1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
|
#!/usr/bin/env python3
# For the dependencies, see the requirements.txt
import logging
import re
import sys
import traceback
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, Namespace
from collections import OrderedDict
from copy import deepcopy
from dataclasses import dataclass, field
from itertools import accumulate
from os import get_terminal_size
from pathlib import Path
from subprocess import check_output
from textwrap import dedent
from typing import Any, Iterable, Optional, Pattern, TypedDict, Union
import yaml
from filecache import DAY, filecache
from gitlab_common import get_token_from_default_dir
from gql import Client, gql
from gql.transport.requests import RequestsHTTPTransport
from graphql import DocumentNode
DEFAULT_TERMINAL_SIZE: int = 80 # columns
class DagNode(TypedDict):
needs: set[str]
stage: str
# `name` is redundant but is here for retro-compatibility
name: str
# see create_job_needs_dag function for more details
Dag = dict[str, DagNode]
StageSeq = OrderedDict[str, set[str]]
def get_project_root_dir():
root_path = Path(__file__).parent.parent.parent.resolve()
gitlab_file = root_path / ".gitlab-ci.yml"
assert gitlab_file.exists()
return root_path
@dataclass
class GitlabGQL:
_transport: Any = field(init=False)
client: Client = field(init=False)
url: str = "https://gitlab.freedesktop.org/api/graphql"
token: Optional[str] = None
def __post_init__(self) -> None:
self._setup_gitlab_gql_client()
def _setup_gitlab_gql_client(self) -> None:
# Select your transport with a defined url endpoint
headers = {}
if self.token:
headers["Authorization"] = f"Bearer {self.token}"
self._transport = RequestsHTTPTransport(url=self.url, headers=headers)
# Create a GraphQL client using the defined transport
self.client = Client(transport=self._transport, fetch_schema_from_transport=True)
def query(
self,
gql_file: Union[Path, str],
params: dict[str, Any] = {},
operation_name: Optional[str] = None,
paginated_key_loc: Iterable[str] = [],
disable_cache: bool = False,
) -> dict[str, Any]:
def run_uncached() -> dict[str, Any]:
if paginated_key_loc:
return self._sweep_pages(gql_file, params, operation_name, paginated_key_loc)
return self._query(gql_file, params, operation_name)
if disable_cache:
return run_uncached()
try:
# Create an auxiliary variable to deliver a cached result and enable catching exceptions
# Decorate the query to be cached
if paginated_key_loc:
result = self._sweep_pages_cached(
gql_file, params, operation_name, paginated_key_loc
)
else:
result = self._query_cached(gql_file, params, operation_name)
return result # type: ignore
except Exception as ex:
logging.error(f"Cached query failed with {ex}")
# print exception traceback
traceback_str = "".join(traceback.format_exception(ex))
logging.error(traceback_str)
self.invalidate_query_cache()
logging.error("Cache invalidated, retrying without cache")
finally:
return run_uncached()
def _query(
self,
gql_file: Union[Path, str],
params: dict[str, Any] = {},
operation_name: Optional[str] = None,
) -> dict[str, Any]:
# Provide a GraphQL query
source_path: Path = Path(__file__).parent
pipeline_query_file: Path = source_path / gql_file
query: DocumentNode
with open(pipeline_query_file, "r") as f:
pipeline_query = f.read()
query = gql(pipeline_query)
# Execute the query on the transport
return self.client.execute_sync(
query, variable_values=params, operation_name=operation_name
)
@filecache(DAY)
def _sweep_pages_cached(self, *args, **kwargs):
return self._sweep_pages(*args, **kwargs)
@filecache(DAY)
def _query_cached(self, *args, **kwargs):
return self._query(*args, **kwargs)
def _sweep_pages(
self, query, params, operation_name=None, paginated_key_loc: Iterable[str] = []
) -> dict[str, Any]:
"""
Retrieve paginated data from a GraphQL API and concatenate the results into a single
response.
Args:
query: represents a filepath with the GraphQL query to be executed.
params: a dictionary that contains the parameters to be passed to the query. These
parameters can be used to filter or modify the results of the query.
operation_name: The `operation_name` parameter is an optional parameter that specifies
the name of the GraphQL operation to be executed. It is used when making a GraphQL
query to specify which operation to execute if there are multiple operations defined
in the GraphQL schema. If not provided, the default operation will be executed.
paginated_key_loc (Iterable[str]): The `paginated_key_loc` parameter is an iterable of
strings that represents the location of the paginated field within the response. It
is used to extract the paginated field from the response and append it to the final
result. The node has to be a list of objects with a `pageInfo` field that contains
at least the `hasNextPage` and `endCursor` fields.
Returns:
a dictionary containing the response from the query with the paginated field
concatenated.
"""
def fetch_page(cursor: str | None = None) -> dict[str, Any]:
if cursor:
params["cursor"] = cursor
logging.info(
f"Found more than 100 elements, paginating. "
f"Current cursor at {cursor}"
)
return self._query(query, params, operation_name)
# Execute the initial query
response: dict[str, Any] = fetch_page()
# Initialize an empty list to store the final result
final_partial_field: list[dict[str, Any]] = []
# Loop until all pages have been retrieved
while True:
# Get the partial field to be appended to the final result
partial_field = response
for key in paginated_key_loc:
partial_field = partial_field[key]
# Append the partial field to the final result
final_partial_field += partial_field["nodes"]
# Check if there are more pages to retrieve
page_info = partial_field["pageInfo"]
if not page_info["hasNextPage"]:
break
# Execute the query with the updated cursor parameter
response = fetch_page(page_info["endCursor"])
# Replace the "nodes" field in the original response with the final result
partial_field["nodes"] = final_partial_field
return response
def invalidate_query_cache(self) -> None:
logging.warning("Invalidating query cache")
try:
self._sweep_pages._db.clear()
self._query._db.clear()
except AttributeError as ex:
logging.warning(f"Could not invalidate cache, maybe it was not used in {ex.args}?")
def insert_early_stage_jobs(stage_sequence: StageSeq, jobs_metadata: Dag) -> Dag:
pre_processed_dag: dict[str, set[str]] = {}
jobs_from_early_stages = list(accumulate(stage_sequence.values(), set.union))
for job_name, metadata in jobs_metadata.items():
final_needs: set[str] = deepcopy(metadata["needs"])
# Pre-process jobs that are not based on needs field
# e.g. sanity job in mesa MR pipelines
if not final_needs:
job_stage: str = jobs_metadata[job_name]["stage"]
stage_index: int = list(stage_sequence.keys()).index(job_stage)
if stage_index > 0:
final_needs |= jobs_from_early_stages[stage_index - 1]
pre_processed_dag[job_name] = final_needs
for job_name, needs in pre_processed_dag.items():
jobs_metadata[job_name]["needs"] = needs
return jobs_metadata
def traverse_dag_needs(jobs_metadata: Dag) -> None:
created_jobs = set(jobs_metadata.keys())
for job, metadata in jobs_metadata.items():
final_needs: set = deepcopy(metadata["needs"]) & created_jobs
# Post process jobs that are based on needs field
partial = True
while partial:
next_depth: set[str] = {n for dn in final_needs if dn in jobs_metadata for n in jobs_metadata[dn]["needs"]}
partial: bool = not final_needs.issuperset(next_depth)
final_needs = final_needs.union(next_depth)
jobs_metadata[job]["needs"] = final_needs
def extract_stages_and_job_needs(
pipeline_jobs: dict[str, Any], pipeline_stages: dict[str, Any]
) -> tuple[StageSeq, Dag]:
jobs_metadata = Dag()
# Record the stage sequence to post process deps that are not based on needs
# field, for example: sanity job
stage_sequence: OrderedDict[str, set[str]] = OrderedDict()
for stage in pipeline_stages["nodes"]:
stage_sequence[stage["name"]] = set()
for job in pipeline_jobs["nodes"]:
stage_sequence[job["stage"]["name"]].add(job["name"])
dag_job: DagNode = {
"name": job["name"],
"stage": job["stage"]["name"],
"needs": set([j["node"]["name"] for j in job["needs"]["edges"]]),
}
jobs_metadata[job["name"]] = dag_job
return stage_sequence, jobs_metadata
def create_job_needs_dag(gl_gql: GitlabGQL, params, disable_cache: bool = True) -> Dag:
"""
This function creates a Directed Acyclic Graph (DAG) to represent a sequence of jobs, where each
job has a set of jobs that it depends on (its "needs") and belongs to a certain "stage".
The "name" of the job is used as the key in the dictionary.
For example, consider the following DAG:
1. build stage: job1 -> job2 -> job3
2. test stage: job2 -> job4
- The job needs for job3 are: job1, job2
- The job needs for job4 are: job2
- The job2 needs to wait all jobs from build stage to finish.
The resulting DAG would look like this:
dag = {
"job1": {"needs": set(), "stage": "build", "name": "job1"},
"job2": {"needs": {"job1", "job2", job3"}, "stage": "test", "name": "job2"},
"job3": {"needs": {"job1", "job2"}, "stage": "build", "name": "job3"},
"job4": {"needs": {"job2"}, "stage": "test", "name": "job4"},
}
To access the job needs, one can do:
dag["job3"]["needs"]
This will return the set of jobs that job3 needs: {"job1", "job2"}
Args:
gl_gql (GitlabGQL): The `gl_gql` parameter is an instance of the `GitlabGQL` class, which is
used to make GraphQL queries to the GitLab API.
params (dict): The `params` parameter is a dictionary that contains the necessary parameters
for the GraphQL query. It is used to specify the details of the pipeline for which the
job needs DAG is being created.
The specific keys and values in the `params` dictionary will depend on
the requirements of the GraphQL query being executed
disable_cache (bool): The `disable_cache` parameter is a boolean that specifies whether the
Returns:
The final DAG (Directed Acyclic Graph) representing the job dependencies sourced from needs
or stages rule.
"""
stages_jobs_gql = gl_gql.query(
"pipeline_details.gql",
params=params,
paginated_key_loc=["project", "pipeline", "jobs"],
disable_cache=disable_cache,
)
pipeline_data = stages_jobs_gql["project"]["pipeline"]
if not pipeline_data:
raise RuntimeError(f"Could not find any pipelines for {params}")
stage_sequence, jobs_metadata = extract_stages_and_job_needs(
pipeline_data["jobs"], pipeline_data["stages"]
)
# Fill the DAG with the job needs from stages that don't have any needs but still need to wait
# for previous stages
final_dag = insert_early_stage_jobs(stage_sequence, jobs_metadata)
# Now that each job has its direct needs filled correctly, update the "needs" field for each job
# in the DAG by performing a topological traversal
traverse_dag_needs(final_dag)
return final_dag
def filter_dag(
dag: Dag, job_name_regex: Pattern, include_stage_regex: Pattern, exclude_stage_regex: Pattern
) -> Dag:
filtered_jobs: Dag = Dag({})
for (job, data) in dag.items():
if not job_name_regex.fullmatch(job):
continue
if not include_stage_regex.fullmatch(data["stage"]):
continue
if exclude_stage_regex.fullmatch(data["stage"]):
continue
filtered_jobs[job] = data
return filtered_jobs
def print_dag(dag: Dag, indentation: int = 0) -> None:
for job, data in sorted(dag.items()):
print(f"{' '*indentation}{job}:")
print_formatted_list(list(data['needs']), indentation=indentation+8)
def print_formatted_list(elements: list[str], indentation: int = 0) -> None:
"""
When a list of elements is going to be printed, if it is longer than one line, reformat it to be multiple
lines with a 'ls' command style.
:param elements: list of elements to be printed
:param indentation: number of spaces to be injected in front of each line
"""
if len(elements) == 0:
return
elements.sort()
try:
h_size = get_terminal_size().columns if sys.stdin.isatty() else DEFAULT_TERMINAL_SIZE
except OSError:
h_size = DEFAULT_TERMINAL_SIZE
if indentation + sum(len(element) for element in elements) + (len(elements)*2) < h_size: # fits in one line
print(f"{' '*indentation}{', '.join([element for element in elements])}")
return
column_separator_size = 2
column_width: int = len(max(elements, key=len)) + column_separator_size
n_columns: int = max((h_size - indentation) // column_width, 1)
step = (len(elements) // n_columns) + 1
rows = [elements[i::step] for i in range(step)]
for line in rows:
print(' '*indentation, end='')
for column in range(len(line)):
if line[column] is not None:
print(f"{line[column]:<{column_width}}", end='')
print()
def fetch_merged_yaml(gl_gql: GitlabGQL, params) -> dict[str, Any]:
params["content"] = dedent("""\
include:
- local: .gitlab-ci.yml
""")
raw_response = gl_gql.query("job_details.gql", params)
ci_config = raw_response["ciConfig"]
if merged_yaml := ci_config["mergedYaml"]:
return yaml.safe_load(merged_yaml)
if "errors" in ci_config:
for error in ci_config["errors"]:
print(error)
gl_gql.invalidate_query_cache()
raise ValueError(
"""
Could not fetch any content for merged YAML,
please verify if the git SHA exists in remote.
Maybe you forgot to `git push`? """
)
def recursive_fill(job, relationship_field, target_data, acc_data: dict, merged_yaml):
if relatives := job.get(relationship_field):
if isinstance(relatives, str):
relatives = [relatives]
for relative in relatives:
parent_job = merged_yaml[relative]
acc_data = recursive_fill(parent_job, acc_data, merged_yaml) # type: ignore
acc_data |= job.get(target_data, {})
return acc_data
def get_variables(job, merged_yaml, project_path, sha) -> dict[str, str]:
p = get_project_root_dir() / ".gitlab-ci" / "image-tags.yml"
image_tags = yaml.safe_load(p.read_text())
variables = image_tags["variables"]
variables |= merged_yaml["variables"]
variables |= job["variables"]
variables["CI_PROJECT_PATH"] = project_path
variables["CI_PROJECT_NAME"] = project_path.split("/")[1]
variables["CI_REGISTRY_IMAGE"] = "registry.freedesktop.org/${CI_PROJECT_PATH}"
variables["CI_COMMIT_SHA"] = sha
while recurse_among_variables_space(variables):
pass
return variables
# Based on: https://stackoverflow.com/a/2158532/1079223
def flatten(xs):
for x in xs:
if isinstance(x, Iterable) and not isinstance(x, (str, bytes)):
yield from flatten(x)
else:
yield x
def get_full_script(job) -> list[str]:
script = []
for script_part in ("before_script", "script", "after_script"):
script.append(f"# {script_part}")
lines = flatten(job.get(script_part, []))
script.extend(lines)
script.append("")
return script
def recurse_among_variables_space(var_graph) -> bool:
updated = False
for var, value in var_graph.items():
value = str(value)
dep_vars = []
if match := re.findall(r"(\$[{]?[\w\d_]*[}]?)", value):
all_dep_vars = [v.lstrip("${").rstrip("}") for v in match]
# print(value, match, all_dep_vars)
dep_vars = [v for v in all_dep_vars if v in var_graph]
for dep_var in dep_vars:
dep_value = str(var_graph[dep_var])
new_value = var_graph[var]
new_value = new_value.replace(f"${{{dep_var}}}", dep_value)
new_value = new_value.replace(f"${dep_var}", dep_value)
var_graph[var] = new_value
updated |= dep_value != new_value
return updated
def print_job_final_definition(job_name, merged_yaml, project_path, sha):
job = merged_yaml[job_name]
variables = get_variables(job, merged_yaml, project_path, sha)
print("# --------- variables ---------------")
for var, value in sorted(variables.items()):
print(f"export {var}={value!r}")
# TODO: Recurse into needs to get full script
# TODO: maybe create a extra yaml file to avoid too much rework
script = get_full_script(job)
print()
print()
print("# --------- full script ---------------")
print("\n".join(script))
if image := variables.get("MESA_IMAGE"):
print()
print()
print("# --------- container image ---------------")
print(image)
def from_sha_to_pipeline_iid(gl_gql: GitlabGQL, params) -> str:
result = gl_gql.query("pipeline_utils.gql", params)
return result["project"]["pipelines"]["nodes"][0]["iid"]
def parse_args() -> Namespace:
parser = ArgumentParser(
formatter_class=ArgumentDefaultsHelpFormatter,
description="CLI and library with utility functions to debug jobs via Gitlab GraphQL",
epilog=f"""Example:
{Path(__file__).name} --print-dag""",
)
parser.add_argument("-pp", "--project-path", type=str, default="mesa/mesa")
parser.add_argument("--sha", "--rev", type=str, default='HEAD')
parser.add_argument(
"--regex",
type=str,
required=False,
default=".*",
help="Regex pattern for the job name to be considered",
)
parser.add_argument(
"--include-stage",
type=str,
required=False,
default=".*",
help="Regex pattern for the stage name to be considered",
)
parser.add_argument(
"--exclude-stage",
type=str,
required=False,
default="^$",
help="Regex pattern for the stage name to be excluded",
)
mutex_group_print = parser.add_mutually_exclusive_group()
mutex_group_print.add_argument(
"--print-dag",
action="store_true",
help="Print job needs DAG",
)
mutex_group_print.add_argument(
"--print-merged-yaml",
action="store_true",
help="Print the resulting YAML for the specific SHA",
)
mutex_group_print.add_argument(
"--print-job-manifest",
metavar='JOB_NAME',
type=str,
help="Print the resulting job data"
)
parser.add_argument(
"--gitlab-token-file",
type=str,
default=get_token_from_default_dir(),
help="force GitLab token, otherwise it's read from $XDG_CONFIG_HOME/gitlab-token",
)
args = parser.parse_args()
args.gitlab_token = Path(args.gitlab_token_file).read_text().strip()
return args
def main():
args = parse_args()
gl_gql = GitlabGQL(token=args.gitlab_token)
sha = check_output(['git', 'rev-parse', args.sha]).decode('ascii').strip()
if args.print_dag:
iid = from_sha_to_pipeline_iid(gl_gql, {"projectPath": args.project_path, "sha": sha})
dag = create_job_needs_dag(
gl_gql, {"projectPath": args.project_path, "iid": iid}, disable_cache=True
)
dag = filter_dag(dag, re.compile(args.regex), re.compile(args.include_stage), re.compile(args.exclude_stage))
print_dag(dag)
if args.print_merged_yaml or args.print_job_manifest:
merged_yaml = fetch_merged_yaml(
gl_gql, {"projectPath": args.project_path, "sha": sha}
)
if args.print_merged_yaml:
print(yaml.dump(merged_yaml, indent=2))
if args.print_job_manifest:
print_job_final_definition(
args.print_job_manifest, merged_yaml, args.project_path, sha
)
if __name__ == "__main__":
main()
|