructors(in, in, out) is semidet.

	% Work out the types of the arguments of a functor.
	% Aborts if the functor is existentially typed.
:- pred type_util__get_cons_id_arg_types(module_info::in, (type)::in,
		cons_id::in, list(type)::out) is det.

	% Given a type and a cons_id, look up the definition of that
	% constructor; if it is existentially typed, return its definition,
	% otherwise fail.
:- pred type_util__get_existq_cons_defn(module_info::in,
		(type)::in, cons_id::in, ctor_defn::out) is semidet.

:- pred type_util__is_existq_cons(module_info::in,
		(type)::in, cons_id::in) is semidet.

	% This type is used to return information about a constructor
	% definition, extracted from the hlds_type_defn and hlds_cons_defn
	% data types.
:- type ctor_defn
	--->	ctor_defn(
			tvarset,
			existq_tvars,
			list(class_constraint),	% existential constraints
			list(type),	% functor argument types
			(type)		% functor result type
		).

	% Given a list of constructors for a type,
	% check whether that type is a no_tag type
	% (i.e. one with only one constructor, and
	% whose one constructor has only one argument,
	% and which is not private_builtin:type_info/1),
	% and if so, return its constructor symbol and argument type.

:- pred type_is_no_tag_type(list(constructor), sym_name, type).
:- mode type_is_no_tag_type(in, out, out) is semidet.

	% Unify (with occurs check) two types with respect to a type
	% substitution and update the type bindings.
	% The third argument is a list of type variables which cannot
	% be bound (i.e. head type variables).

:- pred type_unify(type, type, list(tvar), tsubst, tsubst).
:- mode type_unify(in, in, in, in, out) is semidet.

:- pred type_unify_list(list(type), list(type), list(tvar), tsubst, tsubst).
:- mode type_unify_list(in, in, in, in, out) is semidet.

	% Return a list of the type variables of a type.

:- pred type_util__vars(type, list(tvar)).
:- mode type_util__vars(in, out) is det.

	% type_list_subsumes(TypesA, TypesB, Subst) succeeds iff the list
	% TypesA subsumes (is more general than) TypesB, producing a
	% type substitution which when applied to TypesA will give TypesB.

:- pred type_list_subsumes(list(type), list(type), tsubst).
:- mode type_list_subsumes(in, in, out) is semidet.

	% apply a type substitution (i.e. map from tvar -> type)
	% to all the types in a variable typing (i.e. map from var -> type).

:- pred apply_substitution_to_type_map(map(prog_var, type), tsubst,
		map(prog_var, type)).
:- mode apply_substitution_to_type_map(in, in, out) is det.

        % same thing as above, except for a recursive substitution
        % (i.e. we keep applying the substitution recursively until
        % there are no more changes).

:- pred apply_rec_substitution_to_type_map(map(prog_var, type), tsubst,
						 map(prog_var, type)).
:- mode apply_rec_substitution_to_type_map(in, in, out) is det.

	% Update a map from tvar to type_info_locn, using the type renaming
	% and substitution to rename tvars and a variable substitution to
	% rename vars. The type renaming is applied before the type
	% substitution.
	%
	% If tvar maps to a another type variable, we keep the new
	% variable, if it maps to a type, we remove it from the map.

:- pred apply_substitutions_to_var_map(map(tvar, type_info_locn), tsubst,
	map(tvar, type), map(prog_var, prog_var), map(tvar, type_info_locn)).
:- mode apply_substitutions_to_var_map(in, in, in, in, out) is det.

	% Update a map from class_constraint to var, using the type renaming
	% and substitution to rename tvars and a variable substition to
	% rename vars. The type renaming is applied before the type
	% substitution.

:- pred apply_substitutions_to_typeclass_var_map(
		map(class_constraint, prog_var), tsubst, map(tvar, type),
		map(prog_var, prog_var), map(class_constraint, prog_var)).
:- mode apply_substitutions_to_typeclass_var_map(in, in, in, in, out) is det.

:- pred apply_rec_subst_to_constraints(tsubst, class_constraints,
	class_constraints).
:- mode apply_rec_subst_to_constraints(in, in, out) is det.

:- pred apply_rec_subst_to_constraint_list(tsubst,
		list(class_constraint), list(class_constraint)).
:- mode apply_rec_subst_to_constraint_list(in, in, out) is det.

:- pred apply_rec_subst_to_constraint(tsubst, class_constraint,
	class_constraint).
:- mode apply_rec_subst_to_constraint(in, in, out) is det.

:- pred apply_subst_to_constraints(tsubst, class_constraints,
	class_constraints).
:- mode apply_subst_to_constraints(in, in, out) is det.

:- pred apply_subst_to_constraint_list(tsubst, list(class_constraint),
	list(class_constraint)).
:- mode apply_subst_to_constraint_list(in, in, out) is det.

:- pred apply_subst_to_constraint(tsubst, class_constraint,
	class_constraint).
:- mode apply_subst_to_constraint(in, in, out) is det.

:- pred apply_subst_to_constraint_proofs(tsubst, 
		map(class_constraint, constraint_proof),
		map(class_constraint, constraint_proof)).
:- mode apply_subst_to_constraint_proofs(in, in, out) is det.

:- pred apply_rec_subst_to_constraint_proofs(tsubst, 
	map(class_constraint, constraint_proof),
	map(class_constraint, constraint_proof)).
:- mode apply_rec_subst_to_constraint_proofs(in, in, out) is det.

:- pred apply_variable_renaming_to_constraints(map(tvar, tvar), 
	class_constraints, class_constraints).
:- mode apply_variable_renaming_to_constraints(in, in, out) is det.

:- pred apply_variable_renaming_to_constraint_list(map(tvar, tvar), 
	list(class_constraint), list(class_constraint)).
:- mode apply_variable_renaming_to_constraint_list(in, in, out) is det.

:- pred apply_variable_renaming_to_constraint(map(tvar, tvar), 
	class_constraint, class_constraint).
:- mode apply_variable_renaming_to_constraint(in, in, out) is det.

% Apply a renaming (partial map) to a list.
% Useful for applying a variable renaming to a list of variables.
:- pred apply_partial_map_to_list(list(T), map(T, T), list(T)).
:- mode apply_partial_map_to_list(in, in, out) is det.

% strip out the prog_context fields, replacing them with empty
% prog_context (as obtained by term__context_init/1)
% in a type or list of types
:- pred strip_prog_contexts(list(term(T))::in, list(term(T))::out) is det.
:- pred strip_prog_context(term(T)::in, term(T)::out) is det.

	% cons_id_adjusted_arity(ModuleInfo, Type, ConsId):
	%	Returns the number of arguments of specified constructor id,
	%	adjusted to include the extra typeclassinfo and typeinfo
	%	arguments inserted by polymorphism.m for existentially
	%	typed constructors.
	%
:- func cons_id_adjusted_arity(module_info, type, cons_id) = int.

	% constraint_list_get_tvars(Constraints, TVars):
	%	return the list of type variables contained in a
	%	list of constraints
	%
:- pred constraint_list_get_tvars(list(class_constraint), list(tvar)).
:- mode constraint_list_get_tvars(in, out) is det.

	% constraint_list_get_tvars(Constraint, TVars):
	%	return the list of type variables contained in a constraint.
:- pred constraint_get_tvars(class_constraint, list(tvar)).
:- mode constraint_get_tvars(in, out) is det.

%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%

:- implementation.
:- import_module bool, int, require, std_util, string.
:- import_module prog_io, prog_io_goal, prog_util.

type_util__type_id_module(_ModuleInfo, TypeName - _Arity, ModuleName) :-
	sym_name_get_module_name(TypeName, unqualified(""), ModuleName).

type_util__type_id_name(_ModuleInfo, Name0 - _Arity, Name) :-
	unqualify_name(Name0, Name).

type_util__type_id_arity(_ModuleInfo, _Name - Arity, Arity).

type_is_atomic(Type, ModuleInfo) :-
	classify_type(Type, ModuleInfo, BuiltinType),
	BuiltinType \= polymorphic_type,
	BuiltinType \= pred_type,
	BuiltinType \= user_type.

type_util__var(term__variable(Var), Var).

type_id_is_hand_defined(qualified(unqualified("builtin"), "c_pointer") - 0).
type_id_is_hand_defined(qualified(unqualified("std_util"), "univ") - 0).
type_id_is_hand_defined(qualified(unqualified("std_util"), "type_info") - 0).
type_id_is_hand_defined(qualified(unqualified("array"), "array") - 1).
type_id_is_hand_defined(qualified(PrivateBuiltin, "type_info") - 1) :-
	mercury_private_builtin_module(PrivateBuiltin).
type_id_is_hand_defined(qualified(PrivateBuiltin, "type_ctor_info") - 1) :-
	mercury_private_builtin_module(PrivateBuiltin).
type_id_is_hand_defined(qualified(PrivateBuiltin, "typeclass_info") - 1) :-
	mercury_private_builtin_module(PrivateBuiltin).
type_id_is_hand_defined(qualified(PrivateBuiltin, "base_typeclass_info") - 1) :-
	mercury_private_builtin_module(PrivateBuiltin).

is_introduced_type_info_type(Type) :-
	sym_name_and_args(Type, TypeName, _),
	TypeName = qualified(PrivateBuiltin, Name),
	( Name = "type_info"
	; Name = "type_ctor_info"
	; Name = "typeclass_info"
	; Name = "base_typeclass_info"
	),
	mercury_private_builtin_module(PrivateBuiltin).

remove_new_prefix(unqualified(Name0), unqualified(Name)) :-
	string__append("new ", Name, Name0).
remove_new_prefix(qualified(Module, Name0), qualified(Module, Name)) :-
	string__append("new ", Name, Name0).

%-----------------------------------------------------------------------------%

	% Given a type, determine what sort of type it is.

classify_type(VarType, ModuleInfo, Type) :-
	( type_to_type_id(VarType, TypeId, _) ->
		( TypeId = unqualified("character") - 0 ->
			Type = char_type
		; TypeId = unqualified("int") - 0 ->
			Type = int_type
		; TypeId = unqualified("float") - 0 ->
			Type = float_type
		; TypeId = unqualified("string") - 0 ->
			Type = str_type
		; type_id_is_higher_order(TypeId, _, _) ->
			Type = pred_type
		; type_id_is_enumeration(TypeId, ModuleInfo) ->
			Type = enum_type
		;
			Type = user_type
		)
	;
		Type = polymorphic_type
	).

type_is_higher_order(Type, PredOrFunc, EvalMethod, PredArgTypes) :-
	(
		Type = term__functor(term__atom("="),
			[FuncEvalAndArgs, FuncRetType], _)
	->
		get_lambda_eval_method(FuncEvalAndArgs, EvalMethod,
			FuncAndArgs),
		FuncAndArgs = term__functor(term__atom("func"),
			FuncArgTypes, _),
		list__append(FuncArgTypes, [FuncRetType], PredArgTypes),
		PredOrFunc = function
	;
		get_lambda_eval_method(Type, EvalMethod, PredAndArgs),
		PredAndArgs = term__functor(term__atom("pred"),
					PredArgTypes, _),
		PredOrFunc = predicate
	).

	% From the type of a lambda expression, work out how it should
	% be evaluated.
:- pred get_lambda_eval_method((type), lambda_eval_method, (type)) is det.
:- mode get_lambda_eval_method(in, out, out) is det.

get_lambda_eval_method(Type0, EvalMethod, Type) :-
	( Type0 = term__functor(term__atom(MethodStr), [Type1], _) ->
		( MethodStr = "aditi_bottom_up" ->
			EvalMethod = (aditi_bottom_up),
			Type = Type1
		; MethodStr = "aditi_top_down" ->
			EvalMethod = (aditi_top_down),
			Type = Type1
		;
			EvalMethod = normal,
			Type = Type0
		)
	;
		EvalMethod = normal,
		Type = Type0
	).

type_id_is_higher_order(SymName - _Arity, PredOrFunc, EvalMethod) :-
	(
		SymName = qualified(unqualified(EvalMethodStr), PorFStr),
		(
			EvalMethodStr = "aditi_bottom_up",
			EvalMethod = (aditi_bottom_up)
		;
			EvalMethodStr = "aditi_top_down",
			EvalMethod = (aditi_top_down)
		)
	;
		SymName = unqualified(PorFStr),
		EvalMethod = normal
	),
	(
		PorFStr = "pred",
		PredOrFunc = predicate
	;
		PorFStr = "func",
		PredOrFunc = function
	).

type_has_user_defined_equality_pred(ModuleInfo, Type, SymName) :-
	module_info_types(ModuleInfo, TypeTable),
	type_to_type_id(Type, TypeId, _TypeArgs),
	map__search(TypeTable, TypeId, TypeDefn),
	hlds_data__get_type_defn_body(TypeDefn, TypeBody),
	TypeBody = du_type(_, _, _, yes(SymName)).

	% Certain types, e.g. io__state and store__store(S),
	% are just dummy types used to ensure logical semantics;
	% there is no need to actually pass them, and so when
	% importing or exporting procedures to/from C, we don't
	% include arguments with these types.

type_util__is_dummy_argument_type(Type) :-
	Type = term__functor(term__atom(":"), [
			term__functor(term__atom(ModuleName), [], _),
			term__functor(term__atom(TypeName), TypeArgs, _)
		], _),
	list__length(TypeArgs, TypeArity),
	type_util__is_dummy_argument_type_2(ModuleName, TypeName, TypeArity).

:- pred type_util__is_dummy_argument_type_2(string::in, string::in, arity::in)
	is semidet.
% XXX should we include aditi:state/0 in this list?
type_util__is_dummy_argument_type_2("io", "state", 0).	 % io:state/0
type_util__is_dummy_argument_type_2("store", "store", 1). % store:store/1.

type_is_aditi_state(Type) :-
        type_to_type_id(Type,
		qualified(unqualified("aditi"), "state") - 0, []).

type_util__remove_aditi_state([], [], []).
type_util__remove_aditi_state([], [_|_], _) :-
	error("type_util__remove_aditi_state").
type_util__remove_aditi_state([_|_], [], _) :-
	error("type_util__remove_aditi_state").
type_util__remove_aditi_state([Type | Types], [Arg | Args0], Args) :-
	( type_is_aditi_state(Type) ->
		type_util__remove_aditi_state(Types, Args0, Args)
	;
		type_util__remove_aditi_state(Types, Args0, Args1),
		Args = [Arg | Args1]
	).

:- pred type_id_is_enumeration(type_id, module_info).
:- mode type_id_is_enumeration(in, in) is semidet.

type_id_is_enumeration(TypeId, ModuleInfo) :-
	module_info_types(ModuleInfo, TypeDefnTable),
	map__search(TypeDefnTable, TypeId, TypeDefn),
	hlds_data__get_type_defn_body(TypeDefn, TypeBody),
	TypeBody = du_type(_, _, IsEnum, _),
	IsEnum = yes.

type_to_type_id(Type, SymName - Arity, Args) :-
	sym_name_and_args(Type, SymName0, Args1),

	% `private_builtin:constraint' is introduced by polymorphism, and
	% should only appear as the argument of a `typeclass:info/1' type.
	% It behaves sort of like a type variable, so according to the
	% specification of `type_to_type_id', it should cause failure.
	% There isn't a definition in the type table.
	mercury_private_builtin_module(PrivateBuiltin),
	SymName \= qualified(PrivateBuiltin, "constraint"),

	% higher order types may have representations where
	% their arguments don't directly correspond to the
	% arguments of the term.
	(
		type_is_higher_order(Type, PredOrFunc,
			EvalMethod, PredArgTypes) 
	->
		Args = PredArgTypes,
		list__length(Args, Arity0),
		adjust_func_arity(PredOrFunc, Arity, Arity0),
		(
			PredOrFunc = predicate,
			PorFStr = "pred"
		;
			PredOrFunc = function,
			PorFStr = "func"
		),
		(
			EvalMethod = (aditi_bottom_up),
			SymName = qualified(unqualified("aditi_bottom_up"),
					PorFStr)
		;
			EvalMethod = (aditi_top_down),
			SymName = qualified(unqualified("aditi_top_down"),
					PorFStr)
			
		;
			EvalMethod = normal,
			SymName = unqualified(PorFStr)
		)
	;
		SymName = SymName0,
		Args = Args1,
		list__length(Args, Arity)
	).

construct_type(TypeId, Args, Type) :-
	term__context_init(Context),
	construct_type(TypeId, Args, Context, Type).

construct_type(TypeId, Args, Context, Type) :-
	( type_id_is_higher_order(TypeId, PredOrFunc, EvalMethod) ->
		construct_higher_order_type(PredOrFunc, EvalMethod, Args, Type)
	;
		TypeId = SymName - _,
		construct_qualified_term(SymName, Args, Context, Type)
	).

construct_higher_order_type(PredOrFunc, EvalMethod, ArgTypes, Type) :-
	(
		PredOrFunc = predicate,
		construct_higher_order_pred_type(EvalMethod, ArgTypes, Type)
	;
		PredOrFunc = function,
		pred_args_to_func_args(ArgTypes, FuncArgTypes, FuncRetType),
		construct_higher_order_func_type(EvalMethod, FuncArgTypes,
			FuncRetType, Type)
	).

construct_higher_order_pred_type(EvalMethod, ArgTypes, Type) :-
	term__context_init(Context),
	construct_qualified_term(unqualified("pred"),
		ArgTypes, Context, Type0),
	qualify_higher_order_type(EvalMethod, Type0, Type).

construct_higher_order_func_type(EvalMethod, ArgTypes, RetType, Type) :-
	term__context_init(Context),
	construct_qualified_term(unqualified("func"),
		ArgTypes, Context, Type0),
	qualify_higher_order_type(EvalMethod, Type0, Type1),
	Type = term__functor(term__atom("="), [Type1, RetType], Context).

:- pred qualify_higher_order_type(lambda_eval_method, (type), (type)).
:- mode qualify_higher_order_type(in, in, out) is det.

qualify_higher_order_type(normal, Type, Type).
qualify_higher_order_type((aditi_top_down), Type0,
	    term__functor(term__atom("aditi_top_down"), [Type0], Context)) :- 
	term__context_init(Context).
qualify_higher_order_type((aditi_bottom_up), Type0,
	    term__functor(term__atom("aditi_bottom_up"), [Type0], Context)) :-
	term__context_init(Context).

int_type = Type :- construct_type(unqualified("int") - 0, [], Type).
string_type = Type :- construct_type(unqualified("string") - 0, [], Type).
float_type = Type :- construct_type(unqualified("float") - 0, [], Type).
char_type = Type :- construct_type(unqualified("character") - 0, [], Type).

%-----------------------------------------------------------------------------%

	% Given a constant and an arity, return a type_id.
	% This really ought to take a name and an arity -
	% use of integers/floats/strings as type names should
	% be rejected by the parser in prog_io.m, not in module_qual.m.

make_type_id(term__atom(Name), Arity, unqualified(Name) - Arity).

%-----------------------------------------------------------------------------%

	% If the type is a du type, return the list of its constructors.

type_constructors(Type, ModuleInfo, Constructors) :-
	type_to_type_id(Type, TypeId, TypeArgs),
	module_info_types(ModuleInfo, TypeTable),
	map__search(TypeTable, TypeId, TypeDefn),
	hlds_data__get_type_defn_tparams(TypeDefn, TypeParams),
	hlds_data__get_type_defn_body(TypeDefn, TypeBody),
	TypeBody = du_type(Constructors0, _, _, _),
	substitute_type_args(TypeParams, TypeArgs, Constructors0,
		Constructors).

%-----------------------------------------------------------------------------%

type_util__get_cons_id_arg_types(ModuleInfo, VarType, ConsId, ArgTypes) :-
	(
		type_to_type_id(VarType, TypeId, TypeArgs),
		module_info_ctors(ModuleInfo, Ctors),
		% will fail for builtin cons_ids.
		map__search(Ctors, ConsId, ConsDefns),
		CorrectCons = lambda([ConsDefn::in] is semidet, (
				ConsDefn = hlds_cons_defn(_, _, _, TypeId, _)
			)),
		list__filter(CorrectCons, ConsDefns,
			[hlds_cons_defn(ExistQVars0, _Constraints0, ArgTypes0,
				_, _)]),
		ArgTypes0 \= []
	->
		module_info_types(ModuleInfo, Types),
		map__lookup(Types, TypeId, TypeDefn),
		hlds_data__get_type_defn_tparams(TypeDefn, TypeDefnParams),
		term__term_list_to_var_list(TypeDefnParams, TypeDefnVars),

		% XXX handle ExistQVars
		require(unify(ExistQVars0, []),
	"type_util__get_cons_id_arg_types: existentially typed cons_id"),

		map__from_corresponding_lists(TypeDefnVars, TypeArgs, TSubst),
		term__apply_substitution_to_list(ArgTypes0, TSubst, ArgTypes)
	;
		ArgTypes = []
	).

type_util__is_existq_cons(ModuleInfo, VarType, ConsId) :-
	type_util__is_existq_cons(ModuleInfo, VarType, ConsId, _). 
	
:- pred type_util__is_existq_cons(module_info::in,
		(type)::in, cons_id::in, hlds_cons_defn::out) is semidet.

type_util__is_existq_cons(ModuleInfo, VarType, ConsId, ConsDefn) :-
	type_to_type_id(VarType, TypeId, _TypeArgs),
	module_info_ctors(ModuleInfo, Ctors),
	% will fail for builtin cons_ids.
	map__search(Ctors, ConsId, ConsDefns),
	MatchingCons = lambda([ThisConsDefn::in] is semidet, (
			ThisConsDefn = hlds_cons_defn(_, _, _, TypeId, _)
		)),
	list__filter(MatchingCons, ConsDefns, [ConsDefn]), 
	ConsDefn = hlds_cons_defn(ExistQVars, _, _, _, _),
	ExistQVars \= [].

	% Given a type and a cons_id, look up the definition of that
	% constructor; if it is existentially typed, return its definition,
	% otherwise fail.
type_util__get_existq_cons_defn(ModuleInfo, VarType, ConsId, CtorDefn) :-
	type_util__is_existq_cons(ModuleInfo, VarType, ConsId, ConsDefn),
	ConsDefn = hlds_cons_defn(ExistQVars, Constraints, ArgTypes, _, _),
	module_info_types(ModuleInfo, Types),
	type_to_type_id(VarType, TypeId, _),
	map__lookup(Types, TypeId, TypeDefn),
	hlds_data__get_type_defn_tvarset(TypeDefn, TypeVarSet),
	hlds_data__get_type_defn_tparams(TypeDefn, TypeDefnParams),
	construct_type(TypeId, TypeDefnParams, RetType),
	CtorDefn = ctor_defn(TypeVarSet, ExistQVars, Constraints,
		ArgTypes, RetType).

%-----------------------------------------------------------------------------%

	% The checks for type_info and type_ctor_info
	% are needed because those types lie about their
	% arity; it might be cleaner to change that in
	% private_builtin.m, but that would cause some
	% bootstrapping difficulties.
	% It might be slightly better to check for private_builtin:type_info
	% etc. rather than just checking the unqualified type name,
	% but I found it difficult to verify that the constructors
	% would always be fully module-qualified at points where
	% type_is_no_tag_type/3 is called.

type_is_no_tag_type(Ctors, Ctor, Type) :-
	Ctors = [SingleCtor],
	SingleCtor = ctor(ExistQVars, _Constraints, Ctor, [_FieldName - Type]),
	ExistQVars = [],
	unqualify_name(Ctor, Name),
	Name \= "type_info",
	Name \= "type_ctor_info",
	Name \= "typeclass_info",
	Name \= "base_typeclass_info".

%-----------------------------------------------------------------------------%

	% Substitute the actual values of the type parameters
	% in list of constructors, for a particular instance of
	% a polymorphic type.

:- pred substitute_type_args(list(type_param), list(type),
				list(constructor), list(constructor)).
:- mode substitute_type_args(in, in, in, out) is det.

substitute_type_args(TypeParams0, TypeArgs, Constructors0, Constructors) :-
	( TypeParams0 = [] ->
		Constructors = Constructors0
	;
		term__term_list_to_var_list(TypeParams0, TypeParams),
		map__from_corresponding_lists(TypeParams, TypeArgs, Subst),
		substitute_type_args_2(Constructors0, Subst, Constructors)
	).

:- pred substitute_type_args_2(list(constructor), tsubst,
				list(constructor)).
:- mode substitute_type_args_2(in, in, out) is det.

substitute_type_args_2([], _, []).
substitute_type_args_2([Ctor0| Ctors0], Subst, [Ctor | Ctors]) :-
	% Note: prog_io.m ensures that the existentially quantified
	% variables, if any, are distinct from the parameters,
	% and that the (existential) constraints can only contain
	% existentially quantified variables, so there's
	% no need to worry about applying the substitution to
	% ExistQVars or Constraints
	Ctor0 = ctor(ExistQVars, Constraints, Name, Args0),
	Ctor = ctor(ExistQVars, Constraints, Name, Args),
	substitute_type_args_3(Args0, Subst, Args),
	substitute_type_args_2(Ctors0, Subst, Ctors).

:- pred substitute_type_args_3(list(constructor_arg), tsubst,
				list(constructor_arg)).
:- mode substitute_type_args_3(in, in, out) is det.

substitute_type_args_3([], _, []).
substitute_type_args_3([Name - Arg0 | Args0], Subst, [Name - Arg | Args]) :-
	term__apply_substitution(Arg0, Subst, Arg),
	substitute_type_args_3(Args0, Subst, Args).

%-----------------------------------------------------------------------------%
%-----------------------------------------------------------------------------%

	% Check whether TypesA subsumes TypesB, and if so return
	% a type substitution that will map from TypesA to TypesB.

type_list_subsumes(TypesA, TypesB, TypeSubst) :-
	%
	% TypesA subsumes TypesB iff TypesA can be unified with TypesB
	% without binding any of the type variables in TypesB.
	%
	term__vars_list(TypesB, TypesBVars),
	map__init(TypeSubst0),
	type_unify_list(TypesA, TypesB, TypesBVars, TypeSubst0, TypeSubst).

%-----------------------------------------------------------------------------%

	% Types are represented as terms, but we can't just use term__unify
	% because we need to avoid binding any of the "head type params"
	% (the type variables that occur in the head of the clause),
	% and because one day we might want to handle equivalent types.

type_unify(term__variable(X), term__variable(Y), HeadTypeParams,
		Bindings0, Bindings) :-
	( list__member(Y, HeadTypeParams) ->
		type_unify_head_type_param(X, Y, HeadTypeParams,
			Bindings0, Bindings)
	; list__member(X, HeadTypeParams) ->
		type_unify_head_type_param(Y, X, HeadTypeParams,
			Bindings0, Bindings)
	; map__search(Bindings0, X, BindingOfX) ->
		( map__search(Bindings0, Y, BindingOfY) ->
			% both X and Y already have bindings - just
			% unify the types they are bound to
			type_unify(BindingOfX, BindingOfY, HeadTypeParams,
					Bindings0, Bindings)
		;
			term__apply_rec_substitution(BindingOfX,
				Bindings0, SubstBindingOfX),
			% Y is a type variable which hasn't been bound yet
			( SubstBindingOfX = term__variable(Y) ->
				Bindings = Bindings0
			;
				\+ term__occurs(SubstBindingOfX, Y,
					Bindings0),
				map__det_insert(Bindings0, Y, SubstBindingOfX,
					Bindings)
			)
		)
	;
		( map__search(Bindings0, Y, BindingOfY) ->
			term__apply_rec_substitution(BindingOfY,
				Bindings0, SubstBindingOfY),
			% X is a type variable which hasn't been bound yet
			( SubstBindingOfY = term__variable(X) ->
				Bindings = Bindings0
			;
				\+ term__occurs(SubstBindingOfY, X,
					Bindings0),
				map__det_insert(Bindings0, X, SubstBindingOfY,
					Bindings)
			)
		;
			% both X and Y are unbound type variables -
			% bind one to the other
			( X = Y ->
				Bindings = Bindings0
			; 
				map__det_insert(Bindings0, X,
					term__variable(Y), Bindings)
			)
		)
	).

type_unify(term__variable(X), term__functor(F, As, C), HeadTypeParams,
		Bindings0, Bindings) :-
	( 
		map__search(Bindings0, X, BindingOfX)
	->
		type_unify(BindingOfX, term__functor(F, As, C),
			HeadTypeParams, Bindings0, Bindings)
	;
		\+ term__occurs_list(As, X, Bindings0),
		\+ list__member(X, HeadTypeParams),
		map__det_insert(Bindings0, X, term__functor(F, As, C),
			Bindings)
	).

type_unify(term__functor(F, As, C), term__variable(X), HeadTypeParams,
		Bindings0, Bindings) :-
	( 
		map__search(Bindings0, X, BindingOfX)
	->
		type_unify(term__functor(F, As, C), BindingOfX,
			HeadTypeParams, Bindings0, Bindings)
	;
		\+ term__occurs_list(As, X, Bindings0),
		\+ list__member(X, HeadTypeParams),
		map__det_insert(Bindings0, X, term__functor(F, As, C),
			Bindings)
	).

type_unify(term__functor(FX, AsX, _CX), term__functor(FY, AsY, _CY),
		HeadTypeParams, Bindings0, Bindings) :-
	list__length(AsX, ArityX),
	list__length(AsY, ArityY),
	(
		FX = FY,
		ArityX = ArityY
	->
		type_unify_list(AsX, AsY, HeadTypeParams, Bindings0, Bindings)
	;
		fail
	).

	% XXX Instead of just failing if the functors' name/arity is different,
	% we should check here if these types have been defined
	% to be equivalent using equivalence types.  But this
	% is difficult because (1) it causes typevarset synchronization
	% problems, and (2) the relevant variables TypeInfo, TVarSet0, TVarSet
	% haven't been passed in to here.

/*******
	...
	;
		replace_eqv_type(FX, ArityX, AsX, EqvType)
	->
		type_unify(EqvType, term__functor(FY, AsY, CY),
			HeadTypeParams, Bindings0, Bindings)
	;
		replace_eqv_type(FY, ArityY, AsY, EqvType)
	->
		type_unify(term__functor(FX, AsX, CX), EqvType,
			HeadTypeParams, Bindings0, Bindings)
	;
		fail
	).

:- pred replace_eqv_type(const, int, list(type), type).
:- mode replace_eqv_type(in, in, in, out) is semidet.

replace_eqv_type(Functor, Arity, Args, EqvType) :-

	% XXX magically_obtain(TypeTable, TVarSet0, TVarSet)

	make_type_id(Functor, Arity, TypeId),
	map__search(TypeTable, TypeId, TypeDefn),
	TypeDefn = hlds_type_defn(TypeVarSet, TypeParams0,
			eqv_type(EqvType0), _Condition, Context, _Status),
	varset__merge(TVarSet0, TypeVarSet, [EqvType0 | TypeParams0],
			TVarSet, [EqvType1, TypeParams1]),
	type_param_to_var_list(TypeParams1, TypeParams),
	term__substitute_corresponding(EqvType1, TypeParams, AsX,
		EqvType).

******/

type_unify_list([], [], _) --> [].
type_unify_list([X | Xs], [Y | Ys], HeadTypeParams) -->
	type_unify(X, Y, HeadTypeParams),
	type_unify_list(Xs, Ys, HeadTypeParams).

:- pred type_unify_head_type_param(tvar, tvar, list(tvar), tsubst, tsubst).
:- mode type_unify_head_type_param(in, in, in, in, out) is semidet.

type_unify_head_type_param(Var, HeadVar, HeadTypeParams, Bindings0,
		Bindings) :-
	( map__search(Bindings0, Var, BindingOfVar) ->
		BindingOfVar = term__variable(Var2),
		type_unify_head_type_param(Var2, HeadVar, HeadTypeParams,
			Bindings0, Bindings)
	;
		( Var = HeadVar ->
			Bindings = Bindings0
		;
			\+ list__member(Var, HeadTypeParams),
			map__det_insert(Bindings0, Var,
				term__variable(HeadVar), Bindings)
		)
	).

%-----------------------------------------------------------------------------%

type_util__vars(Type, Tvars) :-
	term__vars(Type, Tvars).

%-----------------------------------------------------------------------------%

apply_substitution_to_type_map(VarTypes0, Subst, VarTypes) :-
	% optimize the common case of an empty type substitution
	( map__is_empty(Subst) ->
		VarTypes = VarTypes0
	;
		map__keys(VarTypes0, Vars),
		apply_substitution_to_type_map_2(Vars, VarTypes0, Subst,
			VarTypes)
	).

:- pred apply_substitution_to_type_map_2(list(prog_var)::in,
		map(prog_var, type)::in, tsubst::in, map(prog_var, type)::out)
		is det.

apply_substitution_to_type_map_2([], VarTypes, _Subst, VarTypes).
apply_substitution_to_type_map_2([Var | Vars], VarTypes0, Subst,
		VarTypes) :-
	map__lookup(VarTypes0, Var, VarType0),
	term__apply_substitution(VarType0, Subst, VarType),
	map__det_update(VarTypes0, Var, VarType, VarTypes1),
	apply_substitution_to_type_map_2(Vars, VarTypes1, Subst, VarTypes).

%-----------------------------------------------------------------------------%

apply_rec_substitution_to_type_map(VarTypes0, Subst, VarTypes) :-
	% optimize the common case of an empty type substitution
	( map__is_empty(Subst) ->
		VarTypes = VarTypes0
	;
		map__keys(VarTypes0, Vars),
		apply_rec_substitution_to_type_map_2(Vars, VarTypes0, Subst,
			VarTypes)
	).

:- pred apply_rec_substitution_to_type_map_2(list(prog_var)::in,
		map(prog_var, type)::in, tsubst::in, map(prog_var, type)::out)
		is det.

apply_rec_substitution_to_type_map_2([], VarTypes, _Subst, VarTypes).
apply_rec_substitution_to_type_map_2([Var | Vars], VarTypes0, Subst,
		VarTypes) :-
	map__lookup(VarTypes0, Var, VarType0),
	term__apply_rec_substitution(VarType0, Subst, VarType),
	map__det_update(VarTypes0, Var, VarType, VarTypes1),
	apply_rec_substitution_to_type_map_2(Vars, VarTypes1, Subst, VarTypes).

%-----------------------------------------------------------------------------%

apply_substitutions_to_var_map(VarMap0, TRenaming, TSubst, Subst, VarMap) :-
	% optimize the common case of empty substitutions
	(
		map__is_empty(Subst),
		map__is_empty(TSubst),
		map__is_empty(TRenaming)
	->
		VarMap = VarMap0
	;
		map__keys(VarMap0, TVars),
		map__init(NewVarMap),
		apply_substitutions_to_var_map_2(TVars, VarMap0,
			TRenaming, TSubst, Subst, NewVarMap, VarMap)
	).


:- pred apply_substitutions_to_var_map_2(list(tvar)::in, map(tvar,
		type_info_locn)::in, tsubst::in, map(tvar, type)::in,
		map(prog_var, prog_var)::in, map(tvar, type_info_locn)::in, 
		map(tvar, type_info_locn)::out) is det.

apply_substitutions_to_var_map_2([], _VarMap0, _, _, _, NewVarMap, NewVarMap).
apply_substitutions_to_var_map_2([TVar | TVars], VarMap0, TRenaming,
		TSubst, VarSubst, NewVarMap0, NewVarMap) :-
	map__lookup(VarMap0, TVar, Locn),
	type_info_locn_var(Locn, Var),
	
		% find the new var, if there is one
	( map__search(VarSubst, Var, NewVar0) ->
		NewVar = NewVar0
	;
		NewVar = Var
	),
	type_info_locn_set_var(Locn, NewVar, NewLocn),

		% find the new tvar, if there is one, otherwise just
		% create the old var as a type variable.
	(
		map__search(TRenaming, TVar, NewTVar0)
	->
		( NewTVar0 = term__variable(NewTVar1) ->
			NewTVar2 = NewTVar1
		;
			% varset__merge_subst only returns var->var mappings,
			% never var->term.
			error(
			"apply_substitution_to_var_map_2: weird type renaming")
		)
	; 
		% The variable wasn't renamed.
		NewTVar2 = TVar
	),

	term__apply_rec_substitution(term__variable(NewTVar2),
		TSubst, NewType),

		% if the tvar is still a variable, insert it into the
		% map with the new var.
	( type_util__var(NewType, NewTVar) ->
		% Don't abort if two old type variables
		% map to the same new type variable.
		map__set(NewVarMap0, NewTVar, NewLocn, NewVarMap1)
	;
		NewVarMap1 = NewVarMap0
	),
	apply_substitutions_to_var_map_2(TVars, VarMap0, TRenaming,
		TSubst, VarSubst, NewVarMap1, NewVarMap).

%-----------------------------------------------------------------------------%

apply_substitutions_to_typeclass_var_map(VarMap0,
		TRenaming, TSubst, Subst, VarMap) :-
	map__to_assoc_list(VarMap0, VarAL0),
	list__map(apply_substitutions_to_typeclass_var_map_2(TRenaming,
		TSubst, Subst), VarAL0, VarAL),
	map__from_assoc_list(VarAL, VarMap).

:- pred apply_substitutions_to_typeclass_var_map_2(tsubst, map(tvar, type),
		map(prog_var, prog_var), pair(class_constraint, prog_var),
		pair(class_constraint, prog_var)).
:- mode apply_substitutions_to_typeclass_var_map_2(in, in,
		in, in, out) is det.
	
apply_substitutions_to_typeclass_var_map_2(TRenaming, TSubst, VarRenaming,
		Constraint0 - Var0, Constraint - Var) :-
	apply_subst_to_constraint(TRenaming, Constraint0, Constraint1),
	apply_rec_subst_to_constraint(TSubst, Constraint1, Constraint),

	( map__search(VarRenaming, Var0, Var1) ->
		Var = Var1
	;
		Var = Var0
	).

%-----------------------------------------------------------------------------%

apply_rec_subst_to_constraints(Subst, Constraints0, Constraints) :-
	Constraints0 = constraints(UnivCs0, ExistCs0),
	apply_rec_subst_to_constraint_list(Subst, UnivCs0, UnivCs),
	apply_rec_subst_to_constraint_list(Subst, ExistCs0, ExistCs),
	Constraints = constraints(UnivCs, ExistCs).

apply_rec_subst_to_constraint_list(Subst, Constraints0, Constraints) :-
	list__map(apply_rec_subst_to_constraint(Subst), Constraints0,
		Constraints).

apply_rec_subst_to_constraint(Subst, Constraint0, Constraint) :-
	Constraint0 = constraint(ClassName, Types0),
	term__apply_rec_substitution_to_list(Types0, Subst, Types1),
	% we need to maintain the invariant that types in class constraints
	% do not have any information in their prog_context fields
	strip_prog_contexts(Types1, Types),
	Constraint  = constraint(ClassName, Types).

apply_subst_to_constraints(Subst,
		constraints(UniversalCs0, ExistentialCs0),
		constraints(UniversalCs, ExistentialCs)) :-
	apply_subst_to_constraint_list(Subst, UniversalCs0, UniversalCs),
	apply_subst_to_constraint_list(Subst, ExistentialCs0, ExistentialCs).

apply_subst_to_constraint_list(Subst, Constraints0, Constraints) :-
	list__map(apply_subst_to_constraint(Subst), Constraints0, Constraints).

apply_subst_to_constraint(Subst, Constraint0, Constraint) :-
	Constraint0 = constraint(ClassName, Types0),
	term__apply_substitution_to_list(Types0, Subst, Types),
	Constraint  = constraint(ClassName, Types).

apply_subst_to_constraint_proofs(Subst, Proofs0, Proofs) :-
	map__init(Empty),
	map__foldl(
		lambda([Constraint0::in, Proof0::in, Map0::in, Map::out] is det,
		(
			apply_subst_to_constraint(Subst, Constraint0,
				Constraint), 
			(
				Proof0 = apply_instance(_),
				Proof = Proof0
			;
				Proof0 = superclass(Super0),
				apply_subst_to_constraint(Subst, Super0, 
					Super),
				Proof = superclass(Super)
			),
			map__set(Map0, Constraint, Proof, Map)
		)),
	Proofs0, Empty, Proofs).

apply_rec_subst_to_constraint_proofs(Subst, Proofs0, Proofs) :-
	map__init(Empty),
	map__foldl(
		lambda([Constraint0::in, Proof0::in, Map0::in, Map::out] is det,
		(
			apply_rec_subst_to_constraint(Subst, Constraint0,
				Constraint), 
			(
				Proof0 = apply_instance(_),
				Proof = Proof0
			;
				Proof0 = superclass(Super0),
				apply_rec_subst_to_constraint(Subst, Super0, 
					Super),
				Proof = superclass(Super)
			),
			map__set(Map0, Constraint, Proof, Map)
		)),
	Proofs0, Empty, Proofs).

apply_variable_renaming_to_constraints(Renaming,
		constraints(UniversalCs0, ExistentialCs0),
		constraints(UniversalCs, ExistentialCs)) :-
	apply_variable_renaming_to_constraint_list(Renaming,
			UniversalCs0, UniversalCs),
	apply_variable_renaming_to_constraint_list(Renaming,
			ExistentialCs0, ExistentialCs).
	
apply_variable_renaming_to_constraint_list(Renaming, Constraints0,
		Constraints) :-
	list__map(apply_variable_renaming_to_constraint(Renaming),
			Constraints0, Constraints).

apply_variable_renaming_to_constraint(Renaming, Constraint0, Constraint) :-
	Constraint0 = constraint(ClassName, ClassArgTypes0),
	term__apply_variable_renaming_to_list(ClassArgTypes0,
		Renaming, ClassArgTypes),
	Constraint = constraint(ClassName, ClassArgTypes).

%-----------------------------------------------------------------------------%

apply_partial_map_to_list([], _PartialMap, []).
apply_partial_map_to_list([X|Xs], PartialMap, [Y|Ys]) :-
	( map__search(PartialMap, X, Y0) ->
		Y = Y0
	;
		Y = X
	),
	apply_partial_map_to_list(Xs, PartialMap, Ys).

%-----------------------------------------------------------------------------%

strip_prog_contexts(Terms, StrippedTerms) :-
	list__map(strip_prog_context, Terms, StrippedTerms).
	
strip_prog_context(term__variable(V), term__variable(V)).
strip_prog_context(term__functor(F, As0, _C0),
		term__functor(F, As, C)) :-
	term__context_init(C),
	strip_prog_contexts(As0, As).

%-----------------------------------------------------------------------------%

cons_id_adjusted_arity(ModuleInfo, Type, ConsId) = AdjustedArity :-
		% figure out the arity of this constructor,
		% _including_ any type-infos or typeclass-infos
		% inserted for existential data types.
	cons_id_arity(ConsId, ConsArity),
	(
		type_util__get_existq_cons_defn(ModuleInfo, Type, ConsId,
			ConsDefn)
	->
		ConsDefn = ctor_defn(_TVarSet, ExistQTVars, Constraints,
				_ArgTypes, _ResultType),
		list__length(Constraints, NumTypeClassInfos),
		constraint_list_get_tvars(Constraints, ConstrainedTVars),
		list__delete_elems(ExistQTVars, ConstrainedTVars,
				UnconstrainedExistQTVars),
		list__length(UnconstrainedExistQTVars, NumTypeInfos),
		AdjustedArity = ConsArity + NumTypeClassInfos + NumTypeInfos
	;
		AdjustedArity = ConsArity
	).

%-----------------------------------------------------------------------------%

constraint_list_get_tvars(Constraints, TVars) :-
	list__map(constraint_get_tvars, Constraints, TVarsList),
	list__condense(TVarsList, TVars).

constraint_get_tvars(constraint(_Name, Args), TVars) :-
	term__vars_list(Args, TVars).

%-----------------------------------------------------------------------------%