1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef EIGEN_VCGLIB
#define EIGEN_VCGLIB
// TODO enable the vectorization
// #define EIGEN_DONT_VECTORIZE
#define EIGEN_MATRIXBASE_PLUGIN <vcg/math/eigen_matrixbase_addons.h>
#define EIGEN_MATRIX_PLUGIN <vcg/math/eigen_matrix_addons.h>
// forward declarations
namespace Eigen {
template<typename T> struct ei_traits;
template<typename A,typename B> struct ei_is_same_type;
template<typename Derived1, typename Derived2, int Size> struct ei_lexi_comparison;
template<typename Derived1, typename Derived2,
bool SameType = ei_is_same_type<Derived1,Derived2>::ret,
bool SameSize = Derived1::SizeAtCompileTime==Derived2::SizeAtCompileTime>
struct ei_import_selector;
template<typename XprType,
int Rows = ei_traits<XprType>::RowsAtCompileTime,
int Cols = ei_traits<XprType>::ColsAtCompileTime,
int StorageOrder = ei_traits<XprType>::Flags&1,
int MRows = ei_traits<XprType>::MaxRowsAtCompileTime,
int MCols = ei_traits<XprType>::MaxColsAtCompileTime>
struct ei_to_vcgtype;
}
#include "base.h"
#include <Eigen/LU>
#include <Eigen/Geometry>
#include <Eigen/Array>
#include <Eigen/Core>
// add support for unsigned char and short int
namespace Eigen {
template<> struct NumTraits<unsigned char>
{
typedef unsigned char Real;
typedef float FloatingPoint;
enum {
IsComplex = 0,
HasFloatingPoint = 0,
ReadCost = 1,
AddCost = 1,
MulCost = 1
};
};
template<> struct NumTraits<short int>
{
typedef short int Real;
typedef float FloatingPoint;
enum {
IsComplex = 0,
HasFloatingPoint = 0,
ReadCost = 1,
AddCost = 1,
MulCost = 1
};
};
// WARNING this is a default version provided so that Intersection() stuff can compile.
// Indeed, the compiler try to instanciate all versions of Intersection() leading to
// the instanciation of Eigen::Matrix<Face,...> !!!
template<typename T> struct NumTraits
{
struct wrong_type
{
wrong_type() { assert(0 && "Eigen: you are using a wrong scalar type" ); }
};
typedef wrong_type Real;
typedef wrong_type FloatingPoint;
enum {
IsComplex = 0,
HasFloatingPoint = 0,
ReadCost = 0,
AddCost = 0,
MulCost = 0
};
};
// implementation of Lexicographic order comparison
// TODO should use meta unrollers
template<typename Derived1, typename Derived2> struct ei_lexi_comparison<Derived1,Derived2,2>
{
inline static bool less(const Derived1& a, const Derived2& b) {
return (a.coeff(1)!=b.coeff(1))?(a.coeff(1)< b.coeff(1)) : (a.coeff(0)<b.coeff(0));
}
inline static bool greater(const Derived1& a, const Derived2& b) {
return (a.coeff(1)!=b.coeff(1))?(a.coeff(1)> b.coeff(1)) : (a.coeff(0)>b.coeff(0));
}
inline static bool lessEqual(const Derived1& a, const Derived2& b) {
return (a.coeff(1)!=b.coeff(1))?(a.coeff(1)< b.coeff(1)) : (a.coeff(0)<=b.coeff(0));
}
inline static bool greaterEqual(const Derived1& a, const Derived2& b) {
return (a.coeff(1)!=b.coeff(1))?(a.coeff(1)> b.coeff(1)) : (a.coeff(0)>=b.coeff(0));
}
};
template<typename Derived1, typename Derived2> struct ei_lexi_comparison<Derived1,Derived2,3>
{
inline static bool less(const Derived1& a, const Derived2& b) {
return (a.coeff(2)!=b.coeff(2))?(a.coeff(2)< b.coeff(2)):
(a.coeff(1)!=b.coeff(1))?(a.coeff(1)< b.coeff(1)) : (a.coeff(0)<b.coeff(0));
}
inline static bool greater(const Derived1& a, const Derived2& b) {
return (a.coeff(2)!=b.coeff(2))?(a.coeff(2)> b.coeff(2)):
(a.coeff(1)!=b.coeff(1))?(a.coeff(1)> b.coeff(1)) : (a.coeff(0)>b.coeff(0));
}
inline static bool lessEqual(const Derived1& a, const Derived2& b) {
return (a.coeff(2)!=b.coeff(2))?(a.coeff(2)< b.coeff(2)):
(a.coeff(1)!=b.coeff(1))?(a.coeff(1)< b.coeff(1)) : (a.coeff(0)<=b.coeff(0));
}
inline static bool greaterEqual(const Derived1& a, const Derived2& b) {
return (a.coeff(2)!=b.coeff(2))?(a.coeff(2)> b.coeff(2)):
(a.coeff(1)!=b.coeff(1))?(a.coeff(1)> b.coeff(1)) : (a.coeff(0)>=b.coeff(0));
}
};
template<typename Derived1, typename Derived2> struct ei_lexi_comparison<Derived1,Derived2,4>
{
inline static bool less(const Derived1& a, const Derived2& b) {
return (a.coeff(3)!=b.coeff(3))?(a.coeff(3)< b.coeff(3)) : (a.coeff(2)!=b.coeff(2))?(a.coeff(2)< b.coeff(2)):
(a.coeff(1)!=b.coeff(1))?(a.coeff(1)< b.coeff(1)) : (a.coeff(0)<b.coeff(0));
}
inline static bool greater(const Derived1& a, const Derived2& b) {
return (a.coeff(3)!=b.coeff(3))?(a.coeff(3)> b.coeff(3)) : (a.coeff(2)!=b.coeff(2))?(a.coeff(2)> b.coeff(2)):
(a.coeff(1)!=b.coeff(1))?(a.coeff(1)> b.coeff(1)) : (a.coeff(0)>b.coeff(0));
}
inline static bool lessEqual(const Derived1& a, const Derived2& b) {
return (a.coeff(3)!=b.coeff(3))?(a.coeff(3)< b.coeff(3)) : (a.coeff(2)!=b.coeff(2))?(a.coeff(2)< b.coeff(2)):
(a.coeff(1)!=b.coeff(1))?(a.coeff(1)< b.coeff(1)) : (a.coeff(0)<=b.coeff(0));
}
inline static bool greaterEqual(const Derived1& a, const Derived2& b) {
return (a.coeff(3)!=b.coeff(3))?(a.coeff(3)> b.coeff(3)) : (a.coeff(2)!=b.coeff(2))?(a.coeff(2)> b.coeff(2)):
(a.coeff(1)!=b.coeff(1))?(a.coeff(1)> b.coeff(1)) : (a.coeff(0)>=b.coeff(0));
}
};
// implementation of Import
template<typename Derived1, typename Derived2>
struct ei_import_selector<Derived1,Derived2,true,true>
{
static void run(Derived1& a, const Derived2& b) { a = b; }
};
template<typename Derived1, typename Derived2>
struct ei_import_selector<Derived1,Derived2,false,true>
{
static void run(Derived1& a, const Derived2& b)
{ a = b.template cast<typename Derived1::Scalar>(); }
};
template<typename Derived1, typename Derived2>
struct ei_import_selector<Derived1,Derived2,false,false>
{
static void run(Derived1& a, const Derived2& b)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived1);
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived1);
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived2);
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived2);
enum {
Size1 = Derived1::SizeAtCompileTime,
Size2 = Derived2::SizeAtCompileTime
};
assert(Size1<=4 && Size2<=4);
a.coeffRef(0) = Scalar(b.coeff(0));
if (Size1>1) { if (Size2>1) a.coeffRef(1) = Scalar(b.coeff(1)); else a.coeffRef(1) = 0; }
if (Size1>2) { if (Size2>2) a.coeffRef(2) = Scalar(b.coeff(2)); else a.coeffRef(2) = 0; }
if (Size1>3) { if (Size2>3) a.coeffRef(3) = Scalar(b.coeff(3)); else a.coeffRef(3) = 0; }
}
};
// default implementation of ei_to_vcgtype
// the specialization are with
template<typename XprType,int Rows,int Cols,int StorageOrder,int MRows,int MCols>
struct ei_to_vcgtype { typedef Matrix<typename XprType::Scalar,Rows,Cols,StorageOrder,MRows,MCols> type; };
}
#define VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Derived, Op) \
template<typename OtherDerived> \
Derived& operator Op(const Eigen::MatrixBase<OtherDerived>& other) \
{ \
Base::operator Op(other.derived()); return *this;\
} \
Derived& operator Op(const Derived& other) \
{ \
Base::operator Op(other); return *this;\
}
#define VCG_EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, Op) \
template<typename Other> \
Derived& operator Op(const Other& scalar) \
{ \
Base::operator Op(scalar); return *this;\
}
#define VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Derived) \
VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Derived, =) \
VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Derived, +=) \
VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Derived, -=) \
VCG_EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, *=) \
VCG_EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, /=)
namespace vcg {
template<typename Derived1, typename Derived2>
typename Eigen::ei_traits<Derived1>::Scalar
Angle(const Eigen::MatrixBase<Derived1>& p1, const Eigen::MatrixBase<Derived2> & p2)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived1)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived2)
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived1)
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived2)
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived1,Derived2)
typedef typename Eigen::ei_traits<Derived1>::Scalar Scalar;
Scalar w = p1.norm()*p2.norm();
if(w==0) return Scalar(-1);
Scalar t = (p1.dot(p2))/w;
if(t>1) t = 1;
else if(t<-1) t = -1;
return vcg::math::Acos(t);
}
template<typename Derived1, typename Derived2>
typename Eigen::ei_traits<Derived1>::Scalar
AngleN(const Eigen::MatrixBase<Derived1>& p1, const Eigen::MatrixBase<Derived2> & p2)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived1)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived2)
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived1)
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived2)
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived1,Derived2)
typedef typename Eigen::ei_traits<Derived1>::Scalar Scalar;
Scalar t = (p1.dot(p2));
if(t>1) t = 1;
else if(t<-1) t = -1;
return vcg::math::Acos(t);
}
template<typename Derived1>
inline typename Eigen::ei_traits<Derived1>::Scalar Norm( const Eigen::MatrixBase<Derived1>& p)
{ return p.norm(); }
template<typename Derived1>
inline typename Eigen::ei_traits<Derived1>::Scalar SquaredNorm( const Eigen::MatrixBase<Derived1>& p)
{ return p.squaredNorm(); }
template<typename Derived1, typename Derived2>
inline typename Eigen::ei_traits<Derived1>::Scalar
Distance(const Eigen::MatrixBase<Derived1>& p1, const Eigen::MatrixBase<Derived2> & p2)
{ return (p1-p2).norm(); }
template<typename Derived1, typename Derived2>
inline typename Eigen::ei_traits<Derived1>::Scalar
SquaredDistance(const Eigen::MatrixBase<Derived1>& p1, const Eigen::MatrixBase<Derived2> & p2)
{ return (p1-p2).squaredNorm(); }
template<typename Derived>
inline const Eigen::CwiseUnaryOp<Eigen::ei_scalar_abs_op<typename Eigen::ei_traits<Derived>::Scalar>, Derived>
Abs(const Eigen::MatrixBase<Derived>& p)
{ return p.cwise().abs(); }
/** \deprecated use transposeInPlace() or transpose() */
template<typename Scalar,int Size,int StorageOrder>
EIGEN_DEPRECATED inline Eigen::Matrix<Scalar,Size,Size,StorageOrder>&
Transpose(const Eigen::Matrix<Scalar,Size,Size,StorageOrder>& m)
{ return m.transposeInPlace(); return m; }
template<typename Derived>
inline const Eigen::CwiseBinaryOp<Eigen::ei_scalar_max_op<typename Eigen::ei_traits<Derived>::Scalar>,
Derived,
Eigen::NestByValue<typename Derived::ConstantReturnType> >
LowClampToZero(const Eigen::MatrixBase<Derived>& p)
{ return p.cwise().max(Derived::Zero().nestByValue()); }
}
#endif
|