1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/***************************************************************************
$Log: not supported by cvs2svn $
Revision 1.9 2006/09/11 16:11:39 marfr960
Added const to declarations of the overloaded (operators *).
Otherwise the * operator would always attempt to convert any type of data passed as an argument to Point3<TYPE>
Revision 1.8 2006/08/23 15:24:45 marfr960
Copy constructor : faster memcpy instead of slow 'for' cycle
empty constructor
Revision 1.7 2006/04/29 10:26:04 fiorin
Added some utility methods (swapping of columns and rows, matrix-vector multiplication)
Revision 1.6 2006/04/11 08:09:35 zifnab1974
changes necessary for gcc 3.4.5 on linux 64bit. Please take note of case-sensitivity of filenames
Revision 1.5 2005/12/12 11:25:00 ganovelli
added diagonal matrix, outer produce and namespace
***************************************************************************/
#ifndef MATRIX_VCGLIB
#define MATRIX_VCGLIB
#include <stdio.h>
#include <math.h>
#include <memory.h>
#include <assert.h>
#include <algorithm>
#include <vcg/space/point.h>
#include <vcg/math/lin_algebra.h>
namespace vcg{
namespace ndim{
/** \addtogroup math */
/* @{ */
/*!
* This class represent a diagonal <I>m</I>�<I>m</I> matrix.
*/
class MatrixDiagBase{public:
virtual const int & Dimension()const =0;
virtual const float operator[](const int & i)const = 0;
};
template<int N, class S>
class MatrixDiag: public Point<N,S>, public MatrixDiagBase{
public:
const int & Dimension() const {return N;}
MatrixDiag(const Point<N,S>&p):Point<N,S>(p){}
};
/*!
* This class represent a generic <I>m</I>�<I>n</I> matrix. The class is templated over the scalar type field.
* @param TYPE (Templete Parameter) Specifies the ScalarType field.
*/
template<class TYPE>
class Matrix
{
public:
typedef TYPE ScalarType;
/*!
* Default constructor
* All the elements are initialized to zero.
* \param m the number of matrix rows
* \param n the number of matrix columns
*/
Matrix(unsigned int m, unsigned int n)
{
_rows = m;
_columns = n;
_data = new ScalarType[m*n];
memset(_data, 0, m*n*sizeof(ScalarType));
};
/*!
* Constructor
* The matrix elements are initialized with the values of the elements in \i values.
* \param m the number of matrix rows
* \param n the number of matrix columns
* \param values the values of the matrix elements
*/
Matrix(unsigned int m, unsigned int n, TYPE *values)
{
_rows = m;
_columns = n;
unsigned int dim = m*n;
_data = new ScalarType[dim];
memcpy(_data, values, dim*sizeof(ScalarType));
//unsigned int i;
//for (i=0; i<_rows*_columns; i++)
// _data[i] = values[i];
};
/*!
* Empty constructor
* Just create the object
*/
Matrix()
{
_rows = 0;
_columns = 0;
_data = NULL;
};
/*!
* Copy constructor
* The matrix elements are initialized with the value of the corresponding element in \i m
* \param m the matrix to be copied
*/
Matrix(const Matrix<TYPE> &m)
{
_rows = m._rows;
_columns = m._columns;
_data = new ScalarType[_rows*_columns];
unsigned int dim = _rows * _columns;
memcpy(_data, m._data, dim * sizeof(ScalarType));
// for (unsigned int i=0; i<_rows*_columns; i++)
// _data[i] = m._data[i];
};
/*!
* Default destructor
*/
~Matrix()
{
delete []_data;
};
/*!
* Number of columns
*/
inline unsigned int ColumnsNumber() const
{
return _columns;
};
/*!
* Number of rows
*/
inline unsigned int RowsNumber() const
{
return _rows;
};
/*!
* Equality operator.
* \param m
* \return true iff the matrices have same size and its elements have same values.
*/
bool operator==(const Matrix<TYPE> &m) const
{
if (_rows==m._rows && _columns==m._columns)
{
bool result = true;
for (unsigned int i=0; i<_rows*_columns && result; i++)
result = (_data[i]==m._data[i]);
return result;
}
return false;
};
/*!
* Inequality operator
* \param m
* \return true iff the matrices have different size or if their elements have different values.
*/
bool operator!=(const Matrix<TYPE> &m) const
{
if (_rows==m._rows && _columns==m._columns)
{
bool result = false;
for (unsigned int i=0; i<_rows*_columns && !result; i++)
result = (_data[i]!=m._data[i]);
return result;
}
return true;
};
/*!
* Return the element stored in the <I>i</I>-th rows at the <I>j</I>-th column
* \param i the row index
* \param j the column index
* \return the element
*/
inline TYPE ElementAt(unsigned int i, unsigned int j)
{
assert(i>=0 && i<_rows);
assert(j>=0 && j<_columns);
return _data[i*_columns+j];
};
/*!
* Calculate and return the matrix determinant (Laplace)
* \return the matrix determinant
*/
TYPE Determinant() const
{
assert(_rows == _columns);
switch (_rows)
{
case 2:
{
return _data[0]*_data[3]-_data[1]*_data[2];
break;
};
case 3:
{
return _data[0]*(_data[4]*_data[8]-_data[5]*_data[7]) -
_data[1]*(_data[3]*_data[8]-_data[5]*_data[6]) +
_data[2]*(_data[3]*_data[7]-_data[4]*_data[6]) ;
break;
};
default:
{
// da migliorare: si puo' cercare la riga/colonna con maggior numero di zeri
ScalarType det = 0;
for (unsigned int j=0; j<_columns; j++)
if (_data[j]!=0)
det += _data[j]*this->Cofactor(0, j);
return det;
}
};
};
/*!
* Return the cofactor <I>A<SUB>i,j</SUB></I> of the <I>a<SUB>i,j</SUB></I> element
* \return ...
*/
TYPE Cofactor(unsigned int i, unsigned int j) const
{
assert(_rows == _columns);
assert(_rows>2);
TYPE *values = new TYPE[(_rows-1)*(_columns-1)];
unsigned int u, v, p, q, s, t;
for (u=0, p=0, s=0, t=0; u<_rows; u++, t+=_rows)
{
if (i==u)
continue;
for (v=0, q=0; v<_columns; v++)
{
if (j==v)
continue;
values[s+q] = _data[t+v];
q++;
}
p++;
s+=(_rows-1);
}
Matrix<TYPE> temp(_rows-1, _columns-1, values);
return (pow(TYPE(-1.0), TYPE(i+j))*temp.Determinant());
};
/*!
* Subscript operator:
* \param i the index of the row
* \return a reference to the <I>i</I>-th matrix row
*/
inline TYPE* operator[](const unsigned int i)
{
assert(i<_rows);
return _data + i*_columns;
};
/*!
* Const subscript operator
* \param i the index of the row
* \return a reference to the <I>i</I>-th matrix row
*/
inline const TYPE* operator[](const unsigned int i) const
{
assert(i<_rows);
return _data + i*_columns;
};
/*!
* Get the <I>j</I>-th column on the matrix.
* \param j the column index.
* \return the reference to the column elements. This pointer must be deallocated by the caller.
*/
TYPE* GetColumn(const unsigned int j)
{
assert(j>=0 && j<_columns);
ScalarType *v = new ScalarType[_columns];
unsigned int i, p;
for (i=0, p=j; i<_rows; i++, p+=_columns)
v[i] = _data[p];
return v;
};
/*!
* Get the <I>i</I>-th row on the matrix.
* \param i the column index.
* \return the reference to the row elements. This pointer must be deallocated by the caller.
*/
TYPE* GetRow(const unsigned int i)
{
assert(i>=0 && i<_rows);
ScalarType *v = new ScalarType[_rows];
unsigned int j, p;
for (j=0, p=i*_columns; j<_columns; j++, p++)
v[j] = _data[p];
return v;
};
/*!
* Swaps the values of the elements between the <I>i</I>-th and the <I>j</I>-th column.
* \param i the index of the first column
* \param j the index of the second column
*/
void SwapColumns(const unsigned int i, const unsigned int j)
{
assert(0<=i && i<_columns);
assert(0<=j && j<_columns);
if (i==j)
return;
unsigned int r, e0, e1;
for (r=0, e0=i, e1=j; r<_rows; r++, e0+=_columns, e1+=_columns)
std::swap(_data[e0], _data[e1]);
};
/*!
* Swaps the values of the elements between the <I>i</I>-th and the <I>j</I>-th row.
* \param i the index of the first row
* \param j the index of the second row
*/
void SwapRows(const unsigned int i, const unsigned int j)
{
assert(0<=i && i<_rows);
assert(0<=j && j<_rows);
if (i==j)
return;
unsigned int r, e0, e1;
for (r=0, e0=i*_columns, e1=j*_columns; r<_columns; r++, e0++, e1++)
std::swap(_data[e0], _data[e1]);
};
/*!
* Assignment operator
* \param m ...
*/
Matrix<TYPE>& operator=(const Matrix<TYPE> &m)
{
if (this != &m)
{
assert(_rows == m._rows);
assert(_columns == m._columns);
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] = m._data[i];
}
return *this;
};
/*!
* Adds a matrix <I>m</I> to this matrix.
* \param m reference to matrix to add to this
* \return the matrix sum.
*/
Matrix<TYPE>& operator+=(const Matrix<TYPE> &m)
{
assert(_rows == m._rows);
assert(_columns == m._columns);
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] += m._data[i];
return *this;
};
/*!
* Subtracts a matrix <I>m</I> to this matrix.
* \param m reference to matrix to subtract
* \return the matrix difference.
*/
Matrix<TYPE>& operator-=(const Matrix<TYPE> &m)
{
assert(_rows == m._rows);
assert(_columns == m._columns);
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] -= m._data[i];
return *this;
};
/*!
* (Modifier) Add to each element of this matrix the scalar constant <I>k</I>.
* \param k the scalar constant
* \return the modified matrix
*/
Matrix<TYPE>& operator+=(const TYPE k)
{
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] += k;
return *this;
};
/*!
* (Modifier) Subtract from each element of this matrix the scalar constant <I>k</I>.
* \param k the scalar constant
* \return the modified matrix
*/
Matrix<TYPE>& operator-=(const TYPE k)
{
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] -= k;
return *this;
};
/*!
* (Modifier) Multiplies each element of this matrix by the scalar constant <I>k</I>.
* \param k the scalar constant
* \return the modified matrix
*/
Matrix<TYPE>& operator*=(const TYPE k)
{
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] *= k;
return *this;
};
/*!
* (Modifier) Divides each element of this matrix by the scalar constant <I>k</I>.
* \param k the scalar constant
* \return the modified matrix
*/
Matrix<TYPE>& operator/=(const TYPE k)
{
assert(k!=0);
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] /= k;
return *this;
};
/*!
* Matrix multiplication: calculates the cross product.
* \param m reference to the matrix to multiply by
* \return the matrix product
*/
Matrix<TYPE> operator*(const Matrix<TYPE> &m) const
{
assert(_columns == m._rows);
Matrix<TYPE> result(_rows, m._columns);
unsigned int i, j, k, p, q, r;
for (i=0, p=0, r=0; i<result._rows; i++, p+=_columns, r+=result._columns)
for (j=0; j<result._columns; j++)
{
ScalarType temp = 0;
for (k=0, q=0; k<_columns; k++, q+=m._columns)
temp+=(_data[p+k]*m._data[q+j]);
result._data[r+j] = temp;
}
return result;
};
/*!
* Matrix-Vector product. Computes the product of the matrix by the vector v.
* \param v reference to the vector to multiply by
* \return the matrix-vector product. This pointer must be deallocated by the caller
*/
ScalarType* operator*(const ScalarType v[]) const
{
ScalarType *result = new ScalarType[_rows];
memset(result, 0, _rows*sizeof(ScalarType));
unsigned int r, c, i;
for (r=0, i=0; r<_rows; r++)
for (c=0; c<_columns; c++, i++)
result[r] += _data[i]*v[c];
return result;
};
/*!
* Matrix multiplication: calculates the cross product.
* \param reference to the matrix to multiply by
* \return the matrix product
*/
template <int N,int M>
void DotProduct(Point<N,TYPE> &m,Point<M,TYPE> &result)
{
unsigned int i, j, p, r;
for (i=0, p=0, r=0; i<M; i++)
{ result[i]=0;
for (j=0; j<N; j++)
result[i]+=(*this)[i][j]*m[j];
}
};
/*!
* Matrix multiplication by a diagonal matrix
*/
Matrix<TYPE> operator*(const MatrixDiagBase &m) const
{
assert(_columns == _rows);
assert(_columns == m.Dimension());
int i,j;
Matrix<TYPE> result(_rows, _columns);
for (i=0; i<result._rows; i++)
for (j=0; j<result._columns; j++)
result[i][j]*= m[j];
return result;
};
/*!
* Matrix from outer product.
*/
template <int N, int M>
void OuterProduct(const Point<N,TYPE> a, const Point< M,TYPE> b)
{
assert(N == _rows);
assert(M == _columns);
Matrix<TYPE> result(_rows,_columns);
unsigned int i, j;
for (i=0; i<result._rows; i++)
for (j=0; j<result._columns; j++)
(*this)[i][j] = a[i] * b[j];
};
/*!
* Matrix-vector multiplication.
* \param reference to the 3-dimensional vector to multiply by
* \return the resulting vector
*/
Point3<TYPE> operator*(Point3<TYPE> &p) const
{
assert(_columns==3 && _rows==3);
vcg::Point3<TYPE> result;
result[0] = _data[0]*p[0]+_data[1]*p[1]+_data[2]*p[2];
result[1] = _data[3]*p[0]+_data[4]*p[1]+_data[5]*p[2];
result[2] = _data[6]*p[0]+_data[7]*p[1]+_data[8]*p[2];
return result;
};
/*!
* Scalar sum.
* \param k
* \return the resultant matrix
*/
Matrix<TYPE> operator+(const TYPE k)
{
Matrix<TYPE> result(_rows, _columns);
for (unsigned int i=0; i<_rows*_columns; i++)
result._data[i] = _data[i]+k;
return result;
};
/*!
* Scalar difference.
* \param k
* \return the resultant matrix
*/
Matrix<TYPE> operator-(const TYPE k)
{
Matrix<TYPE> result(_rows, _columns);
for (unsigned int i=0; i<_rows*_columns; i++)
result._data[i] = _data[i]-k;
return result;
};
/*!
* Negate all matrix elements
* \return the modified matrix
*/
Matrix<TYPE> operator-() const
{
Matrix<TYPE> result(_rows, _columns, _data);
for (unsigned int i=0; i<_columns*_rows; i++)
result._data[i] = -1*_data[i];
return result;
};
/*!
* Scalar multiplication.
* \param k value to multiply every member by
* \return the resultant matrix
*/
Matrix<TYPE> operator*(const TYPE k) const
{
Matrix<TYPE> result(_rows, _columns);
for (unsigned int i=0; i<_rows*_columns; i++)
result._data[i] = _data[i]*k;
return result;
};
/*!
* Scalar division.
* \param k value to divide every member by
* \return the resultant matrix
*/
Matrix<TYPE> operator/(const TYPE k)
{
Matrix<TYPE> result(_rows, _columns);
for (unsigned int i=0; i<_rows*_columns; i++)
result._data[i] = _data[i]/k;
return result;
};
/*!
* Set all the matrix elements to zero.
*/
void SetZero()
{
for (unsigned int i=0; i<_rows*_columns; i++)
_data[i] = ScalarType(0.0);
};
/*!
* Set the matrix to identity.
*/
void SetIdentity()
{
assert(_rows==_columns);
for (unsigned int i=0; i<_rows; i++)
for (unsigned int j=0; j<_columns; j++)
_data[i] = (i==j) ? ScalarType(1.0) : ScalarType(0.0f);
};
/*!
* Set the values of <I>j</I>-th column to v[j]
* \param j the column index
* \param v ...
*/
void SetColumn(const unsigned int j, TYPE* v)
{
assert(j>=0 && j<_columns);
unsigned int i, p;
for (i=0, p=j; i<_rows; i++, p+=_columns)
_data[p] = v[i];
};
/*!
* Set the elements of the <I>i</I>-th row to v[j]
* \param i the row index
* \param v ...
*/
void SetRow(const unsigned int i, TYPE* v)
{
assert(i>=0 && i<_rows);
unsigned int j, p;
for (j=0, p=i*_rows; j<_columns; j++, p++)
_data[p] = v[j];
};
/*!
* Set the diagonal elements <I>v<SUB>i,i</SUB></I> to v[i]
* \param v
*/
void SetDiagonal(TYPE *v)
{
assert(_rows == _columns);
for (unsigned int i=0, p=0; i<_rows; i++, p+=_rows)
_data[p+i] = v[i];
};
/*!
* Resize the current matrix.
* \param m the number of matrix rows.
* \param n the number of matrix columns.
*/
void Resize(const unsigned int m, const unsigned int n)
{
assert(m>=2);
assert(n>=2);
_rows = m;
_columns = n;
delete []_data;
_data = new ScalarType[m*n];
for (unsigned int i=0; i<m*n; i++)
_data[i] = 0;
};
/*!
* Matrix transposition operation: set the current matrix to its transpose
*/
void Transpose()
{
ScalarType *temp = new ScalarType[_rows*_columns];
unsigned int i, j, p, q;
for (i=0, p=0; i<_rows; i++, p+=_columns)
for (j=0, q=0; j<_columns; j++, q+=_rows)
temp[q+i] = _data[p+j];
std::swap(_columns, _rows);
std::swap(_data, temp);
delete []temp;
};
// for the transistion to eigen
Matrix transpose()
{
Matrix res = *this;
res.Transpose();
return res;
}
void transposeInPlace() { Transpose(); }
// for the transistion to eigen
/*!
* Print all matrix elements
*/
void Dump()
{
unsigned int i, j, p;
for (i=0, p=0; i<_rows; i++, p+=_columns)
{
printf("[\t");
for (j=0; j<_columns; j++)
printf("%f\t", _data[p+j]);
printf("]\n");
}
printf("\n");
};
protected:
/// the number of matrix rows
unsigned int _rows;
/// the number of matrix rows
unsigned int _columns;
/// the matrix elements
ScalarType *_data;
};
typedef vcg::ndim::Matrix<double> MatrixMNd;
typedef vcg::ndim::Matrix<float> MatrixMNf;
/*! @} */
template <class MatrixType>
void Invert(MatrixType & m){
typedef typename MatrixType::ScalarType X;
X *diag;
diag = new X [m.ColumnsNumber()];
MatrixType res(m.RowsNumber(),m.ColumnsNumber());
vcg::SingularValueDecomposition<MatrixType > (m,&diag[0],res,LeaveUnsorted,50 );
m.Transpose();
// prodotto per la diagonale
unsigned int i,j;
for (i=0; i<m.RowsNumber(); i++)
for (j=0; j<m.ColumnsNumber(); j++)
res[i][j]/= diag[j];
m = res *m;
}
}
}; // end of namespace
#endif
|