1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
/**************************************************************************
**
** Copyright (C) 1993 David E. Steward & Zbigniew Leyk, all rights reserved.
**
** Meschach Library
**
** This Meschach Library is provided "as is" without any express
** or implied warranty of any kind with respect to this software.
** In particular the authors shall not be liable for any direct,
** indirect, special, incidental or consequential damages arising
** in any way from use of the software.
**
** Everyone is granted permission to copy, modify and redistribute this
** Meschach Library, provided:
** 1. All copies contain this copyright notice.
** 2. All modified copies shall carry a notice stating who
** made the last modification and the date of such modification.
** 3. No charge is made for this software or works derived from it.
** This clause shall not be construed as constraining other software
** distributed on the same medium as this software, nor is a
** distribution fee considered a charge.
**
***************************************************************************/
/*
Files for matrix computations
Givens operations file. Contains routines for calculating and
applying givens rotations for/to vectors and also to matrices by
row and by column.
*/
/* givens.c 1.2 11/25/87 */
static char rcsid[] = "$Id: givens.c,v 1.3 1995/03/27 15:41:15 des Exp $";
#include <stdio.h>
#include <math.h>
#include "matrix.h"
#include "matrix2.h"
/* givens -- returns c,s parameters for Givens rotation to
eliminate y in the vector [ x y ]' */
void givens(x,y,c,s)
double x,y;
Real *c,*s;
{
Real norm;
norm = sqrt(x*x+y*y);
if ( norm == 0.0 )
{ *c = 1.0; *s = 0.0; } /* identity */
else
{ *c = x/norm; *s = y/norm; }
}
/* rot_vec -- apply Givens rotation to x's i & k components */
VEC *rot_vec(x,i,k,c,s,out)
VEC *x,*out;
u_int i,k;
double c,s;
{
Real temp;
if ( x==VNULL )
error(E_NULL,"rot_vec");
if ( i >= x->dim || k >= x->dim )
error(E_RANGE,"rot_vec");
out = v_copy(x,out);
/* temp = c*out->ve[i] + s*out->ve[k]; */
temp = c*v_entry(out,i) + s*v_entry(out,k);
/* out->ve[k] = -s*out->ve[i] + c*out->ve[k]; */
v_set_val(out,k,-s*v_entry(out,i)+c*v_entry(out,k));
/* out->ve[i] = temp; */
v_set_val(out,i,temp);
return (out);
}
/* rot_rows -- premultiply mat by givens rotation described by c,s */
MAT *rot_rows(mat,i,k,c,s,out)
MAT *mat,*out;
u_int i,k;
double c,s;
{
u_int j;
Real temp;
if ( mat==(MAT *)NULL )
error(E_NULL,"rot_rows");
if ( i >= mat->m || k >= mat->m )
error(E_RANGE,"rot_rows");
if ( mat != out )
out = m_copy(mat,m_resize(out,mat->m,mat->n));
for ( j=0; j<mat->n; j++ )
{
/* temp = c*out->me[i][j] + s*out->me[k][j]; */
temp = c*m_entry(out,i,j) + s*m_entry(out,k,j);
/* out->me[k][j] = -s*out->me[i][j] + c*out->me[k][j]; */
m_set_val(out,k,j, -s*m_entry(out,i,j) + c*m_entry(out,k,j));
/* out->me[i][j] = temp; */
m_set_val(out,i,j, temp);
}
return (out);
}
/* rot_cols -- postmultiply mat by givens rotation described by c,s */
MAT *rot_cols(mat,i,k,c,s,out)
MAT *mat,*out;
u_int i,k;
double c,s;
{
u_int j;
Real temp;
if ( mat==(MAT *)NULL )
error(E_NULL,"rot_cols");
if ( i >= mat->n || k >= mat->n )
error(E_RANGE,"rot_cols");
if ( mat != out )
out = m_copy(mat,m_resize(out,mat->m,mat->n));
for ( j=0; j<mat->m; j++ )
{
/* temp = c*out->me[j][i] + s*out->me[j][k]; */
temp = c*m_entry(out,j,i) + s*m_entry(out,j,k);
/* out->me[j][k] = -s*out->me[j][i] + c*out->me[j][k]; */
m_set_val(out,j,k, -s*m_entry(out,j,i) + c*m_entry(out,j,k));
/* out->me[j][i] = temp; */
m_set_val(out,j,i,temp);
}
return (out);
}
|