1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
#ifndef IMG_IMAGE_H_
#define IMG_IMAGE_H_
/*! \file img_image.h
\brief definition of the generic image class
This header contains the image class definition.
*/
#include "img/img_base.h"
#include "img/img_attributes.h"
namespace img {
/*! \brief the generic image class
The image class is templated over three parameters:
- The number of the image channels: an image can have from one to an arbitrary large number of channels, i.e. values per pixel. The default is to have 3 color channels.
- The type of the values: the image stores the pixels' values in floating-point variables. The default is to have double floating point precision, the other option is to have single floating point precision. Static assertions are used to ensure that the value type of an image is a floating point number.
- The safeness: the image throws runtime exceptions when its member functions are called with "wrong" parameters. This behavior, active by default, can be disabled in order to speed up the computation. The parameter correctness is also independently checked with the dynamic assertions mechanism that can be disabled by compiling the code in "release" mode.
The image data is packed by the pixel, to optimize multichannel processing efficiency. The image class interface is restricted to pixel and metadata access, processing and I/O are entirely delegated to external functions. The data is accessible in multiple ways: value and pixel wise, using float coordinates with nearest and bilinear interpolation, viewing the image with clamping, direct access to the data and so on.
An auxiliary structured attribute contains all the metadata information, currently this data consists in the specification of the numeric range of the values, the image color space, the white point and the gamma compression of the image. The various functions checks these data before processing, failing if the image is not compatible with the operation in course.
*/
template<int Channels=3, typename ScalarType=double, bool Safe=true>
class Image //TODO: Safe=false prima di mettere in vcg
{
private:
// Data is private but controlled data wiews are
// accessible from accessors
/// width of the image
int _width;
/// height of the image
int _height;
/// data buffer
ScalarType *_data;
// constructors
public:
/// the auxiliary structured attribute that contains all the metadata information.
ImgAttributes<ScalarType> attributes;
/*! \brief default image constructor
Creates a 0 x 0 pixel image with no data and default attributes
*/
Image() // creates a 0 x 0 image
:_width(0),_height(0),_data(NULL),attributes()
{
STATIC_ASSERT( Channels>0 );
STATIC_FLOAT_OR_DOUBLE_TYPECHECK( ScalarType );
}
/*! \brief (deep) copy constructor when all template parameters matches
An explicit copy constructor is needed because when all template parameters matches the templated copy constructor is not consideredand and a wrong copy constructor is synthetized by compiler.
\param image the image to be copied
*/
Image(const Image<Channels,ScalarType,Safe> &image) // copy constructor (deep copy)
{
STATIC_ASSERT( Channels>0 );
STATIC_FLOAT_OR_DOUBLE_TYPECHECK( ScalarType );
assert(image._width > 0);
assert(image._height > 0);
assert(image._data != NULL);
if(Safe) {
if(image._width <= 0) throw ImageException("Image(Image): Nonpositive width");
if(image._height <= 0) throw ImageException("Image(Image): Nonpositive height");
if(image._data == NULL) throw ImageException("Image(Image): NULL data");
}
_width = image._width;
_height = image._height;
_data = new ScalarType[Channels * _width * _height];
attributes=image.attributes;
memcpy(_data, image._data, sizeof(ScalarType) * Channels * _width * _height);
}
/*! \brief (deep) copy constructor when some template parameters differs
\param image the image to be copied
*/
template<typename OtherScalarType, bool OtherSafe>
Image(const Image<Channels,OtherScalarType,OtherSafe> &image) // templated copy constructor (deep copy)
:_width(0),_height(0),_data(NULL)
{
STATIC_ASSERT( Channels>0 );
STATIC_FLOAT_OR_DOUBLE_TYPECHECK( ScalarType );
assert(image._width > 0);
assert(image._height > 0);
assert(image._data != NULL);
if(Safe || OtherSafe) {
if(image._width <= 0) throw ImageException("Image(Image): Nonpositive width");
if(image._height <= 0) throw ImageException("Image(Image): Nonpositive height");
if(image._data == NULL) throw ImageException("Image(Image): NULL data");
}
_width = image._width;
_height = image._height;
_data = new ScalarType[Channels * _width * _height];
attributes=image.attributes;
if(typeid( ScalarType ) == typeid( OtherScalarType ))
memcpy(_data, image._data, sizeof(ScalarType) * Channels * _width * _height);
else
for(int offset=0;offset< Channels * _width * _height; ++offset)
_data[offset] = static_cast<ScalarType>(image._data[offset]);
}
/*! \brief blank image constructor
Creates an arg_width x arg_height pixel image with 0-valued data and default attributes
\param arg_width the width of the blank image
\param arg_height the height of the blank image
*/
Image(int arg_width,int arg_height)
:_width(arg_width),_height(arg_height),_data(NULL),attributes()
{
STATIC_ASSERT( Channels>0 );
STATIC_FLOAT_OR_DOUBLE_TYPECHECK( ScalarType );
assert(arg_width>0);
assert(arg_height>0);
if(Safe) {
if(arg_width <= 0) throw ImageException("Image(int,int): Nonpositive width");
if(arg_height <= 0) throw ImageException("Image(int,int): Nonpositive height");
}
_data = new ScalarType[Channels * _width * _height];
for(int offset=0;offset< Channels * _width * _height; ++offset)
_data[offset] = 0.0f;
}
/// the destructor
~Image()
{
attributes.reset();
if(_data!=NULL){
delete [] _data;
_data=NULL;
}
}
// public functions
public:
/*! \brief assignment operator (deep copy)
\param image the image to be assigned to this instance
\return a pointer to this instance
*/
template<typename OtherScalarType, bool OtherSafe>
inline Image< Channels,ScalarType,Safe> & operator =(const Image<Channels,OtherScalarType,OtherSafe> &image)
{
assert(image._width > 0);
assert(image._height > 0);
assert(image._data != NULL);
if(Safe || OtherSafe) {
if(image._width <= 0) throw ImageException("operator =: Nonpositive width");
if(image._height <= 0) throw ImageException("operator =: Nonpositive height");
if(image._data == NULL) throw ImageException("operator =: NULL data");
}
_width = image._width;
_height = image._height;
_data = new ScalarType[Channels * _width * _height];
attributes=image.attributes;
if(typeid( ScalarType ) == typeid( OtherSafe ))
memcpy(_data, image._data, sizeof(ScalarType) * Channels * _width * _height);
else
for(int offset=0;offset < Channels * _width * _height; ++offset)
_data[offset] = static_cast<ScalarType>(image._data[offset]);
return *this;
}
/*! \brief blanks and change the image dimensions
Delete the current image data and create an arg_width x arg_height pixel image with 0-valued data and default attributes
\param arg_width the width of the blank image
\param arg_height the height of the blank image
*/
inline void setZero(int arg_width, int arg_height)
{
assert(arg_width>0);
assert(arg_height>0);
if(Safe) {
if(arg_width <= 0) throw ImageException("setZero: Nonpositive width");
if(arg_height <= 0) throw ImageException("setZero: Nonpositive height");
}
if(_data!=NULL){
delete [] _data;
_data=NULL;
}
_width = arg_width;
_height = arg_height;
_data = new ScalarType[Channels * _width * _height];
attributes.reset();
for(int offset=0;offset< Channels * _width * _height; ++offset)
_data[offset] = 0.0f;
}
/*! \brief delete the image data
Delete the current image data and create an 0 x 0 pixel image with no data.
*/
inline void deleteData()
{
if(_data!=NULL){
delete [] _data;
_data=NULL;
}
_width = 0;
_height = 0;
}
/*! \brief get all the values of a pixel
\param x the horizontal coordinate of the pixel
\param y the vertical coordinate of the pixel
\param ret_pixel return parameter that is filled with the pixel values
*/
inline void getPixel(int x, int y, ScalarType (& ret_pixel)[Channels]) const
{
assert( _data != NULL );
assert( x >= 0 && x < _width );
assert( y >= 0 && y < _height );
if( Safe ){
if ( _data == NULL ) throw ImageException("getPixel: NULL data");
if ( !( x >= 0 && x < _width ) ) throw ImageException("getPixel: x out of bounds");
if ( !( y >= 0 && y < _height ) ) throw ImageException("getPixel: y out of bounds");
}
for (int channel=0;channel<Channels;++channel)
ret_pixel[channel] = _data[ (x + y * _width) * Channels + channel ];
}
/*! \brief set all the values of a pixel
\param x the horizontal coordinate of the pixel
\param y the vertical coordinate of the pixel
\param pixel the pixel values that are assigned to the pixel
*/
inline void setPixel(int x, int y, const ScalarType (& pixel)[Channels])
{
assert( _data != NULL );
assert( x >= 0 && x < _width );
assert( y >= 0 && y < _height );
if( Safe ){
if ( _data == NULL ) throw ImageException("setPixel: NULL data");
if ( !( x >= 0 && x < _width ) ) throw ImageException("setPixel: x out of bounds");
if ( !( y >= 0 && y < _height ) ) throw ImageException("setPixel: y out of bounds");
}
for (int channel=0;channel<Channels;++channel)
_data[ (x + y * _width) * Channels + channel ] = pixel[channel];
}
/*! \brief get a single value of a pixel
\param x the horizontal coordinate of the pixel
\param y the vertical coordinate of the pixel
\param channel the channel index
\return the value of the channel at the pixel
*/
inline ScalarType getValue(int x, int y, int channel) const
{
assert( _data != NULL );
assert( x >= 0 && x < _width );
assert( y >= 0 && y < _height );
assert( channel >=0 && channel < Channels );
if( Safe ){
if ( _data == NULL ) throw ImageException("getFloat: NULL data");
if ( !( x >= 0 && x < _width ) ) throw ImageException("getFloat: x out of bounds");
if ( !( y >= 0 && y < _height ) ) throw ImageException("getFloat: y out of bounds");
if ( !( channel >=0 && channel < Channels ) ) throw ImageException("channel out of bounds");
}
return _data[ (x + y * _width) * Channels + channel ];
}
/*! \brief set a single value of a pixel
\param x the horizontal coordinate of the pixel
\param y the vertical coordinate of the pixel
\param channel the channel index
\param value the value that is assigned to the channel at the pixel
*/
inline void setValue(int x, int y, int channel, ScalarType value)
{
assert( _data != NULL );
assert( x >= 0 && x < _width );
assert( y >= 0 && y < _height );
assert( channel >=0 && channel < Channels );
if( Safe ){
if ( _data == NULL ) throw ImageException("setFloat: NULL data");
if ( !( x >= 0 && x < _width ) ) throw ImageException("setFloat: x out of bounds");
if ( !( y >= 0 && y < _height ) ) throw ImageException("setFloat: y out of bounds");
if ( !( channel >=0 && channel < Channels ) ) throw ImageException("channel out of bounds");
}
_data[(x + y * _width) * Channels + channel] = value;
}
/*! \brief get all the values of a pixel, clamping if the coordinates are out of bounds
\param x the horizontal coordinate of the pixel
\param y the vertical coordinate of the pixel
\param ret_pixel return parameter that is filled with the pixel values
*/
inline void getPixelAsClamped(int x, int y, ScalarType (& ret_pixel)[Channels]) const
{
getPixel(x<0?0:(x<_width?x:_width-1), y<0?0:(y<_height?y:_height-1), ret_pixel);
}
/*! \brief get a single value of a pixel, clamping if the coordinates are out of bounds
\param x the horizontal coordinate of the pixel
\param y the vertical coordinate of the pixel
\param channel the channel index
\return the value of the channel at the pixel
*/
inline float getValueAsClamped(int x, int y, int channel) const
{
return getValue(x<0?0:(x<_width?x:_width-1), y<0?0:(y<_height?y:_height-1),channel);
}
/*! \brief get all the values of a pixel, rounding the floating coordinates to the nearest pixel
\param x the horizontal coordinate of the pixel
\param y the vertical coordinate of the pixel
\param ret_pixel return parameter that is filled with the pixel values
*/
inline void nearestPixel(float x, float y, ScalarType (& ret_pixel)[Channels]) const
{
getPixel(static_cast<int>(floor(x+0.5f)),static_cast<int>(floor(y+0.5f)), ret_pixel);
}
///// chi gli serve se la implementa, ora non c'ho tempo
// inline void bilinearPixel(float x, float y, const ScalarType[] &pixel) const
// {
// assert( _data != NULL );
// assert( x >= 0.0f && x <= _width-1.0f );
// assert( y >= 0.0f && y <= _height-1.0f );
// if( SAFE ){
// if ( _data == NULL ) throw ImageException("bilinearPixel: NULL data");
// if ( !( x >= 0.0f && x <= _width-1.0f ) ) throw ImageException("bilinearPixel: x out of bounds");
// if ( !( y >= 0.0f && y <= _height-1.0f ) ) throw ImageException("bilinearPixel: y out of bounds");
// }
//
// int x1 = static_cast<int>(floor(x));
// int y1 = static_cast<int>(floor(y));
// float a = 1.0f;
// float b = 1.0f;
//
// if( x1 == _width )
// x1--;
// else
// a = x - x1;
// if( y1 == _height )
// y1--;
// else
// b = y - y1;
//
// float a1 = (1.0f - a);
// float b1 = (1.0f - b);
//
// int i = x1 + y1 * _width;
//
// return _data[i] * a1 * b1
// + _data[i + 1] * a * b1
// + _data[i + _width] * a1 * b +
// _data[i + _width + 1] * a * b;
// }
// accessors
public:
/*! \brief get the width of the image
\return the width of the image
*/
inline int width() const
{
return _width;
}
/*! \brief get the height of the image
\return the height of the image
*/
inline int height() const
{
return _height;
}
/*! \brief set the width of the image
\warning changing the image size without changing the data buffer accordingly can lead to memory errors
\param width the new width of the image
*/
inline void setWidth(int width)
{
assert(width > 0);
if(Safe){
if(width <= 0) throw ImageException("setWidth: Nonpositive width");
}
_width=width;
}
/*! \brief set the height of the image
\warning changing the image size without changing the data buffer accordingly can lead to memory errors
\param height the new height of the image
*/
inline void setHeight(int height)
{
assert(height > 0);
if(Safe){
if(height <= 0) throw ImageException("setHeight: Nonpositive height");
}
_height=height;
}
/*! \brief get a const pointer to the image databuffer
\warning this function exposes the internal structure of the image, mind your accesses.
\return a const pointer to the image databuffer
*/
inline ScalarType* dataValues() const
{
return _data;
}
/*! \brief get the size of the image databuffer
\return the size of the image databuffer
*/
inline int dataValuesSize() const
{
return _width * _height * Channels;
}
/*! \brief set the image databuffer
\warning this function modifies the internal structure of the image!
\param data a pointer to the new image databuffer
*/
inline void setValues(ScalarType* data)
{
assert(data!=NULL);
if(Safe){
if(data == NULL) throw ImageException("setValues: NULL data");
}
_data = data;
}
/*! \brief checks if the given coordinates are inside the image bounds
\param x the horizontal coordinate
\param y the vertical coordinate
\return true if the given coordinates are inside the image bounds, false otherwise
*/
inline bool isInside(int x, int y) const
{
return x >= 0 && x < _width && y >= 0 && y < _height;
}
/*! \brief checks if the given float coordinates are inside the image bounds
\param x the horizontal coordinate
\param y the vertical coordinate
\return true if the given coordinates are inside the image bounds, false otherwise
*/
inline bool isInside(float x, float y) const
{
return x >= 0.0f && x <= _width-1.0f && y >= 0.0f && y <= _height-1.0f;
}
/*! \brief checks if the image has been initialized
\return true if the data is not null and the minimun side is longer than 0 pixel, false otherwise
*/
inline bool isValid() const
{
return _data != NULL && _width > 0 && _height > 0;
}
/*! \brief get the number of channels of the image
\return the number of channels of the image
*/
inline int channels() const
{
return Channels;
}
/*! \brief set a value in the image databuffer
\warning this function modifies the internal structure of the image!
\param i the index of the databuffer
\param value the value to set in the i position of the databuffer
*/
inline void setRawValue(int i, ScalarType value)
{
_data[i] = value;
}
};
} //end namespace img
#endif /*IMG_IMAGE_H_*/
|