1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
#include <vector>
#include <iostream>
#include<vcg/space/triangle3.h>
#include<vcg/simplex/vertex/base.h>
#include<vcg/simplex/face/base.h>
#include<vcg/simplex/face/topology.h>
#include<vcg/complex/complex.h>
#include<vcg/complex/algorithms/hole.h>
#include<vcg/complex/algorithms/local_optimization.h>
#include<vcg/complex/algorithms/local_optimization/tri_edge_flip.h>
#include<vcg/complex/algorithms/smooth.h>
#include<vcg/complex/algorithms/refine.h>
#include<vcg/complex/algorithms/update/selection.h>
// topology computation
#include<vcg/complex/algorithms/update/topology.h>
#include <vcg/complex/algorithms/update/flag.h>
#include <vcg/complex/algorithms/update/normal.h>
// half edge iterators
#include<vcg/simplex/face/pos.h>
// input output
#include <wrap/io_trimesh/import_ply.h>
#include <wrap/io_trimesh/export_ply.h>
using namespace vcg;
using namespace std;
class MyFace;
class MyVertex;
struct MyUsedTypes : public UsedTypes< Use<MyVertex> ::AsVertexType,
Use<MyFace> ::AsFaceType>{};
class MyVertex : public Vertex< MyUsedTypes, vertex::Coord3f, vertex::BitFlags, vertex::Normal3f, vertex::Mark, vertex::Color4b >{};
class MyFace : public Face < MyUsedTypes, face::VertexRef,face::FFAdj, face::Mark, face::BitFlags, face::Normal3f> {};
class MyMesh : public tri::TriMesh< vector<MyVertex>, vector<MyFace > >{};
//Delaunay
class MyDelaunayFlip: public vcg::tri::TriEdgeFlip< MyMesh, MyDelaunayFlip > {
public:
typedef vcg::tri::TriEdgeFlip< MyMesh, MyDelaunayFlip > TEF;
inline MyDelaunayFlip( const TEF::PosType &p, int i,BaseParameterClass *pp) :TEF(p,i,pp){}
};
bool callback(int percent, const char *str) {
cout << "str: " << str << " " << percent << "%\r";
return true;
}
template <class MESH>
bool NormalTest(typename face::Pos<typename MESH::FaceType> pos)
{
//giro intorno al vertice e controllo le normali
typename MESH::ScalarType thr = 0.0f;
typename MESH::CoordType NdP = vcg::Normal<typename MESH::FaceType>(*pos.f);
typename MESH::CoordType tmp, oop, soglia = typename MESH::CoordType(thr,thr,thr);
face::Pos<typename MESH::FaceType> aux=pos;
do{
aux.FlipF();
aux.FlipE();
oop = Abs(tmp - ::vcg::Normal<typename MESH::FaceType>(*pos.f));
if(oop < soglia )return false;
}while(aux != pos && !aux.IsBorder());
return true;
}
int main(int argc,char ** argv){
if(argc<5)
{
printf(
"\n HoleFilling ("__DATE__")\n"
"Visual Computing Group I.S.T.I. C.N.R.\n"
"Usage: trimesh_hole #algorithm #size filein.ply fileout.ply \n"
"#algorithm: \n"
" 1) Trivial Ear \n"
" 2) Minimum weight Ear \n"
" 3) Selfintersection Ear \n"
" 4) Minimum weight \n"
);
exit(0);
}
int algorithm = atoi(argv[1]);
int holeSize = atoi(argv[2]);
if(algorithm < 0 && algorithm > 4)
{
printf("Error in algorithm's selection %i\n",algorithm);
exit(0);
}
MyMesh m;
if(tri::io::ImporterPLY<MyMesh>::Open(m,argv[3])!=0)
{
printf("Error reading file %s\n",argv[2]);
exit(0);
}
//update the face-face topology
tri::UpdateTopology<MyMesh>::FaceFace(m);
tri::UpdateNormals<MyMesh>::PerVertexPerFace(m);
tri::UpdateFlags<MyMesh>::FaceBorderFromFF(m);
assert(tri::Clean<MyMesh>::IsFFAdjacencyConsistent(m));
//compute the average of face area
float AVG,sumA=0.0f;
int numA=0,indice;
indice = m.face.size();
MyMesh::FaceIterator fi;
for(fi=m.face.begin();fi!=m.face.end();++fi)
{
sumA += DoubleArea(*fi)/2;
numA++;
for(int ind =0;ind<3;++ind)
fi->V(ind)->InitIMark();
}
AVG=sumA/numA;
//tri::Hole<MyMesh> holeFiller;
switch(algorithm)
{
case 1: tri::Hole<MyMesh>::EarCuttingFill<tri::TrivialEar<MyMesh> >(m,holeSize,false); break;
case 2: tri::Hole<MyMesh>::EarCuttingFill<tri::MinimumWeightEar< MyMesh> >(m,holeSize,false,callback); break;
case 3: tri::Hole<MyMesh>::EarCuttingIntersectionFill<tri::SelfIntersectionEar< MyMesh> >(m,holeSize,false); break;
case 4: tri::Hole<MyMesh>::MinimumWeightFill(m,holeSize, false); tri::UpdateTopology<MyMesh>::FaceFace(m); break;
}
tri::UpdateFlags<MyMesh>::FaceBorderFromFF(m);
assert(tri::Clean<MyMesh>::IsFFAdjacencyConsistent(m));
printf("\nStart refinig...\n");
/*start refining */
MyMesh::VertexIterator vi;
MyMesh::FaceIterator f;
std::vector<MyMesh::FacePointer> vf;
f = m.face.begin();
f += indice;
for(; f != m.face.end();++f)
{
if(!f->IsD())
{
f->SetS();
}
}
std::vector<MyMesh::FacePointer *> FPP;
std::vector<MyMesh::FacePointer> added;
std::vector<MyMesh::FacePointer>::iterator vfit;
int i=1;
printf("\n");
for(f = m.face.begin();f!=m.face.end();++f) if(!(*f).IsD())
{
if( f->IsS() )
{
f->V(0)->IsW();
f->V(1)->IsW();
f->V(2)->IsW();
}
else
{
f->V(0)->ClearW();
f->V(1)->ClearW();
f->V(2)->ClearW();
}
}
BaseParameterClass pp;
vcg::LocalOptimization<MyMesh> Fs(m,&pp);
Fs.SetTargetMetric(0.0f);
Fs.Init<MyDelaunayFlip >();
Fs.DoOptimization();
do
{
vf.clear();
f = m.face.begin();
f += indice;
for(; f != m.face.end();++f)
{
if(f->IsS())
{
bool test= true;
for(int ind =0;ind<3;++ind)
f->V(ind)->InitIMark();
test = (DoubleArea<MyMesh::FaceType>(*f)/2) > AVG;
if(test)
{
vf.push_back(&(*f));
}
}
}
//info print
printf("\r Refining [%d] - > %d",i,int(vf.size()));
i++;
FPP.clear();
added.clear();
for(vfit = vf.begin(); vfit!=vf.end();++vfit)
{
FPP.push_back(&(*vfit));
}
int toadd= vf.size();
MyMesh::FaceIterator f1,f2;
f2 = tri::Allocator<MyMesh>::AddFaces(m,(toadd*2),FPP);
MyMesh::VertexIterator vertp = tri::Allocator<MyMesh>::AddVertices(m,toadd);
std::vector<MyMesh::FacePointer> added;
added.reserve(toadd);
vfit=vf.begin();
for(int i = 0; i<toadd;++i,f2++,vertp++)
{
f1=f2;
f2++;
TriSplit<MyMesh,CenterPoint<MyMesh> >(vf[i],&(*f1),&(*f2),&(*vertp),CenterPoint<MyMesh>() );
f1->SetS();
f2->SetS();
for(int itr=0;itr<3;itr++)
{
f1->V(itr)->SetW();
f2->V(itr)->SetW();
}
added.push_back( &(*f1) );
added.push_back( &(*f2) );
}
BaseParameterClass pp;
vcg::LocalOptimization<MyMesh> FlippingSession(m,&pp);
FlippingSession.SetTargetMetric(0.0f);
FlippingSession.Init<MyDelaunayFlip >();
FlippingSession.DoOptimization();
}while(!vf.empty());
vcg::LocalOptimization<MyMesh> Fiss(m,&pp);
Fiss.SetTargetMetric(0.0f);
Fiss.Init<MyDelaunayFlip >();
Fiss.DoOptimization();
/*end refining */
tri::io::ExporterPLY<MyMesh>::Save(m,"PreSmooth.ply",false);
int UBIT = MyMesh::VertexType::LastBitFlag();
f = m.face.begin();
f += indice;
for(; f != m.face.end();++f)
{
if(f->IsS())
{
for(int ind =0;ind<3;++ind){
if(NormalTest<MyMesh>(face::Pos<MyMesh::FaceType>(&(*f),ind )))
{
f->V(ind)->SetUserBit(UBIT);
}
}
f->ClearS();
}
}
for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD())
{
if( vi->IsUserBit(UBIT) )
{
(*vi).SetS();
vi->ClearUserBit(UBIT);
}
}
tri::Smooth<MyMesh>::VertexCoordLaplacian(m,1,true);
printf("\nCompleted. Saving....\n");
tri::io::ExporterPLY<MyMesh>::Save(m,argv[4],false);
return 0;
}
|