1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
/**************************************************************************
**
** Copyright (C) 1993 David E. Steward & Zbigniew Leyk, all rights reserved.
**
** Meschach Library
**
** This Meschach Library is provided "as is" without any express
** or implied warranty of any kind with respect to this software.
** In particular the authors shall not be liable for any direct,
** indirect, special, incidental or consequential damages arising
** in any way from use of the software.
**
** Everyone is granted permission to copy, modify and redistribute this
** Meschach Library, provided:
** 1. All copies contain this copyright notice.
** 2. All modified copies shall carry a notice stating who
** made the last modification and the date of such modification.
** 3. No charge is made for this software or works derived from it.
** This clause shall not be construed as constraining other software
** distributed on the same medium as this software, nor is a
** distribution fee considered a charge.
**
***************************************************************************/
/*
This file contains basic routines which are used by the functions
involving complex vectors.
These are the routines that should be modified in order to take
full advantage of specialised architectures (pipelining, vector
processors etc).
*/
static char *rcsid = "$Id: zmachine.c,v 1.1 1994/01/13 04:25:41 des Exp $";
#include <math.h>
#include "machine.h"
#include "zmatrix.h"
/* __zconj__ -- complex conjugate */
void __zconj__(zp,len)
complex *zp;
int len;
{
int i;
for ( i = 0; i < len; i++ )
zp[i].im = - zp[i].im;
}
/* __zip__ -- inner product
-- computes sum_i zp1[i].zp2[i] if flag == 0
sum_i zp1[i]*.zp2[i] if flag != 0 */
complex __zip__(zp1,zp2,len,flag)
complex *zp1, *zp2;
int flag, len;
{
complex sum;
int i;
sum.re = sum.im = 0.0;
if ( flag )
{
for ( i = 0; i < len; i++ )
{
sum.re += zp1[i].re*zp2[i].re + zp1[i].im*zp2[i].im;
sum.im += zp1[i].re*zp2[i].im - zp1[i].im*zp2[i].re;
}
}
else
{
for ( i = 0; i < len; i++ )
{
sum.re += zp1[i].re*zp2[i].re - zp1[i].im*zp2[i].im;
sum.im += zp1[i].re*zp2[i].im + zp1[i].im*zp2[i].re;
}
}
return sum;
}
/* __zmltadd__ -- scalar multiply and add i.e. complex saxpy
-- computes zp1[i] += s.zp2[i] if flag == 0
-- computes zp1[i] += s.zp2[i]* if flag != 0 */
void __zmltadd__(zp1,zp2,s,len,flag)
complex *zp1, *zp2, s;
int flag, len;
{
int i;
LongReal t_re, t_im;
if ( ! flag )
{
for ( i = 0; i < len; i++ )
{
t_re = zp1[i].re + s.re*zp2[i].re - s.im*zp2[i].im;
t_im = zp1[i].im + s.re*zp2[i].im + s.im*zp2[i].re;
zp1[i].re = t_re;
zp1[i].im = t_im;
}
}
else
{
for ( i = 0; i < len; i++ )
{
t_re = zp1[i].re + s.re*zp2[i].re + s.im*zp2[i].im;
t_im = zp1[i].im - s.re*zp2[i].im + s.im*zp2[i].re;
zp1[i].re = t_re;
zp1[i].im = t_im;
}
}
}
/* __zmlt__ scalar complex multiply array c.f. sv_mlt() */
void __zmlt__(zp,s,out,len)
complex *zp, s, *out;
register int len;
{
int i;
LongReal t_re, t_im;
for ( i = 0; i < len; i++ )
{
t_re = s.re*zp[i].re - s.im*zp[i].im;
t_im = s.re*zp[i].im + s.im*zp[i].re;
out[i].re = t_re;
out[i].im = t_im;
}
}
/* __zadd__ -- add complex arrays c.f. v_add() */
void __zadd__(zp1,zp2,out,len)
complex *zp1, *zp2, *out;
int len;
{
int i;
for ( i = 0; i < len; i++ )
{
out[i].re = zp1[i].re + zp2[i].re;
out[i].im = zp1[i].im + zp2[i].im;
}
}
/* __zsub__ -- subtract complex arrays c.f. v_sub() */
void __zsub__(zp1,zp2,out,len)
complex *zp1, *zp2, *out;
int len;
{
int i;
for ( i = 0; i < len; i++ )
{
out[i].re = zp1[i].re - zp2[i].re;
out[i].im = zp1[i].im - zp2[i].im;
}
}
/* __zzero__ -- zeros an array of complex numbers */
void __zzero__(zp,len)
complex *zp;
int len;
{
/* if a Real precision zero is equivalent to a string of nulls */
MEM_ZERO((char *)zp,len*sizeof(complex));
/* else, need to zero the array entry by entry */
/******************************
while ( len-- )
{
zp->re = zp->im = 0.0;
zp++;
}
******************************/
}
|