File: deprecated_matrix44.h

package info (click to toggle)
meshlab 1.3.0a%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 23,416 kB
  • sloc: cpp: 214,034; ansic: 4,493; makefile: 72
file content (1026 lines) | stat: -rw-r--r-- 29,719 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004                                                \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
/****************************************************************************
  History

$Log: not supported by cvs2svn $
Revision 1.34  2007/07/12 06:42:01  cignoni
added the missing static Construct() member

Revision 1.33  2007/07/03 16:06:48  corsini
add DCM to Euler Angles conversion

Revision 1.32  2007/03/08 14:39:27  corsini
final fix to euler angles transformation

Revision 1.31  2007/02/06 09:57:40  corsini
fix euler angles computation

Revision 1.30  2007/02/05 14:16:33  corsini
add from euler angles to rotation matrix conversion

Revision 1.29  2005/12/02 09:46:49  croccia
Corrected bug in == and != Matrix44 operators

Revision 1.28  2005/06/28 17:42:47  ganovelli
added Matrix44Diag

Revision 1.27  2005/06/17 05:28:47  cignoni
Completed Shear Matrix code and comments,
Added use of swap inside Transpose
Added more complete comments on the usage of Decompose

Revision 1.26  2005/06/10 15:04:12  cignoni
Added Various missing functions: SetShearXY, SetShearXZ, SetShearYZ, SetScale for point3 and Decompose
Completed *=(scalar); made uniform GetRow and GetColumn

Revision 1.25  2005/04/14 11:35:09  ponchio
*** empty log message ***

Revision 1.24  2005/03/18 00:14:39  cignoni
removed small gcc compiling issues

Revision 1.23  2005/03/15 11:40:56  cignoni
Added operator*=( std::vector<PointType> ...) to apply a matrix to a vector of vertexes (replacement of the old style mesh.Apply(tr).

Revision 1.22  2004/12/15 18:45:50  tommyfranken
*** empty log message ***

Revision 1.21  2004/10/22 14:41:30  ponchio
return in operator+ added.

Revision 1.20  2004/10/18 15:03:14  fiorin
Updated interface: all Matrix classes have now the same interface

Revision 1.19  2004/10/07 14:23:57  ganovelli
added function to take rows and comlumns. Added toMatrix and fromMatrix to comply
RotationTYpe prototype in Similarity.h

Revision 1.18  2004/05/28 13:01:50  ganovelli
changed scalar to ScalarType

Revision 1.17  2004/05/26 15:09:32  cignoni
better comments in set rotate

Revision 1.16  2004/05/07 10:05:50  cignoni
Corrected abuse of for index variable scope

Revision 1.15  2004/05/04 23:19:41  cignoni
Clarified initial comment, removed vector*matrix operator (confusing!)
Corrected translate and Rotate, removed gl stuff.

Revision 1.14  2004/05/04 02:34:03  ganovelli
wrong use of operator [] corrected

Revision 1.13  2004/04/07 10:45:54  cignoni
Added: [i][j] access, V() for the raw float values, constructor from T[16]

Revision 1.12  2004/03/25 14:57:49  ponchio

****************************************************************************/

#ifndef __VCGLIB_MATRIX44
#define __VCGLIB_MATRIX44

#include <memory.h>
#include <vcg/math/base.h>
#include <vcg/space/point3.h>
#include <vcg/space/point4.h>
#include <vector>
#include <iostream>


namespace vcg {

  /*
	Annotations:
Opengl stores matrix in  column-major order. That is, the matrix is stored as:

	a0  a4  a8  a12
	a1  a5  a9  a13
	a2  a6  a10 a14
	a3  a7  a11 a15

  Usually in opengl (see opengl specs) vectors are 'column' vectors
  so usually matrix are PRE-multiplied for a vector.
  So the command glTranslate generate a matrix that
  is ready to be premultipled for a vector:

	1 0 0 tx
	0 1 0 ty
	0 0 1 tz
	0 0 0  1

Matrix44 stores matrix in row-major order i.e.

	a0  a1  a2  a3
	a4  a5  a6  a7
	a8  a9  a10 a11
	a12 a13 a14 a15

So for the use of that matrix in opengl with their supposed meaning you have to transpose them before feeding to glMultMatrix.
This mechanism is hidden by the templated function defined in wrap/gl/math.h;
If your machine has the ARB_transpose_matrix extension it will use the appropriate;
The various gl-like command SetRotate, SetTranslate assume that you are making matrix
for 'column' vectors.

*/

	template <class S>
class Matrix44Diag:public Point4<S>{
public:
	/** @name Matrix33
	Class Matrix33Diag.
    This is the class for definition of a diagonal matrix 4x4.
	@param S (Templete Parameter) Specifies the ScalarType field.
*/
	Matrix44Diag(const S & p0,const S & p1,const S & p2,const S & p3):Point4<S>(p0,p1,p2,p3){};
	Matrix44Diag( const Point4<S> & p ):Point4<S>(p){};
};


  /** This class represent a 4x4 matrix. T is the kind of element in the matrix.
    */
template <class T> class Matrix44 {
protected:
  T _a[16];

public:
  typedef T ScalarType;

///@{

  /** $name Constructors
    *  No automatic casting and default constructor is empty
    */
	Matrix44() {};
	~Matrix44() {};
  Matrix44(const Matrix44 &m);
  Matrix44(const T v[]);

	///	Number of columns
	inline unsigned int ColumnsNumber() const
	{
		return 4;
	};

	/// Number of rows
	inline unsigned int RowsNumber() const
	{
		return 4;
	};

  T &ElementAt(const int row, const int col);
  T ElementAt(const int row, const int col) const;
  //T &operator[](const int i);
  //const T &operator[](const int i) const;
  T *V();
  const T *V() const ;

  T *operator[](const int i);
  const T *operator[](const int i) const;

	// return a copy of the i-th column
	Point4<T> GetColumn4(const int& i)const{
		assert(i>=0 && i<4);
		return Point4<T>(ElementAt(0,i),ElementAt(1,i),ElementAt(2,i),ElementAt(3,i));
   //return Point4<T>(_a[i],_a[i+4],_a[i+8],_a[i+12]);
	}

  Point3<T> GetColumn3(const int& i)const{
		assert(i>=0 && i<4);
		return Point3<T>(ElementAt(0,i),ElementAt(1,i),ElementAt(2,i));
	}

  Point4<T> GetRow4(const int& i)const{
		assert(i>=0 && i<4);
		return Point4<T>(ElementAt(i,0),ElementAt(i,1),ElementAt(i,2),ElementAt(i,3));
    // return *((Point4<T>*)(&_a[i<<2])); alternativa forse + efficiente
	}

  Point3<T> GetRow3(const int& i)const{
		assert(i>=0 && i<4);
		return Point3<T>(ElementAt(i,0),ElementAt(i,1),ElementAt(i,2));
    // return *((Point4<T>*)(&_a[i<<2])); alternativa forse + efficiente
	}

  Matrix44 operator+(const Matrix44 &m) const;
  Matrix44 operator-(const Matrix44 &m) const;
  Matrix44 operator*(const Matrix44 &m) const;
  Matrix44 operator*(const Matrix44Diag<T> &m) const;
  Point4<T> operator*(const Point4<T> &v) const;

  bool operator==(const  Matrix44 &m) const;
  bool operator!= (const  Matrix44 &m) const;

  Matrix44 operator-() const;
  Matrix44 operator*(const T k) const;
  void operator+=(const Matrix44 &m);
  void operator-=(const Matrix44 &m);
  void operator*=( const Matrix44 & m );
  void operator*=( const T k );

  template <class Matrix44Type>
	void ToMatrix(Matrix44Type & m) const {for(int i = 0; i < 16; i++) m.V()[i]=V()[i];}

	void ToEulerAngles(T &alpha, T &beta, T &gamma);

	template <class Matrix44Type>
	void FromMatrix(const Matrix44Type & m){for(int i = 0; i < 16; i++) V()[i]=m.V()[i];}
	void FromEulerAngles(T alpha, T beta, T gamma);
	void SetZero();
  void SetIdentity();
  void SetDiagonal(const T k);
	Matrix44 &SetScale(const T sx, const T sy, const T sz);
	Matrix44 &SetScale(const Point3<T> &t);
	Matrix44<T>& SetColumn(const unsigned int ii,const Point4<T> &t); 
	Matrix44<T>& SetColumn(const unsigned int ii,const Point3<T> &t); 
  Matrix44 &SetTranslate(const Point3<T> &t);
	Matrix44 &SetTranslate(const T sx, const T sy, const T sz);
  Matrix44 &SetShearXY(const T sz);
  Matrix44 &SetShearXZ(const T sy);
  Matrix44 &SetShearYZ(const T sx);

  ///use radiants for angle.
  Matrix44 &SetRotateDeg(T AngleDeg, const Point3<T> & axis);
  Matrix44 &SetRotateRad(T AngleRad, const Point3<T> & axis);

  T Determinant() const;

  template <class Q> void Import(const Matrix44<Q> &m) {
    for(int i = 0; i < 16; i++)
      _a[i] = (T)(m.V()[i]);
  }
	  template <class Q>
  static inline Matrix44 Construct( const Matrix44<Q> & b )
  {
	  Matrix44<T> tmp; tmp.FromMatrix(b);
    return tmp;
  }

  static inline const Matrix44 &Identity( )
  {
	  static Matrix44<T> tmp; tmp.SetIdentity();
    return tmp;
  }

	// for the transistion to eigen
  Matrix44 transpose() const
	{
		Matrix44 res = *this;
		Transpose(res);
		return res;
	}
	void transposeInPlace() { Transpose(*this); }

	void print() {
				unsigned int i, j, p;
				for (i=0, p=0; i<4; i++, p+=4)
				{
					std::cout << "[\t";
					for (j=0; j<4; j++)
						std::cout << _a[p+j] << "\t";

					std::cout << "]\n";
				}
				std::cout << "\n";
	}

};


/** Class for solving A * x = b. */
template <class T> class LinearSolve: public Matrix44<T> {
public:
  LinearSolve(const Matrix44<T> &m);
  Point4<T> Solve(const Point4<T> &b); // solve A � x = b
  ///If you need to solve some equation you can use this function instead of Matrix44 one for speed.
  T Determinant() const;
protected:
  ///Holds row permutation.
  int index[4]; //hold permutation
  ///Hold sign of row permutation (used for determinant sign)
  T d;
  bool Decompose();
};

/*** Postmultiply */
//template <class T> Point3<T> operator*(const Point3<T> &p, const Matrix44<T> &m);

///Premultiply
template <class T> Point3<T> operator*(const Matrix44<T> &m, const Point3<T> &p);

template <class T> Matrix44<T> &Transpose(Matrix44<T> &m);
//return NULL matrix if not invertible
template <class T> Matrix44<T> &Invert(Matrix44<T> &m);
template <class T> Matrix44<T> Inverse(const Matrix44<T> &m);

typedef Matrix44<short>  Matrix44s;
typedef Matrix44<int>    Matrix44i;
typedef Matrix44<float>  Matrix44f;
typedef Matrix44<double> Matrix44d;



template <class T> Matrix44<T>::Matrix44(const Matrix44<T> &m) {
  memcpy((T *)_a, (T *)m._a, 16 * sizeof(T));
}

template <class T> Matrix44<T>::Matrix44(const T v[]) {
  memcpy((T *)_a, v, 16 * sizeof(T));
}

template <class T> T &Matrix44<T>::ElementAt(const int row, const int col) {
  assert(row >= 0 && row < 4);
  assert(col >= 0 && col < 4);
  return _a[(row<<2) + col];
}

template <class T> T Matrix44<T>::ElementAt(const int row, const int col) const {
  assert(row >= 0 && row < 4);
  assert(col >= 0 && col < 4);
  return _a[(row<<2) + col];
}

//template <class T> T &Matrix44<T>::operator[](const int i) {
//  assert(i >= 0 && i < 16);
//  return ((T *)_a)[i];
//}
//
//template <class T> const T &Matrix44<T>::operator[](const int i) const {
//  assert(i >= 0 && i < 16);
//  return ((T *)_a)[i];
//}
template <class T> T *Matrix44<T>::operator[](const int i) {
  assert(i >= 0 && i < 4);
  return _a+i*4;
}

template <class T> const T *Matrix44<T>::operator[](const int i) const {
  assert(i >= 0 && i < 4);
  return _a+i*4;
}
template <class T>  T *Matrix44<T>::V()  { return _a;}
template <class T> const T *Matrix44<T>::V() const { return _a;}


template <class T> Matrix44<T> Matrix44<T>::operator+(const Matrix44 &m) const {
  Matrix44<T> ret;
  for(int i = 0; i < 16; i++)
    ret.V()[i] = V()[i] + m.V()[i];
  return ret;
}

template <class T> Matrix44<T> Matrix44<T>::operator-(const Matrix44 &m) const {
  Matrix44<T> ret;
  for(int i = 0; i < 16; i++)
    ret.V()[i] = V()[i] - m.V()[i];
  return ret;
}

template <class T> Matrix44<T> Matrix44<T>::operator*(const Matrix44 &m) const {
  Matrix44 ret;
  for(int i = 0; i < 4; i++)
    for(int j = 0; j < 4; j++) {
      T t = 0.0;
      for(int k = 0; k < 4; k++)
        t += ElementAt(i, k) * m.ElementAt(k, j);
      ret.ElementAt(i, j) = t;
    }
  return ret;
}

template <class T> Matrix44<T> Matrix44<T>::operator*(const Matrix44Diag<T> &m) const {
  Matrix44 ret = (*this);
	for(int i = 0; i < 4; ++i)
 		for(int j = 0; j < 4; ++j)
  		  ret[i][j]*=m[i];
  return ret;
}

template <class T> Point4<T> Matrix44<T>::operator*(const Point4<T> &v) const {
  Point4<T> ret;
  for(int i = 0; i < 4; i++){
    T t = 0.0;
    for(int k = 0; k < 4; k++)
      t += ElementAt(i,k) * v[k];
    ret[i] = t;
   }
   return ret;
}


template <class T> bool Matrix44<T>::operator==(const  Matrix44 &m) const {
	for(int i = 0; i < 4; ++i)
 		for(int j = 0; j < 4; ++j)
    if(ElementAt(i,j) != m.ElementAt(i,j))
      return false;
  return true;
}
template <class T> bool Matrix44<T>::operator!=(const  Matrix44 &m) const {
	for(int i = 0; i < 4; ++i)
 		for(int j = 0; j < 4; ++j)
     if(ElementAt(i,j) != m.ElementAt(i,j))
      return true;
  return false;
}

template <class T> Matrix44<T> Matrix44<T>::operator-() const {
  Matrix44<T> res;
  for(int i = 0; i < 16; i++)
    res.V()[i] = -V()[i];
  return res;
}

template <class T> Matrix44<T> Matrix44<T>::operator*(const T k) const {
  Matrix44<T> res;
  for(int i = 0; i < 16; i++)
    res.V()[i] =V()[i] * k;
  return res;
}

template <class T> void Matrix44<T>::operator+=(const Matrix44 &m) {
  for(int i = 0; i < 16; i++)
    V()[i] += m.V()[i];
}
template <class T> void Matrix44<T>::operator-=(const Matrix44 &m) {
  for(int i = 0; i < 16; i++)
    V()[i] -= m.V()[i];
}
template <class T> void Matrix44<T>::operator*=( const Matrix44 & m ) {
  *this = *this *m;

  /*for(int i = 0; i < 4; i++) { //sbagliato
    Point4<T> t(0, 0, 0, 0);
    for(int k = 0; k < 4; k++) {
      for(int j = 0; j < 4; j++) {
        t[k] += ElementAt(i, k) * m.ElementAt(k, j);
      }
    }
    for(int l = 0; l < 4; l++)
      ElementAt(i, l) = t[l];
  } */
}

template < class PointType , class T > void operator*=( std::vector<PointType> &vert, const Matrix44<T> & m ) {
  typename std::vector<PointType>::iterator ii;
  for(ii=vert.begin();ii!=vert.end();++ii)
    (*ii).P()=m * (*ii).P();
}

template <class T> void Matrix44<T>::operator*=( const T k ) {
  for(int i = 0; i < 16; i++)
      _a[i] *= k;
}

template <class T>
void Matrix44<T>::ToEulerAngles(T &alpha, T &beta, T &gamma)
{
	alpha = atan2(ElementAt(1,2), ElementAt(2,2));
	beta = asin(-ElementAt(0,2));
  gamma = atan2(ElementAt(0,1), ElementAt(0,0));
}

template <class T>
void Matrix44<T>::FromEulerAngles(T alpha, T beta, T gamma)
{
	this->SetZero();

	T cosalpha = cos(alpha);
	T cosbeta = cos(beta);
	T cosgamma = cos(gamma);
	T sinalpha = sin(alpha);
	T sinbeta = sin(beta);
	T singamma = sin(gamma);

	ElementAt(0,0) = cosbeta * cosgamma;
	ElementAt(1,0) = -cosalpha * singamma + sinalpha * sinbeta * cosgamma;
	ElementAt(2,0) = sinalpha * singamma + cosalpha * sinbeta * cosgamma;

	ElementAt(0,1) = cosbeta * singamma;
	ElementAt(1,1) = cosalpha * cosgamma + sinalpha * sinbeta * singamma;
	ElementAt(2,1) = -sinalpha * cosgamma + cosalpha * sinbeta * singamma;

	ElementAt(0,2) = -sinbeta;
	ElementAt(1,2) = sinalpha * cosbeta;
	ElementAt(2,2) = cosalpha * cosbeta;

	ElementAt(3,3) = 1;
}

template <class T> void Matrix44<T>::SetZero() {
  memset((T *)_a, 0, 16 * sizeof(T));
}

template <class T> void Matrix44<T>::SetIdentity() {
  SetDiagonal(1);
}

template <class T> void Matrix44<T>::SetDiagonal(const T k) {
  SetZero();
  ElementAt(0, 0) = k;
  ElementAt(1, 1) = k;
  ElementAt(2, 2) = k;
  ElementAt(3, 3) = 1;
}

template <class T> Matrix44<T> &Matrix44<T>::SetScale(const Point3<T> &t) {
  SetScale(t[0], t[1], t[2]);
  return *this;
}
template <class T> Matrix44<T> &Matrix44<T>::SetScale(const T sx, const T sy, const T sz) {
  SetZero();
  ElementAt(0, 0) = sx;
  ElementAt(1, 1) = sy;
  ElementAt(2, 2) = sz;
  ElementAt(3, 3) = 1;
  return *this;
}

template <class T> Matrix44<T> &Matrix44<T>::SetTranslate(const Point3<T> &t) {
  SetTranslate(t[0], t[1], t[2]);
  return *this;
}
template <class T> Matrix44<T> &Matrix44<T>::SetTranslate(const T tx, const T ty, const T tz) {
  SetIdentity();
	ElementAt(0, 3) = tx;
  ElementAt(1, 3) = ty;
  ElementAt(2, 3) = tz;
  return *this;
}

template <class T> Matrix44<T> &Matrix44<T>::SetColumn(const unsigned int ii,const Point3<T> &t) {
	assert((ii >= 0) && (ii < 4));
	ElementAt(0, ii) = t.X();
	ElementAt(1, ii) = t.Y();
	ElementAt(2, ii) = t.Z();
	return *this;
}

template <class T> Matrix44<T> &Matrix44<T>::SetColumn(const unsigned int ii,const Point4<T> &t) {
  assert((ii < 4));
  ElementAt(0, ii) = t[0];
  ElementAt(1, ii) = t[1];
  ElementAt(2, ii) = t[2];
  ElementAt(3, ii) = t[3];
	return *this;
}


template <class T> Matrix44<T> &Matrix44<T>::SetRotateDeg(T AngleDeg, const Point3<T> & axis) {
	return SetRotateRad(math::ToRad(AngleDeg),axis);
}

template <class T> Matrix44<T> &Matrix44<T>::SetRotateRad(T AngleRad, const Point3<T> & axis) {
  //angle = angle*(T)3.14159265358979323846/180; e' in radianti!
  T c = math::Cos(AngleRad);
  T s = math::Sin(AngleRad);
	T q = 1-c;
	Point3<T> t = axis;
	t.Normalize();
	ElementAt(0,0) = t[0]*t[0]*q + c;
	ElementAt(0,1) = t[0]*t[1]*q - t[2]*s;
	ElementAt(0,2) = t[0]*t[2]*q + t[1]*s;
	ElementAt(0,3) = 0;
	ElementAt(1,0) = t[1]*t[0]*q + t[2]*s;
	ElementAt(1,1) = t[1]*t[1]*q + c;
	ElementAt(1,2) = t[1]*t[2]*q - t[0]*s;
	ElementAt(1,3) = 0;
	ElementAt(2,0) = t[2]*t[0]*q -t[1]*s;
	ElementAt(2,1) = t[2]*t[1]*q +t[0]*s;
	ElementAt(2,2) = t[2]*t[2]*q +c;
	ElementAt(2,3) = 0;
	ElementAt(3,0) = 0;
	ElementAt(3,1) = 0;
	ElementAt(3,2) = 0;
	ElementAt(3,3) = 1;
  return *this;
}

 /* Shear Matrixes
 XY
 1 k 0 0   x    x+ky
 0 1 0 0   y     y
 0 0 1 0   z     z
 0 0 0 1   1     1

 1 0 k 0   x    x+kz
 0 1 0 0   y     y
 0 0 1 0   z     z
 0 0 0 1   1     1

 1 1 0 0   x     x
 0 1 k 0   y     y+kz
 0 0 1 0   z     z
 0 0 0 1   1     1

 */

	template <class T> Matrix44<T> & Matrix44<T>:: SetShearXY( const T sh)	{// shear the X coordinate as the Y coordinate change
		SetIdentity();
		ElementAt(0,1) = sh;
    return *this;
	}

	template <class T> Matrix44<T> & Matrix44<T>:: SetShearXZ( const T sh)	{// shear the X coordinate as the Z coordinate change
		SetIdentity();
		ElementAt(0,2) = sh;
    return *this;
	}

	template <class T> Matrix44<T> &Matrix44<T>:: SetShearYZ( const T sh)	{// shear the Y coordinate as the Z coordinate change
		SetIdentity();
		ElementAt(1,2) = sh;
    return *this;
	}


/*
Given a non singular, non projective matrix (e.g. with the last row equal to [0,0,0,1] )
This procedure decompose it in a sequence of
   Scale,Shear,Rotation e Translation

- ScaleV and Tranv are obiviously scaling and translation.
- ShearV contains three scalars with, respectively
      ShearXY, ShearXZ e ShearYZ
- RotateV contains the rotations (in degree!) around the x,y,z axis
  The input matrix is modified leaving inside it a simple roto translation.

  To obtain the original matrix the above transformation have to be applied in the strict following way:

  OriginalMatrix =  Trn * Rtx*Rty*Rtz  * ShearYZ*ShearXZ*ShearXY * Scl

Example Code:
double srv() { return (double(rand()%40)-20)/2.0; } // small random value

  srand(time(0));
  Point3d ScV(10+srv(),10+srv(),10+srv()),ScVOut(-1,-1,-1);
  Point3d ShV(srv(),srv(),srv()),ShVOut(-1,-1,-1);
  Point3d RtV(10+srv(),srv(),srv()),RtVOut(-1,-1,-1);
  Point3d TrV(srv(),srv(),srv()),TrVOut(-1,-1,-1);

  Matrix44d Scl; Scl.SetScale(ScV);
  Matrix44d Sxy; Sxy.SetShearXY(ShV[0]);
	Matrix44d Sxz; Sxz.SetShearXZ(ShV[1]);
	Matrix44d Syz; Syz.SetShearYZ(ShV[2]);
  Matrix44d Rtx; Rtx.SetRotate(math::ToRad(RtV[0]),Point3d(1,0,0));
	Matrix44d Rty; Rty.SetRotate(math::ToRad(RtV[1]),Point3d(0,1,0));
	Matrix44d Rtz; Rtz.SetRotate(math::ToRad(RtV[2]),Point3d(0,0,1));
	Matrix44d Trn; Trn.SetTranslate(TrV);

	Matrix44d StartM =  Trn * Rtx*Rty*Rtz  * Syz*Sxz*Sxy *Scl;
  Matrix44d ResultM=StartM;
  Decompose(ResultM,ScVOut,ShVOut,RtVOut,TrVOut);

  Scl.SetScale(ScVOut);
  Sxy.SetShearXY(ShVOut[0]);
  Sxz.SetShearXZ(ShVOut[1]);
  Syz.SetShearYZ(ShVOut[2]);
  Rtx.SetRotate(math::ToRad(RtVOut[0]),Point3d(1,0,0));
  Rty.SetRotate(math::ToRad(RtVOut[1]),Point3d(0,1,0));
  Rtz.SetRotate(math::ToRad(RtVOut[2]),Point3d(0,0,1));
  Trn.SetTranslate(TrVOut);

  // Now Rebuild is equal to StartM
	Matrix44d RebuildM =  Trn * Rtx*Rty*Rtz  * Syz*Sxz*Sxy * Scl ;
*/
template <class T>
bool Decompose(Matrix44<T> &M, Point3<T> &ScaleV, Point3<T> &ShearV, Point3<T> &RotV,Point3<T> &TranV)
{
	if(!(M[3][0]==0 && M[3][1]==0 && M[3][2]==0 && M[3][3]==1) ) // the matrix is projective
		return false;
	if(math::Abs(M.Determinant())<1e-10) return false; // matrix should be at least invertible...

  // First Step recover the traslation
	TranV=M.GetColumn3(3);


	// Second Step Recover Scale and Shearing interleaved
	ScaleV[0]=Norm(M.GetColumn3(0));
	Point3<T> R[3];
	R[0]=M.GetColumn3(0);
	R[0].Normalize();

	ShearV[0]=R[0]*M.GetColumn3(1); // xy shearing
	R[1]= M.GetColumn3(1)-R[0]*ShearV[0];
  assert(math::Abs(R[1]*R[0])<1e-10);
	ScaleV[1]=Norm(R[1]);   // y scaling
	R[1]=R[1]/ScaleV[1];
	ShearV[0]=ShearV[0]/ScaleV[1];

	ShearV[1]=R[0]*M.GetColumn3(2); // xz shearing
	R[2]= M.GetColumn3(2)-R[0]*ShearV[1];
	assert(math::Abs(R[2]*R[0])<1e-10);

	R[2] = R[2]-R[1]*(R[2]*R[1]);
	assert(math::Abs(R[2]*R[1])<1e-10);
	assert(math::Abs(R[2]*R[0])<1e-10);

	ScaleV[2]=Norm(R[2]);
	ShearV[1]=ShearV[1]/ScaleV[2];
	R[2]=R[2]/ScaleV[2];
	assert(math::Abs(R[2]*R[1])<1e-10);
	assert(math::Abs(R[2]*R[0])<1e-10);

	ShearV[2]=R[1]*M.GetColumn3(2); // yz shearing
	ShearV[2]=ShearV[2]/ScaleV[2];
  int i,j;
	for(i=0;i<3;++i)
		for(j=0;j<3;++j)
				M[i][j]=R[j][i];

	// Third and last step: Recover the rotation
	//now the matrix should be a pure rotation matrix so its determinant is +-1
  double det=M.Determinant();
  if(math::Abs(det)<1e-10) return false; // matrix should be at least invertible...
  assert(math::Abs(math::Abs(det)-1.0)<1e-10); // it should be +-1...
	if(det<0) {
		ScaleV  *= -1;
		M *= -1;
		}

	double alpha,beta,gamma; // rotations around the x,y and z axis
	beta=asin( M[0][2]);
	double cosbeta=cos(beta);
  if(math::Abs(cosbeta) > 1e-5)
		{
			alpha=asin(-M[1][2]/cosbeta);
			if((M[2][2]/cosbeta) < 0 ) alpha=M_PI-alpha;
			gamma=asin(-M[0][1]/cosbeta);
			if((M[0][0]/cosbeta)<0) gamma = M_PI-gamma;
		}
  else
		{
			alpha=asin(-M[1][0]);
			if(M[1][1]<0) alpha=M_PI-alpha;
			gamma=0;
		}

  RotV[0]=math::ToDeg(alpha);
	RotV[1]=math::ToDeg(beta);
	RotV[2]=math::ToDeg(gamma);

	return true;
}




template <class T> T Matrix44<T>::Determinant() const {
  LinearSolve<T> solve(*this);
  return solve.Determinant();
}


template <class T> Point3<T> operator*(const Matrix44<T> &m, const Point3<T> &p) {
  T w;
  Point3<T> s;
  s[0] = m.ElementAt(0, 0)*p[0] + m.ElementAt(0, 1)*p[1] + m.ElementAt(0, 2)*p[2] + m.ElementAt(0, 3);
  s[1] = m.ElementAt(1, 0)*p[0] + m.ElementAt(1, 1)*p[1] + m.ElementAt(1, 2)*p[2] + m.ElementAt(1, 3);
  s[2] = m.ElementAt(2, 0)*p[0] + m.ElementAt(2, 1)*p[1] + m.ElementAt(2, 2)*p[2] + m.ElementAt(2, 3);
     w = m.ElementAt(3, 0)*p[0] + m.ElementAt(3, 1)*p[1] + m.ElementAt(3, 2)*p[2] + m.ElementAt(3, 3);
	if(w!= 0) s /= w;
  return s;
}

//template <class T> Point3<T> operator*(const Point3<T> &p, const Matrix44<T> &m) {
//  T w;
//  Point3<T> s;
//  s[0] = m.ElementAt(0, 0)*p[0] + m.ElementAt(1, 0)*p[1] + m.ElementAt(2, 0)*p[2] + m.ElementAt(3, 0);
//  s[1] = m.ElementAt(0, 1)*p[0] + m.ElementAt(1, 1)*p[1] + m.ElementAt(2, 1)*p[2] + m.ElementAt(3, 1);
//  s[2] = m.ElementAt(0, 2)*p[0] + m.ElementAt(1, 2)*p[1] + m.ElementAt(2, 2)*p[2] + m.ElementAt(3, 2);
//  w    = m.ElementAt(0, 3)*p[0] + m.ElementAt(1, 3)*p[1] + m.ElementAt(2, 3)*p[2] + m.ElementAt(3, 3);
//	if(w != 0) s /= w;
//  return s;
//}

template <class T> Matrix44<T> &Transpose(Matrix44<T> &m) {
  for(int i = 1; i < 4; i++)
    for(int j = 0; j < i; j++) {
			math::Swap(m.ElementAt(i, j), m.ElementAt(j, i));
    }
  return m;
}

/*
 To invert a matrix you can
 either invert the matrix inplace calling

 vcg::Invert(yourMatrix);

 or get the inverse matrix of a given matrix without touching it:

 invertedMatrix = vcg::Inverse(untouchedMatrix);

*/
template <class T> Matrix44<T> & Invert(Matrix44<T> &m) {
  LinearSolve<T> solve(m);

  for(int j = 0; j < 4; j++) { //Find inverse by columns.
    Point4<T> col(0, 0, 0, 0);
    col[j] = 1.0;
    col = solve.Solve(col);
    for(int i = 0; i < 4; i++)
      m.ElementAt(i, j) = col[i];
  }
	return m;
}

template <class T> Matrix44<T> Inverse(const Matrix44<T> &m) {
  LinearSolve<T> solve(m);
  Matrix44<T> res;
  for(int j = 0; j < 4; j++) { //Find inverse by columns.
    Point4<T> col(0, 0, 0, 0);
    col[j] = 1.0;
    col = solve.Solve(col);
    for(int i = 0; i < 4; i++)
      res.ElementAt(i, j) = col[i];
  }
  return res;
}



/* LINEAR SOLVE IMPLEMENTATION */

template <class T> LinearSolve<T>::LinearSolve(const Matrix44<T> &m): Matrix44<T>(m) {
  if(!Decompose()) {
    for(int i = 0; i < 4; i++)
      index[i] = i;
    Matrix44<T>::SetZero();
  }
}


template <class T> T LinearSolve<T>::Determinant() const {
  T det = d;
  for(int j = 0; j < 4; j++)
    det *= this-> ElementAt(j, j);
  return det;
}


/*replaces a matrix by its LU decomposition of a rowwise permutation.
d is +or -1 depeneing of row permutation even or odd.*/
#define TINY 1e-100

template <class T> bool LinearSolve<T>::Decompose() {

 /* Matrix44<T> A;
  for(int i = 0; i < 16; i++)
    A[i] = operator[](i);
  SetIdentity();
  Point4<T> scale;
  // Set scale factor, scale(i) = max( |a(i,j)| ), for each row
  for(int i = 0; i < 4; i++ ) {
    index[i] = i;			  // Initialize row index list
    T scalemax = (T)0.0;
    for(int j = 0; j < 4; j++)
      scalemax = (scalemax > math::Abs(A.ElementAt(i,j))) ? scalemax : math::Abs(A.ElementAt(i,j));
    scale[i] = scalemax;
  }

  // Loop over rows k = 1, ..., (N-1)
  int signDet = 1;
  for(int k = 0; k < 3; k++ ) {
	  // Select pivot row from max( |a(j,k)/s(j)| )
    T ratiomax = (T)0.0;
	  int jPivot = k;
    for(int i = k; i < 4; i++ ) {
      T ratio = math::Abs(A.ElementAt(index[i], k))/scale[index[i]];
      if(ratio > ratiomax) {
        jPivot = i;
        ratiomax = ratio;
      }
    }
	  // Perform pivoting using row index list
	  int indexJ = index[k];
	  if( jPivot != k ) {	          // Pivot
      indexJ = index[jPivot];
      index[jPivot] = index[k];   // Swap index jPivot and k
      index[k] = indexJ;
	    signDet *= -1;			  // Flip sign of determinant
	  }
	  // Perform forward elimination
    for(int i=k+1; i < 4; i++ ) {
      T coeff = A.ElementAt(index[i],k)/A.ElementAt(indexJ,k);
      for(int j=k+1; j < 4; j++ )
        A.ElementAt(index[i],j) -= coeff*A.ElementAt(indexJ,j);
      A.ElementAt(index[i],k) = coeff;
      //for( j=1; j< 4; j++ )
      //  ElementAt(index[i],j) -= A.ElementAt(index[i], k)*ElementAt(indexJ, j);
    }
  }
  for(int i = 0; i < 16; i++)
    operator[](i) = A[i];

  d = signDet;
  // this = A;
  return true;  */

  d = 1; //no permutation still

  T scaling[4];
  int i,j,k;
  //Saving the scvaling information per row
  for(i = 0; i < 4; i++) {
    T largest = 0.0;
    for(j = 0; j < 4; j++) {
      T t = math::Abs(this->ElementAt(i, j));
      if (t > largest) largest = t;
    }

    if (largest == 0.0) { //oooppps there is a zero row!
      return false;
    }
    scaling[i] = (T)1.0 / largest;
  }

  int imax = 0;
  for(j = 0; j < 4; j++) {
    for(i = 0; i < j; i++) {
      T sum = this->ElementAt(i,j);
      for(int k = 0; k < i; k++)
        sum -= this->ElementAt(i,k)*this->ElementAt(k,j);
      this->ElementAt(i,j) = sum;
    }
    T largest = 0.0;
    for(i = j; i < 4; i++) {
      T sum = this->ElementAt(i,j);
      for(k = 0; k < j; k++)
        sum -= this->ElementAt(i,k)*this->ElementAt(k,j);
      this->ElementAt(i,j) = sum;
      T t = scaling[i] * math::Abs(sum);
      if(t >= largest) {
        largest = t;
        imax = i;
      }
    }
    if (j != imax) {
      for (int k = 0; k < 4; k++) {
        T dum = this->ElementAt(imax,k);
        this->ElementAt(imax,k) = this->ElementAt(j,k);
        this->ElementAt(j,k) = dum;
      }
      d = -(d);
      scaling[imax] = scaling[j];
    }
    index[j]=imax;
    if (this->ElementAt(j,j) == 0.0) this->ElementAt(j,j) = (T)TINY;
    if (j != 3) {
      T dum = (T)1.0 / (this->ElementAt(j,j));
      for (i = j+1; i < 4; i++)
        this->ElementAt(i,j) *= dum;
    }
  }
  return true;
}


template <class T> Point4<T> LinearSolve<T>::Solve(const Point4<T> &b) {
  Point4<T> x(b);
  int first = -1, ip;
  for(int i = 0; i < 4; i++) {
    ip = index[i];
    T sum = x[ip];
    x[ip] = x[i];
    if(first!= -1)
      for(int j = first; j <= i-1; j++)
        sum -= this->ElementAt(i,j) * x[j];
    else
      if(sum) first = i;
    x[i] = sum;
  }
  for (int i = 3; i >= 0; i--) {
    T sum = x[i];
    for (int j = i+1; j < 4; j++)
      sum -= this->ElementAt(i, j) * x[j];
    x[i] = sum / this->ElementAt(i, i);
  }
  return x;
}

} //namespace
#endif