1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.18 2008/03/05 11:21:49 cignoni
Heavily refactored the whole structure.
Some interfaces have been changed. Be careful.
Revision 1.17 2008/02/29 12:15:06 cignoni
added maxcount
Revision 1.16 2006/11/28 21:29:21 cignoni
Re added typedef Histogramf and Histogramd
Revision 1.15 2006/11/28 09:47:42 corsini
add documentation
fix typo
Revision 1.14 2006/05/04 00:09:53 cignoni
minor change: removed unused vars
Revision 1.13 2006/03/29 09:25:47 zifnab1974
extra includes necessary for compilation of meshlab on AMD 64 with gcc 3.4.5
Revision 1.12 2006/01/12 13:12:54 callieri
in FileWrite, added file closing after finishing
Revision 1.11 2005/09/16 11:51:23 cignoni
removed signed/unsigned warning
Revision 1.10 2005/06/17 00:54:55 cignoni
Corrected small bug in SetRange (H was resized to n instead of n+1)
Revision 1.9 2005/06/14 14:27:00 ganovelli
added include of algorithm
Revision 1.8 2005/06/10 14:59:39 cignoni
Added include assert.h and cast to ScalarType for a pow in SetRange() function.
Revision 1.7 2005/06/09 14:19:55 cignoni
Added typedef Histogramf and Histogramd
Revision 1.6 2005/06/07 09:37:33 ponchio
Added fabs() to variance, which can sometime be negative in case
of rounding errors (and sqrt chokes on it).
Revision 1.5 2005/06/07 07:44:08 cignoni
Added Percentile and removed small bug in Add
Revision 1.4 2005/04/04 10:48:35 cignoni
Added missing functions Avg, rms etc, now fully (almost) functional
Revision 1.3 2005/03/14 09:23:40 cignoni
Added missing include<vector>
Revision 1.2 2004/08/25 15:15:26 ganovelli
minor changes to comply gcc compiler (typename's and stuff)
Revision 1.1 2004/06/24 09:12:28 cignoni
Initial Release
****************************************************************************/
#ifndef __VCG_HISTOGRAM
#define __VCG_HISTOGRAM
#include <vector>
#include <algorithm>
#include <assert.h>
#include <string>
#include <limits>
#include <vcg/math/base.h>
#include <stdio.h>
namespace vcg {
template <class ScalarType>
class Distribution
{
private:
std::vector<ScalarType> vec;
bool dirty;
double valSum;
double sqrdValSum;
double avg;
double sqrdAvg;
double rms;
double min_v;
double max_v;
public:
Distribution() { Clear(); }
void Clear()
{
vec.clear();
dirty=true;
min_v = std::numeric_limits<float>::max();
max_v = -std::numeric_limits<float>::max();
}
void Add(const ScalarType v)
{
vec.push_back(v);
dirty=true;
if(v<min_v) min_v=v;
if(v>max_v) max_v=v;
}
ScalarType Min() { return min_v; }
ScalarType Max() { return max_v; }
ScalarType Avg(){ DirtyCheck(); return avg;}
//! Returns the Root Mean Square of the data.
ScalarType RMS(){ DirtyCheck(); return rms;}
//! Returns the variance of the data.
// the average of the squares less the square of the average.
ScalarType Variance(){ DirtyCheck(); return sqrdAvg - avg*avg ;}
//! Returns the standard deviation of the data.
ScalarType StandardDeviation(){ DirtyCheck(); return sqrt( Variance() );}
void DirtyCheck()
{
if(!dirty) return;
std::sort(vec.begin(),vec.end());
valSum=0;
sqrdValSum=0;
typename std::vector<ScalarType>::iterator vi;
for(vi=vec.begin();vi!=vec.end();++vi)
{
valSum += double(*vi);
sqrdValSum += double(*vi)*double(*vi);
}
avg = valSum/double(vec.size());
sqrdAvg = sqrdValSum/double(vec.size());
rms = math::Sqrt(sqrdAvg);
dirty=false;
}
ScalarType Percentile(ScalarType perc)
{
assert(perc>=0 && perc<=1);
DirtyCheck();
int index = vec.size() *perc -1;
if(index< 0 ) index = 0;
return vec[index];
}
};
/**
* Histogram.
*
* This class implements a single-value histogram.
*/
template <class ScalarType>
class Histogram
{
// public data members
protected:
std::vector <ScalarType> H; //! Counters for bins.
std::vector <ScalarType> R; //! Range for bins.
ScalarType minv; //! Minimum value.
ScalarType maxv; //! Maximum value.
ScalarType minElem; //! Minimum value.
ScalarType maxElem; //! Maximum value.
int n; //! Number of vaild intervals stored between minv and maxv.
/// incrementally updated values
ScalarType cnt; //! Number of accumulated samples.
ScalarType avg; //! Average.
ScalarType rms; //! Root mean square.
/**
* Returns the index of the bin which contains a given value.
*/
int BinIndex(ScalarType val) ;
// public methods
public:
/**
* Set the histogram values.
*
* This method is used to correctly initialize the bins of the histogram.
* n is the number of valid intervals between minv and maxv.
* for a more robust working, the Histogram class stores also the two out of range intervals (-inf, minv] and [maxv, +inf)
* Each bin is left closed (eg it contains the value
* The \a gamma parameter is applied to modify the distribution of the ranges of the bins. Default uniform distibution.
*
*/
void SetRange(ScalarType _minv, ScalarType _maxv, int _n,ScalarType gamma=1.0 );
ScalarType MinV() {return minv;}; //! Minimum value.
ScalarType MaxV() {return maxv;}; //! Maximum value.
ScalarType MinElem() {return minElem;}; //! Minimum element added to the histogram. It could be < or > than MinV;.
ScalarType MaxElem() {return maxElem;}; //! Maximum element added to the histogram. It could be < or > than MinV;..
/**
* Add a new value to the histogram.
*
* The statistics related to the histogram data (average, RMS, etc.) are
* also updated.
*/
void Add(ScalarType v, ScalarType increment=ScalarType(1.0));
ScalarType MaxCount() const;
int BinNum() const {return n;};
ScalarType BinCount(ScalarType v);
ScalarType BinCountInd(int index) {return H[index];}
ScalarType BinCount(ScalarType v, ScalarType width);
ScalarType BinLowerBound(int index) {return R[index];}
ScalarType BinUpperBound(int index) {return R[index+1];};
ScalarType RangeCount(ScalarType rangeMin, ScalarType rangeMax);
ScalarType BinWidth(ScalarType v);
/**
* Returns the value corresponding to a given percentile of the data.
*
* The percentile range between 0 and 1.
*/
ScalarType Percentile(ScalarType frac) const;
//! Returns the average of the data.
ScalarType Avg(){ return avg/cnt;}
//! Returns the Root Mean Square of the data.
ScalarType RMS(){ return sqrt(rms/double(cnt));}
//! Returns the variance of the data.
ScalarType Variance(){ return fabs(rms/cnt-Avg()*Avg());}
//! Returns the standard deviation of the data.
ScalarType StandardDeviation(){ return sqrt(Variance());}
//! Dump the histogram to a file.
void FileWrite(const std::string &filename);
//! Reset histogram data.
void Clear();
};
template <class ScalarType>
void Histogram<ScalarType>::Clear()
{
H.clear();
R.clear();
cnt=0;
avg=0;
rms=0;
n=0;
minv=0;
maxv=1;
minElem = std::numeric_limits<ScalarType>::max();
maxElem = -std::numeric_limits<ScalarType>::max();
}
/*
Note that the histogram holds <n> valid bins plus two semi-infinite bins.
R[0] = -inf
R[1] = minv
R[n+1] = maxv
R[n+2] = +inf
Eg. SetRange(0, 10, 5) asks for 5 intervals covering the 0..10 range
H[0] H[1] H[2] H[3] H[4] H[5] H[6]
-inf 0 2 4 6 8 10 +inf
R[0] R[1] R[2] R[3] R[4] R[5] R[6] R[7]
*/
template <class ScalarType>
void Histogram<ScalarType>::SetRange(ScalarType _minv, ScalarType _maxv, int _n, ScalarType gamma)
{
// reset data
Clear();
minv=_minv;maxv=_maxv;n=_n;
H.resize(n+2);
fill(H.begin(),H.end(),0);
R.resize(n+3);
R[0] = - std::numeric_limits< ScalarType >::max();
R[n+2] = std::numeric_limits< ScalarType >::max();
double delta=(maxv-minv);
if(gamma==1)
{
for(int i=0; i<=n; ++i)
R[i+1] = minv + delta*ScalarType(i)/n;
}
else
{
for(int i=0; i<=n; ++i)
R[i+1] = minv + delta*pow(ScalarType(i)/n,gamma);
}
}
template <class ScalarType>
int Histogram<ScalarType>::BinIndex(ScalarType val)
{
// lower_bound returns the furthermost iterator i in [first, last) such that, for every iterator j in [first, i), *j < value.
// E.g. An iterator pointing to the first element "not less than" val, or end() if every element is less than val.
typename std::vector<ScalarType>::iterator it = lower_bound(R.begin(),R.end(),val);
assert(it!=R.begin());
assert(it!=R.end());
assert((*it)>=val);
int pos = it-R.begin();
assert(pos >=1);
pos -= 1;
assert (R[pos] < val);
assert ( val <= R[pos+1] );
return pos;
}
/*
H[0] H[1] H[2] H[3] H[4] H[5] H[6]
-inf 0 2 4 6 8 10 +inf
R[0] R[1] R[2] R[3] R[4] R[5] R[6] R[7]
asking for 3.14 lower bound will return an iterator pointing to R[3]==4; and will increase H[2]
asking for 4 lower bound will return an iterator pointing to R[3]==4; and will increase H[2]
*/
template <class ScalarType>
void Histogram<ScalarType>::Add(ScalarType v, ScalarType increment)
{
int pos=BinIndex(v);
if(v<minElem) minElem=v;
if(v>maxElem) maxElem=v;
if(pos>=0 && pos<=n)
{
H[pos]+=increment;
cnt+=increment;
avg+=v*increment;
rms += (v*v)*increment;
}
}
template <class ScalarType>
ScalarType Histogram<ScalarType>::BinCount(ScalarType v)
{
return H[BinIndex(v)];
}
template <class ScalarType>
ScalarType Histogram<ScalarType>::BinCount(ScalarType v, ScalarType width)
{
return RangeCount(v-width/2.0,v+width/2.0);
}
template <class ScalarType>
ScalarType Histogram<ScalarType>::RangeCount(ScalarType rangeMin, ScalarType rangeMax)
{
int firstBin=BinIndex(rangeMin);
int lastBin=BinIndex (rangeMax);
ScalarType sum=0;
for(int i=firstBin; i<=lastBin;++i)
sum+=H[i];
return sum;
}
template <class ScalarType>
ScalarType Histogram<ScalarType>::BinWidth(ScalarType v)
{
int pos=BinIndex(v);
return R[pos+1]-R[pos];
}
template <class ScalarType>
void Histogram<ScalarType>::FileWrite(const std::string &filename)
{
FILE *fp;
fp=fopen(filename.c_str(),"w");
for(unsigned int i=0; i<H.size(); i++)
fprintf (fp,"%12.8lf , %12.8lf \n",R[i],double(H[i])/cnt);
fclose(fp);
}
template <class ScalarType>
ScalarType Histogram<ScalarType>::MaxCount() const
{
return *(std::max_element(H.begin(),H.end()));
}
// Return the scalar value <r> such that there are <frac> samples <= <r>.
// E.g. Percentile(0.0) will return R[1] e.g. min value
// E.g. Percentile(1.0) will return R[n+1] e.g max value
template <class ScalarType>
ScalarType Histogram<ScalarType>::Percentile(ScalarType frac) const
{
if(H.size()==0 && R.size()==0)
return 0;
// check percentile range
assert(frac >= 0 && frac <= 1);
ScalarType sum=0,partsum=0;
size_t i;
// useless summation just to be sure
for(i=0;i<H.size();i++) sum+=H[i];
assert(sum==cnt);
sum*=frac;
for(i=0; i<H.size(); i++)
{
partsum+=H[i];
if(partsum>=sum) break;
}
assert(i<H.size());
return R[i+1];
}
typedef Histogram<double> Histogramd ;
typedef Histogram<float> Histogramf ;
} // end namespace (vcg)
#endif /* __VCG_HISTOGRAM */
|