1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
|
%---------------------------------------------------------------------------%
% Copyright (C) 1994-1999 The University of Melbourne.
% This file may only be copied under the terms of the GNU General
% Public License - see the file COPYING in the Mercury distribution.
%---------------------------------------------------------------------------%
%
% This module handles code generation for "simple" unifications,
% i.e. those unifications which are simple enough for us to generate
% inline code.
%
% For "complicated" unifications, we generate a call to an out-of-line
% unification predicate (the call is handled in call_gen.m) - and then
% eventually generate the out-of-line code (unify_proc.m).
%
%---------------------------------------------------------------------------%
:- module unify_gen.
:- interface.
:- import_module hlds_goal, hlds_data, llds, code_info.
:- import_module prog_data.
:- type test_sense
---> branch_on_success
; branch_on_failure.
:- pred unify_gen__generate_unification(code_model, unification, code_tree,
code_info, code_info).
:- mode unify_gen__generate_unification(in, in, out, in, out) is det.
:- pred unify_gen__generate_tag_test(prog_var, cons_id, test_sense, label,
code_tree, code_info, code_info).
:- mode unify_gen__generate_tag_test(in, in, in, out, out, in, out) is det.
%---------------------------------------------------------------------------%
:- implementation.
:- import_module builtin_ops.
:- import_module hlds_module, hlds_pred, prog_data, prog_out, code_util.
:- import_module mode_util, type_util, code_aux, hlds_out, tree, arg_info.
:- import_module globals, options, continuation_info, stack_layout.
:- import_module term, bool, string, int, list, map, require, std_util.
:- type uni_val ---> ref(prog_var)
; lval(lval).
%---------------------------------------------------------------------------%
unify_gen__generate_unification(CodeModel, Uni, Code) -->
{ CodeModel = model_non ->
error("nondet unification in unify_gen__generate_unification")
;
true
},
(
{ Uni = assign(Left, Right) },
unify_gen__generate_assignment(Left, Right, Code)
;
{ Uni = construct(Var, ConsId, Args, Modes, _, _, AditiInfo) },
unify_gen__generate_construction(Var, ConsId,
Args, Modes, AditiInfo, Code)
;
{ Uni = deconstruct(Var, ConsId, Args, Modes, _CanFail) },
( { CodeModel = model_det } ->
unify_gen__generate_det_deconstruction(Var, ConsId,
Args, Modes, Code)
;
unify_gen__generate_semi_deconstruction(Var, ConsId,
Args, Modes, Code)
)
;
{ Uni = simple_test(Var1, Var2) },
( { CodeModel = model_det } ->
{ error("det simple_test during code generation") }
;
unify_gen__generate_test(Var1, Var2, Code)
)
;
% These should have been transformed into calls
% to unification procedures by polymorphism.m.
{ Uni = complicated_unify(_UniMode, _CanFail, _TypeInfoVars) },
{ error("complicated unify during code generation") }
).
%---------------------------------------------------------------------------%
% assignment unifications are generated by simply caching the
% bound variable as the expression that generates the free
% variable. No immediate code is generated.
:- pred unify_gen__generate_assignment(prog_var, prog_var, code_tree,
code_info, code_info).
:- mode unify_gen__generate_assignment(in, in, out, in, out) is det.
unify_gen__generate_assignment(VarA, VarB, empty) -->
(
code_info__variable_is_forward_live(VarA)
->
code_info__cache_expression(VarA, var(VarB))
;
% For free-free unifications, the mode analysis reports
% them as assignment to the dead variable. For such
% unifications we of course don't generate any code
{ true }
).
%---------------------------------------------------------------------------%
% A [simple] test unification is generated by flushing both
% variables from the cache, and producing code that branches
% to the fall-through point if the two values are not the same.
% Simple tests are in-in unifications on enumerations, integers,
% strings and floats.
:- pred unify_gen__generate_test(prog_var, prog_var, code_tree,
code_info, code_info).
:- mode unify_gen__generate_test(in, in, out, in, out) is det.
unify_gen__generate_test(VarA, VarB, Code) -->
code_info__produce_variable(VarA, Code0, ValA),
code_info__produce_variable(VarB, Code1, ValB),
{ CodeA = tree(Code0, Code1) },
code_info__variable_type(VarA, Type),
{ Type = term__functor(term__atom("string"), [], _) ->
Op = str_eq
; Type = term__functor(term__atom("float"), [], _) ->
Op = float_eq
;
Op = eq
},
code_info__fail_if_rval_is_false(binop(Op, ValA, ValB), FailCode),
{ Code = tree(CodeA, FailCode) }.
%---------------------------------------------------------------------------%
unify_gen__generate_tag_test(Var, ConsId, Sense, ElseLab, Code) -->
code_info__produce_variable(Var, VarCode, Rval),
(
{ ConsId = cons(_, Arity) },
{ Arity > 0 }
->
code_info__variable_type(Var, Type),
code_info__lookup_type_defn(Type, TypeDefn),
{ hlds_data__get_type_defn_body(TypeDefn, TypeBody) },
{
TypeBody = du_type(_, ConsTable, _, _)
->
map__to_assoc_list(ConsTable, ConsList),
(
ConsList = [ConsId - _, OtherConsId - _],
OtherConsId = cons(_, 0)
->
Reverse = yes(OtherConsId)
;
ConsList = [OtherConsId - _, ConsId - _],
OtherConsId = cons(_, 0)
->
Reverse = yes(OtherConsId)
;
Reverse = no
)
;
Reverse = no
}
;
{ Reverse = no }
),
code_info__variable_to_string(Var, VarName),
{ hlds_out__cons_id_to_string(ConsId, ConsIdName) },
(
{ Reverse = no },
{ string__append_list(["checking that ", VarName,
" has functor ", ConsIdName], Comment) },
{ CommentCode = node([comment(Comment) - ""]) },
code_info__cons_id_to_tag(Var, ConsId, Tag),
{ unify_gen__generate_tag_rval_2(Tag, Rval, TestRval) }
;
{ Reverse = yes(TestConsId) },
{ string__append_list(["checking that ", VarName,
" has functor ", ConsIdName, " (inverted test)"],
Comment) },
{ CommentCode = node([comment(Comment) - ""]) },
code_info__cons_id_to_tag(Var, TestConsId, Tag),
{ unify_gen__generate_tag_rval_2(Tag, Rval, NegTestRval) },
{ code_util__neg_rval(NegTestRval, TestRval) }
),
code_info__get_next_label(ElseLab),
(
{ Sense = branch_on_success },
{ TheRval = TestRval }
;
{ Sense = branch_on_failure },
{ code_util__neg_rval(TestRval, TheRval) }
),
{ TestCode = node([
if_val(TheRval, label(ElseLab)) - "tag test"
]) },
{ Code = tree(VarCode, tree(CommentCode, TestCode)) }.
%---------------------------------------------------------------------------%
:- pred unify_gen__generate_tag_rval(prog_var, cons_id, rval, code_tree,
code_info, code_info).
:- mode unify_gen__generate_tag_rval(in, in, out, out, in, out) is det.
unify_gen__generate_tag_rval(Var, ConsId, TestRval, Code) -->
code_info__produce_variable(Var, Code, Rval),
code_info__cons_id_to_tag(Var, ConsId, Tag),
{ unify_gen__generate_tag_rval_2(Tag, Rval, TestRval) }.
:- pred unify_gen__generate_tag_rval_2(cons_tag, rval, rval).
:- mode unify_gen__generate_tag_rval_2(in, in, out) is det.
unify_gen__generate_tag_rval_2(string_constant(String), Rval, TestRval) :-
TestRval = binop(str_eq, Rval, const(string_const(String))).
unify_gen__generate_tag_rval_2(float_constant(Float), Rval, TestRval) :-
TestRval = binop(float_eq, Rval, const(float_const(Float))).
unify_gen__generate_tag_rval_2(int_constant(Int), Rval, TestRval) :-
TestRval = binop(eq, Rval, const(int_const(Int))).
unify_gen__generate_tag_rval_2(pred_closure_tag(_, _, _), _Rval, _TestRval) :-
% This should never happen, since the error will be detected
% during mode checking.
error("Attempted higher-order unification").
unify_gen__generate_tag_rval_2(code_addr_constant(_, _), _Rval, _TestRval) :-
% This should never happen
error("Attempted code_addr unification").
unify_gen__generate_tag_rval_2(type_ctor_info_constant(_, _, _), _, _) :-
% This should never happen
error("Attempted type_ctor_info unification").
unify_gen__generate_tag_rval_2(base_typeclass_info_constant(_, _, _), _, _) :-
% This should never happen
error("Attempted base_typeclass_info unification").
unify_gen__generate_tag_rval_2(tabling_pointer_constant(_, _), _, _) :-
% This should never happen
error("Attempted tabling_pointer unification").
unify_gen__generate_tag_rval_2(no_tag, _Rval, TestRval) :-
TestRval = const(true).
unify_gen__generate_tag_rval_2(unshared_tag(UnsharedTag), Rval, TestRval) :-
TestRval = binop(eq, unop(tag, Rval),
unop(mktag, const(int_const(UnsharedTag)))).
unify_gen__generate_tag_rval_2(shared_remote_tag(Bits, Num), Rval, TestRval) :-
TestRval = binop(and,
binop(eq, unop(tag, Rval),
unop(mktag, const(int_const(Bits)))),
binop(eq, lval(field(yes(Bits), Rval,
const(int_const(0)))),
const(int_const(Num)))).
unify_gen__generate_tag_rval_2(shared_local_tag(Bits, Num), Rval,
TestRval) :-
TestRval = binop(eq, Rval,
mkword(Bits, unop(mkbody, const(int_const(Num))))).
%---------------------------------------------------------------------------%
% A construction unification consists of a heap-increment to
% create a term, and a series of [optional] assignments to
% instantiate the arguments of that term.
:- pred unify_gen__generate_construction(prog_var, cons_id,
list(prog_var), list(uni_mode), maybe(rl_exprn_id),
code_tree, code_info, code_info).
:- mode unify_gen__generate_construction(in, in, in, in,
in, out, in, out) is det.
unify_gen__generate_construction(Var, Cons, Args, Modes, AditiInfo, Code) -->
code_info__cons_id_to_tag(Var, Cons, Tag),
unify_gen__generate_construction_2(Tag, Var, Args,
Modes, AditiInfo, Code).
:- pred unify_gen__generate_construction_2(cons_tag, prog_var,
list(prog_var), list(uni_mode), maybe(rl_exprn_id),
code_tree, code_info, code_info).
:- mode unify_gen__generate_construction_2(in, in, in, in, in, out,
in, out) is det.
unify_gen__generate_construction_2(string_constant(String),
Var, _Args, _Modes, _, Code) -->
{ Code = empty },
code_info__cache_expression(Var, const(string_const(String))).
unify_gen__generate_construction_2(int_constant(Int),
Var, _Args, _Modes, _, Code) -->
{ Code = empty },
code_info__cache_expression(Var, const(int_const(Int))).
unify_gen__generate_construction_2(float_constant(Float),
Var, _Args, _Modes, _, Code) -->
{ Code = empty },
code_info__cache_expression(Var, const(float_const(Float))).
unify_gen__generate_construction_2(no_tag, Var, Args, Modes, _, Code) -->
( { Args = [Arg], Modes = [Mode] } ->
code_info__variable_type(Arg, Type),
unify_gen__generate_sub_unify(ref(Var), ref(Arg),
Mode, Type, Code)
;
{ error(
"unify_gen__generate_construction_2: no_tag: arity != 1") }
).
unify_gen__generate_construction_2(unshared_tag(UnsharedTag),
Var, Args, Modes, _, Code) -->
code_info__get_module_info(ModuleInfo),
code_info__get_next_cell_number(CellNo),
unify_gen__var_types(Args, ArgTypes),
{ unify_gen__generate_cons_args(Args, ArgTypes, Modes, ModuleInfo,
RVals) },
{ Code = empty },
code_info__variable_type(Var, VarType),
{ unify_gen__var_type_msg(VarType, VarTypeMsg) },
% XXX Later we will need to worry about
% whether the cell must be unique or not.
{ Expr = create(UnsharedTag, RVals, uniform(no), can_be_either,
CellNo, VarTypeMsg) },
code_info__cache_expression(Var, Expr).
unify_gen__generate_construction_2(shared_remote_tag(Bits0, Num0),
Var, Args, Modes, _, Code) -->
code_info__get_module_info(ModuleInfo),
code_info__get_next_cell_number(CellNo),
unify_gen__var_types(Args, ArgTypes),
{ unify_gen__generate_cons_args(Args, ArgTypes, Modes, ModuleInfo,
RVals0) },
% the first field holds the secondary tag
{ RVals = [yes(const(int_const(Num0))) | RVals0] },
{ Code = empty },
code_info__variable_type(Var, VarType),
{ unify_gen__var_type_msg(VarType, VarTypeMsg) },
% XXX Later we will need to worry about
% whether the cell must be unique or not.
{ Expr = create(Bits0, RVals, uniform(no), can_be_either,
CellNo, VarTypeMsg) },
code_info__cache_expression(Var, Expr).
unify_gen__generate_construction_2(shared_local_tag(Bits1, Num1),
Var, _Args, _Modes, _, Code) -->
{ Code = empty },
code_info__cache_expression(Var,
mkword(Bits1, unop(mkbody, const(int_const(Num1))))).
unify_gen__generate_construction_2(type_ctor_info_constant(ModuleName,
TypeName, TypeArity), Var, Args, _Modes, _, Code) -->
( { Args = [] } ->
[]
;
{ error("unify_gen: type-info constant has args") }
),
{ Code = empty },
code_info__cache_expression(Var, const(data_addr_const(data_addr(
ModuleName, type_ctor(info, TypeName, TypeArity))))).
unify_gen__generate_construction_2(base_typeclass_info_constant(ModuleName,
ClassId, Instance), Var, Args, _Modes, _, Code) -->
( { Args = [] } ->
[]
;
{ error("unify_gen: typeclass-info constant has args") }
),
{ Code = empty },
code_info__cache_expression(Var, const(data_addr_const(data_addr(
ModuleName, base_typeclass_info(ClassId, Instance))))).
unify_gen__generate_construction_2(tabling_pointer_constant(PredId, ProcId),
Var, Args, _Modes, _, Code) -->
( { Args = [] } ->
[]
;
{ error("unify_gen: tabling pointer constant has args") }
),
{ Code = empty },
code_info__get_module_info(ModuleInfo),
{ code_util__make_proc_label(ModuleInfo, PredId, ProcId, ProcLabel) },
{ module_info_name(ModuleInfo, ModuleName) },
{ DataAddr = data_addr(ModuleName, tabling_pointer(ProcLabel)) },
code_info__cache_expression(Var, const(data_addr_const(DataAddr))).
unify_gen__generate_construction_2(code_addr_constant(PredId, ProcId),
Var, Args, _Modes, _, Code) -->
( { Args = [] } ->
[]
;
{ error("unify_gen: address constant has args") }
),
{ Code = empty },
code_info__get_module_info(ModuleInfo),
code_info__make_entry_label(ModuleInfo, PredId, ProcId, no, CodeAddr),
code_info__cache_expression(Var, const(code_addr_const(CodeAddr))).
unify_gen__generate_construction_2(
pred_closure_tag(PredId, ProcId, EvalMethod),
Var, Args, _Modes, _AditiInfo, Code) -->
% This code constructs or extends a closure.
% The structure of closures is defined in runtime/mercury_ho_call.h.
code_info__get_module_info(ModuleInfo),
{ module_info_preds(ModuleInfo, Preds) },
{ map__lookup(Preds, PredId, PredInfo) },
{ pred_info_procedures(PredInfo, Procs) },
{ map__lookup(Procs, ProcId, ProcInfo) },
%
% We handle currying of a higher-order pred variable as a special case.
% We recognize
%
% P = l(P0, X, Y, Z)
%
% where
%
% l(P0, A, B, C, ...) :- P0(A, B, C, ...). % higher-order call
%
% as a special case, and generate special code to construct the
% new closure P from the old closure P0 by appending the args X, Y, Z.
% The advantage of this optimization is that when P is called, we
% will only need to do one indirect call rather than two.
% Its disadvantage is that the cost of creating the closure P is greater.
% Whether this is a net win depend on the number of times P is called.
%
% The pattern that this optimization looks for happens rarely at the moment.
% The reason is that although we allow the creation of closures with a simple
% syntax (e.g. P0 = append4([1])), we don't allow their extension with a
% similarly simple syntax (e.g. P = call(P0, [2])). In fact, typecheck.m
% contains code to detect such constructs, because it does not have code
% to typecheck them (you get a message about call/2 should be used as a goal,
% not an expression).
%
{ proc_info_goal(ProcInfo, ProcInfoGoal) },
{ proc_info_interface_code_model(ProcInfo, CodeModel) },
{ proc_info_headvars(ProcInfo, ProcHeadVars) },
(
{ EvalMethod = normal },
{ Args = [CallPred | CallArgs] },
{ ProcHeadVars = [ProcPred | ProcArgs] },
{ ProcInfoGoal = generic_call(higher_order(ProcPred, _, _),
ProcArgs, _, CallDeterminism) - _GoalInfo },
{ determinism_to_code_model(CallDeterminism, CallCodeModel) },
% Check that the code models are compatible.
% Note that det is not compatible with semidet,
% and semidet is not compatible with nondet,
% since the arguments go in different registers.
% But det is compatible with nondet.
{ CodeModel = CallCodeModel
; CodeModel = model_non, CallCodeModel = model_det
}
->
( { CallArgs = [] } ->
% if there are no new arguments, we can just use the old
% closure
code_info__produce_variable(CallPred, Code, Value)
;
code_info__get_next_label(LoopStart),
code_info__get_next_label(LoopTest),
code_info__acquire_reg(r, LoopCounter),
code_info__acquire_reg(r, NumOldArgs),
code_info__acquire_reg(r, NewClosure),
{ Zero = const(int_const(0)) },
{ One = const(int_const(1)) },
{ Two = const(int_const(2)) },
{ Three = const(int_const(3)) },
{ list__length(CallArgs, NumNewArgs) },
{ NumNewArgs_Rval = const(int_const(NumNewArgs)) },
{ NumNewArgsPlusThree is NumNewArgs + 3 },
{ NumNewArgsPlusThree_Rval =
const(int_const(NumNewArgsPlusThree)) },
code_info__produce_variable(CallPred, Code1, OldClosure),
{ Code2 = node([
comment("build new closure from old closure") - "",
assign(NumOldArgs,
lval(field(yes(0), OldClosure, Two)))
- "get number of arguments",
incr_hp(NewClosure, no,
binop(+, lval(NumOldArgs),
NumNewArgsPlusThree_Rval), "closure")
- "allocate new closure",
assign(field(yes(0), lval(NewClosure), Zero),
lval(field(yes(0), OldClosure, Zero)))
- "set closure layout structure",
assign(field(yes(0), lval(NewClosure), One),
lval(field(yes(0), OldClosure, One)))
- "set closure code pointer",
assign(field(yes(0), lval(NewClosure), Two),
binop(+, lval(NumOldArgs), NumNewArgs_Rval))
- "set new number of arguments",
assign(NumOldArgs, binop(+, lval(NumOldArgs), Three))
- "set up loop limit",
assign(LoopCounter, Three)
- "initialize loop counter",
% It is possible for the number of hidden arguments
% to be zero, in which case the body of this loop
% should not be executed at all. This is why we
% jump to the loop condition test.
goto(label(LoopTest))
- "enter the copy loop at the conceptual top",
label(LoopStart) - "start of loop",
assign(field(yes(0), lval(NewClosure),
lval(LoopCounter)),
lval(field(yes(0), OldClosure,
lval(LoopCounter))))
- "copy old hidden argument",
assign(LoopCounter,
binop(+, lval(LoopCounter), One))
- "increment loop counter",
label(LoopTest)
- "do we have more old arguments to copy?",
if_val(binop(<, lval(LoopCounter), lval(NumOldArgs)),
label(LoopStart))
- "repeat the loop?"
]) },
unify_gen__generate_extra_closure_args(CallArgs,
LoopCounter, NewClosure, Code3),
code_info__release_reg(LoopCounter),
code_info__release_reg(NumOldArgs),
code_info__release_reg(NewClosure),
{ Code = tree(Code1, tree(Code2, Code3)) },
{ Value = lval(NewClosure) }
)
;
{ Code = empty },
(
{ EvalMethod = normal }
;
{ EvalMethod = (aditi_bottom_up) },
% XXX The closure_layout code needs to be changed
% to handle these.
{ error(
"Sorry, not implemented: `aditi_bottom_up' closures") }
;
{ EvalMethod = (aditi_top_down) },
% XXX The closure_layout code needs to be changed
% to handle these.
{ error(
"Sorry, not implemented: `aditi_top_down' closures") }
),
{ continuation_info__generate_closure_layout(
ModuleInfo, PredId, ProcId, ClosureInfo) },
code_info__make_entry_label(ModuleInfo, PredId, ProcId, no,
CodeAddr),
{ code_util__extract_proc_label_from_code_addr(CodeAddr,
ProcLabel) },
code_info__get_cell_count(CNum0),
{ stack_layout__construct_closure_layout(ProcLabel,
ClosureInfo, ClosureLayoutMaybeRvals,
ClosureLayoutArgTypes, CNum0, CNum) },
code_info__set_cell_count(CNum),
code_info__get_next_cell_number(ClosureLayoutCellNo),
{ ClosureLayout = create(0, ClosureLayoutMaybeRvals,
ClosureLayoutArgTypes, must_be_static,
ClosureLayoutCellNo, "closure_layout") },
{ list__length(Args, NumArgs) },
{ proc_info_arg_info(ProcInfo, ArgInfo) },
{ unify_gen__generate_pred_args(Args, ArgInfo, PredArgs) },
{ Vector = [
yes(ClosureLayout),
yes(const(code_addr_const(CodeAddr))),
yes(const(int_const(NumArgs)))
| PredArgs
] },
code_info__get_next_cell_number(ClosureCellNo),
{ Value = create(0, Vector, uniform(no), can_be_either,
ClosureCellNo, "closure") }
),
code_info__cache_expression(Var, Value).
:- pred unify_gen__generate_extra_closure_args(list(prog_var), lval, lval,
code_tree, code_info, code_info).
:- mode unify_gen__generate_extra_closure_args(in, in, in, out, in, out) is det.
unify_gen__generate_extra_closure_args([], _, _, empty) --> [].
unify_gen__generate_extra_closure_args([Var | Vars], LoopCounter,
NewClosure, Code) -->
code_info__produce_variable(Var, Code0, Value),
{ One = const(int_const(1)) },
{ Code1 = node([
assign(field(yes(0), lval(NewClosure), lval(LoopCounter)),
Value)
- "set new argument field",
assign(LoopCounter,
binop(+, lval(LoopCounter), One))
- "increment argument counter"
]) },
{ Code = tree(tree(Code0, Code1), Code2) },
unify_gen__generate_extra_closure_args(Vars, LoopCounter,
NewClosure, Code2).
:- pred unify_gen__generate_pred_args(list(prog_var), list(arg_info),
list(maybe(rval))).
:- mode unify_gen__generate_pred_args(in, in, out) is det.
unify_gen__generate_pred_args([], _, []).
unify_gen__generate_pred_args([_|_], [], _) :-
error("unify_gen__generate_pred_args: insufficient args").
unify_gen__generate_pred_args([Var | Vars], [ArgInfo | ArgInfos],
[Rval | Rvals]) :-
ArgInfo = arg_info(_, ArgMode),
( ArgMode = top_in ->
Rval = yes(var(Var))
;
Rval = no
),
unify_gen__generate_pred_args(Vars, ArgInfos, Rvals).
:- pred unify_gen__generate_cons_args(list(prog_var), list(type),
list(uni_mode), module_info, list(maybe(rval))).
:- mode unify_gen__generate_cons_args(in, in, in, in, out) is det.
unify_gen__generate_cons_args(Vars, Types, Modes, ModuleInfo, Args) :-
( unify_gen__generate_cons_args_2(Vars, Types, Modes, ModuleInfo,
Args0) ->
Args = Args0
;
error("unify_gen__generate_cons_args: length mismatch")
).
% Create a list of maybe(rval) for the arguments
% for a construction unification. For each argument which
% is input to the construction unification, we produce `yes(var(Var))',
% but if the argument is free, we just produce `no', meaning don't
% generate an assignment to that field.
:- pred unify_gen__generate_cons_args_2(list(prog_var), list(type),
list(uni_mode), module_info, list(maybe(rval))).
:- mode unify_gen__generate_cons_args_2(in, in, in, in, out) is semidet.
unify_gen__generate_cons_args_2([], [], [], _, []).
unify_gen__generate_cons_args_2([Var|Vars], [Type|Types], [UniMode|UniModes],
ModuleInfo, [Arg|RVals]) :-
UniMode = ((_LI - RI) -> (_LF - RF)),
( mode_to_arg_mode(ModuleInfo, (RI -> RF), Type, top_in) ->
Arg = yes(var(Var))
;
Arg = no
),
unify_gen__generate_cons_args_2(Vars, Types, UniModes, ModuleInfo,
RVals).
%---------------------------------------------------------------------------%
:- pred unify_gen__var_types(list(prog_var), list(type), code_info, code_info).
:- mode unify_gen__var_types(in, out, in, out) is det.
unify_gen__var_types(Vars, Types) -->
code_info__get_proc_info(ProcInfo),
{ proc_info_vartypes(ProcInfo, VarTypes) },
{ map__apply_to_list(Vars, VarTypes, Types) }.
%---------------------------------------------------------------------------%
:- pred unify_gen__make_fields_and_argvars(list(prog_var), rval, int, int,
list(uni_val), list(uni_val)).
:- mode unify_gen__make_fields_and_argvars(in, in, in, in, out, out) is det.
% Construct a pair of lists that associates the fields of
% a term with variables.
unify_gen__make_fields_and_argvars([], _, _, _, [], []).
unify_gen__make_fields_and_argvars([Var | Vars], Rval, Field0, TagNum,
[F | Fs], [A | As]) :-
F = lval(field(yes(TagNum), Rval, const(int_const(Field0)))),
A = ref(Var),
Field1 is Field0 + 1,
unify_gen__make_fields_and_argvars(Vars, Rval, Field1, TagNum, Fs, As).
%---------------------------------------------------------------------------%
% Generate a deterministic deconstruction. In a deterministic
% deconstruction, we know the value of the tag, so we don't
% need to generate a test.
% Deconstructions are generated semi-eagerly. Any test sub-
% unifications are generated eagerly (they _must_ be), but
% assignment unifications are cached.
:- pred unify_gen__generate_det_deconstruction(prog_var, cons_id,
list(prog_var), list(uni_mode), code_tree,
code_info, code_info).
:- mode unify_gen__generate_det_deconstruction(in, in, in, in, out,
in, out) is det.
unify_gen__generate_det_deconstruction(Var, Cons, Args, Modes, Code) -->
code_info__cons_id_to_tag(Var, Cons, Tag),
% For constants, if the deconstruction is det, then we already know
% the value of the constant, so Code = empty.
(
{ Tag = string_constant(_String) },
{ Code = empty }
;
{ Tag = int_constant(_Int) },
{ Code = empty }
;
{ Tag = float_constant(_Float) },
{ Code = empty }
;
{ Tag = pred_closure_tag(_, _, _) },
{ Code = empty }
;
{ Tag = code_addr_constant(_, _) },
{ Code = empty }
;
{ Tag = type_ctor_info_constant(_, _, _) },
{ Code = empty }
;
{ Tag = base_typeclass_info_constant(_, _, _) },
{ Code = empty }
;
{ Tag = tabling_pointer_constant(_, _) },
{ Code = empty }
;
{ Tag = no_tag },
( { Args = [Arg], Modes = [Mode] } ->
code_info__variable_type(Arg, Type),
unify_gen__generate_sub_unify(ref(Var), ref(Arg),
Mode, Type, Code)
;
{ error("unify_gen__generate_det_deconstruction: no_tag: arity != 1") }
)
;
{ Tag = unshared_tag(UnsharedTag) },
{ Rval = var(Var) },
{ unify_gen__make_fields_and_argvars(Args, Rval, 0,
UnsharedTag, Fields, ArgVars) },
unify_gen__var_types(Args, ArgTypes),
unify_gen__generate_unify_args(Fields, ArgVars,
Modes, ArgTypes, Code)
;
{ Tag = shared_remote_tag(Bits0, _Num0) },
{ Rval = var(Var) },
{ unify_gen__make_fields_and_argvars(Args, Rval, 1,
Bits0, Fields, ArgVars) },
unify_gen__var_types(Args, ArgTypes),
unify_gen__generate_unify_args(Fields, ArgVars,
Modes, ArgTypes, Code)
;
{ Tag = shared_local_tag(_Bits1, _Num1) },
{ Code = empty } % if this is det, then nothing happens
).
%---------------------------------------------------------------------------%
% Generate a semideterministic deconstruction.
% A semideterministic deconstruction unification is tag-test
% followed by a deterministic deconstruction.
:- pred unify_gen__generate_semi_deconstruction(prog_var, cons_id,
list(prog_var), list(uni_mode), code_tree,
code_info, code_info).
:- mode unify_gen__generate_semi_deconstruction(in, in, in, in, out, in, out)
is det.
unify_gen__generate_semi_deconstruction(Var, Tag, Args, Modes, Code) -->
unify_gen__generate_tag_test(Var, Tag, branch_on_success,
SuccLab, TagTestCode),
code_info__remember_position(AfterUnify),
code_info__generate_failure(FailCode),
code_info__reset_to_position(AfterUnify),
unify_gen__generate_det_deconstruction(Var, Tag, Args, Modes,
DeconsCode),
{ SuccessLabelCode = node([
label(SuccLab) - ""
]) },
{ Code =
tree(TagTestCode,
tree(FailCode,
tree(SuccessLabelCode,
DeconsCode)))
}.
%---------------------------------------------------------------------------%
% Generate code to perform a list of deterministic subunifications
% for the arguments of a construction.
:- pred unify_gen__generate_unify_args(list(uni_val), list(uni_val),
list(uni_mode), list(type), code_tree,
code_info, code_info).
:- mode unify_gen__generate_unify_args(in, in, in, in, out, in, out) is det.
unify_gen__generate_unify_args(Ls, Rs, Ms, Ts, Code) -->
( unify_gen__generate_unify_args_2(Ls, Rs, Ms, Ts, Code0) ->
{ Code = Code0 }
;
{ error("unify_gen__generate_unify_args: length mismatch") }
).
:- pred unify_gen__generate_unify_args_2(list(uni_val), list(uni_val),
list(uni_mode), list(type), code_tree,
code_info, code_info).
:- mode unify_gen__generate_unify_args_2(in, in, in, in, out, in, out)
is semidet.
unify_gen__generate_unify_args_2([], [], [], [], empty) --> [].
unify_gen__generate_unify_args_2([L|Ls], [R|Rs], [M|Ms], [T|Ts], Code) -->
unify_gen__generate_sub_unify(L, R, M, T, CodeA),
unify_gen__generate_unify_args_2(Ls, Rs, Ms, Ts, CodeB),
{ Code = tree(CodeA, CodeB) }.
%---------------------------------------------------------------------------%
% Generate a subunification between two [field|variable].
:- pred unify_gen__generate_sub_unify(uni_val, uni_val, uni_mode, type,
code_tree, code_info, code_info).
:- mode unify_gen__generate_sub_unify(in, in, in, in, out, in, out) is det.
unify_gen__generate_sub_unify(L, R, Mode, Type, Code) -->
{ Mode = ((LI - RI) -> (LF - RF)) },
code_info__get_module_info(ModuleInfo),
{ mode_to_arg_mode(ModuleInfo, (LI -> LF), Type, LeftMode) },
{ mode_to_arg_mode(ModuleInfo, (RI -> RF), Type, RightMode) },
(
% Input - input == test unification
{ LeftMode = top_in },
{ RightMode = top_in }
->
% This shouldn't happen, since mode analysis should
% avoid creating any tests in the arguments
% of a construction or deconstruction unification.
{ error("test in arg of [de]construction") }
;
% Input - Output== assignment ->
{ LeftMode = top_in },
{ RightMode = top_out }
->
unify_gen__generate_sub_assign(R, L, Code)
;
% Input - Output== assignment <-
{ LeftMode = top_out },
{ RightMode = top_in }
->
unify_gen__generate_sub_assign(L, R, Code)
;
{ LeftMode = top_unused },
{ RightMode = top_unused }
->
{ Code = empty } % free-free - ignore
% XXX I think this will have to change
% if we start to support aliasing
;
{ error("unify_gen__generate_sub_unify: some strange unify") }
).
%---------------------------------------------------------------------------%
:- pred unify_gen__generate_sub_assign(uni_val, uni_val, code_tree,
code_info, code_info).
:- mode unify_gen__generate_sub_assign(in, in, out, in, out) is det.
% Assignment between two lvalues - cannot cache [yet]
% so generate immediate code
% If the destination of the assignment contains any vars,
% we need to materialize those before we can do the assignment.
unify_gen__generate_sub_assign(lval(Lval0), lval(Rval), Code) -->
code_info__materialize_vars_in_rval(lval(Lval0), NewLval,
MaterializeCode),
(
{ NewLval = lval(Lval) }
->
{ Code = tree(MaterializeCode, node([
assign(Lval, lval(Rval)) - "Copy field"
])) }
;
{ error("unify_gen__generate_sub_assign: lval vanished with lval") }
).
% assignment from a variable to an lvalue - cannot cache
% so generate immediately
unify_gen__generate_sub_assign(lval(Lval0), ref(Var), Code) -->
code_info__produce_variable(Var, SourceCode, Source),
code_info__materialize_vars_in_rval(lval(Lval0), NewLval,
MaterializeCode),
(
{ NewLval = lval(Lval) }
->
{ Code = tree(
tree(SourceCode, MaterializeCode),
node([
assign(Lval, Source) - "Copy value"
])
) }
;
{ error("unify_gen__generate_sub_assign: lval vanished with ref") }
).
% assignment to a variable, so cache it.
unify_gen__generate_sub_assign(ref(Var), lval(Rval), empty) -->
(
code_info__variable_is_forward_live(Var)
->
code_info__cache_expression(Var, lval(Rval))
;
{ true }
).
% assignment to a variable, so cache it.
unify_gen__generate_sub_assign(ref(Lvar), ref(Rvar), empty) -->
(
code_info__variable_is_forward_live(Lvar)
->
code_info__cache_expression(Lvar, var(Rvar))
;
{ true }
).
%---------------------------------------------------------------------------%
:- pred unify_gen__var_type_msg(type, string).
:- mode unify_gen__var_type_msg(in, out) is det.
unify_gen__var_type_msg(Type, Msg) :-
( type_to_type_id(Type, TypeId, _) ->
TypeId = TypeSym - TypeArity,
prog_out__sym_name_to_string(TypeSym, TypeSymStr),
string__int_to_string(TypeArity, TypeArityStr),
string__append_list([TypeSymStr, "/", TypeArityStr], Msg)
;
error("type is still a type variable in var_type_msg")
).
%---------------------------------------------------------------------------%
%---------------------------------------------------------------------------%
|