1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
#include <vector>
#include <limits>
#include <stdio.h>
#include <stdlib.h>
// stuff to define the mesh
#include <vcg/simplex/vertex/base.h>
#include <vcg/simplex/face/base.h>
#include <vcg/simplex/edge/base.h>
#include <vcg/complex/complex.h>
#include <vcg/math/quadric.h>
#include <vcg/complex/algorithms/clean.h>
// io
#include <wrap/io_trimesh/import.h>
#include <wrap/io_trimesh/export_ply.h>
// update
#include <vcg/complex/algorithms/update/topology.h>
// local optimization
#include <vcg/complex/algorithms/local_optimization.h>
#include <vcg/complex/algorithms/local_optimization/tri_edge_collapse_quadric.h>
using namespace vcg;
using namespace tri;
/**********************************************************
Mesh Classes for Quadric Edge collapse based simplification
For edge collpases we need verteses with:
- V->F adjacency
- per vertex incremental mark
- per vertex Normal
Moreover for using a quadric based collapse the vertex class
must have also a Quadric member Q();
Otherwise the user have to provide an helper function object
to recover the quadric.
******************************************************/
// The class prototypes.
class MyVertex;
class MyEdge;
class MyFace;
struct MyUsedTypes: public UsedTypes<Use<MyVertex>::AsVertexType,Use<MyEdge>::AsEdgeType,Use<MyFace>::AsFaceType>{};
class MyVertex : public Vertex< MyUsedTypes,
vertex::VFAdj,
vertex::Coord3f,
vertex::Normal3f,
vertex::Mark,
vertex::BitFlags >{
public:
vcg::math::Quadric<double> &Qd() {return q;}
private:
math::Quadric<double> q;
};
class MyEdge : public Edge< MyUsedTypes> {};
typedef BasicVertexPair<MyVertex> VertexPair;
class MyFace : public Face< MyUsedTypes,
face::VFAdj,
face::VertexRef,
face::BitFlags > {};
// the main mesh class
class MyMesh : public vcg::tri::TriMesh<std::vector<MyVertex>, std::vector<MyFace> > {};
class MyTriEdgeCollapse: public vcg::tri::TriEdgeCollapseQuadric< MyMesh, VertexPair, MyTriEdgeCollapse, QInfoStandard<MyVertex> > {
public:
typedef vcg::tri::TriEdgeCollapseQuadric< MyMesh, VertexPair, MyTriEdgeCollapse, QInfoStandard<MyVertex> > TECQ;
typedef MyMesh::VertexType::EdgeType EdgeType;
inline MyTriEdgeCollapse( const VertexPair &p, int i, BaseParameterClass *pp) :TECQ(p,i,pp){}
};
void Usage()
{
printf(
"---------------------------------\n"
" TriSimp V.1.0 \n"
" http://vcg.isti.cnr.it\n"
" http://vcg.sourceforge.net\n"
" release date: "__DATE__"\n"
"---------------------------------\n\n"
"TriDecimator 1.0 \n"__DATE__"\n"
"Copyright 2003-2012 Visual Computing Lab I.S.T.I. C.N.R.\n"
"\nUsage: "\
"tridecimator fileIn fileOut face_num [opt]\n"\
"Where opt can be:\n"\
" -e# QuadricError threshold (range [0,inf) default inf)\n"
" -b# Boundary Weight (default .5)\n"
" -q# Quality threshold (range [0.0, 0.866], default .3 )\n"
" -n# Normal threshold (degree range [0,180] default 90)\n"
" -E# Minimal admitted quadric value (default 1e-15, must be >0)\n"
" -Q[y|n] Use or not Quality Threshold (default yes)\n"
" -N[y|n] Use or not Normal Threshold (default no)\n"
" -A[y|n] Use or not Area Weighted Quadrics (default yes)\n"
" -O[y|n] Use or not vertex optimal placement (default yes)\n"
" -S[y|n] Use or not Scale Independent quadric measure(default yes) \n"
" -B[y|n] Preserve or not mesh boundary (default no)\n"
" -T[y|n] Preserve or not Topology (default no)\n"
" -H[y|n] Use or not Safe Heap Update (default no)\n"
" -P Before simplification, remove duplicate & unreferenced vertices\n"
);
exit(-1);
}
// mesh to simplify
MyMesh mesh;
int main(int argc ,char**argv){
if(argc<4) Usage();
int FinalSize=atoi(argv[3]);
//int t0=clock();
int err=vcg::tri::io::Importer<MyMesh>::Open(mesh,argv[1]);
if(err)
{
printf("Unable to open mesh %s : '%s'\n",argv[1],vcg::tri::io::Importer<MyMesh>::ErrorMsg(err));
exit(-1);
}
printf("mesh loaded %d %d \n",mesh.vn,mesh.fn);
TriEdgeCollapseQuadricParameter qparams;
qparams.QualityThr =.3;
float TargetError=std::numeric_limits<float>::max();
bool CleaningFlag =false;
// parse command line.
for(int i=4; i < argc;)
{
if(argv[i][0]=='-')
switch(argv[i][1])
{
case 'H' : qparams.SafeHeapUpdate=true; printf("Using Safe heap option\n"); break;
case 'Q' : if(argv[i][2]=='y') { qparams.QualityCheck = true; printf("Using Quality Checking\n"); }
else { qparams.QualityCheck = false; printf("NOT Using Quality Checking\n"); } break;
case 'N' : if(argv[i][2]=='y') { qparams.NormalCheck = true; printf("Using Normal Deviation Checking\n"); }
else { qparams.NormalCheck = false; printf("NOT Using Normal Deviation Checking\n"); } break;
case 'O' : if(argv[i][2]=='y') { qparams.OptimalPlacement = true; printf("Using OptimalPlacement\n"); }
else { qparams.OptimalPlacement = false; printf("NOT Using OptimalPlacement\n"); } break;
case 'S' : if(argv[i][2]=='y') { qparams.ScaleIndependent = true; printf("Using ScaleIndependent\n"); }
else { qparams.ScaleIndependent = false; printf("NOT Using ScaleIndependent\n"); } break;
case 'B' : if(argv[i][2]=='y') { qparams.PreserveBoundary = true; printf("Preserving Boundary\n"); }
else { qparams.PreserveBoundary = false; printf("NOT Preserving Boundary\n"); } break;
case 'T' : if(argv[i][2]=='y') { qparams.PreserveTopology = true; printf("Preserving Topology\n"); }
else { qparams.PreserveTopology = false; printf("NOT Preserving Topology\n"); } break;
case 'q' : qparams.QualityThr = atof(argv[i]+2); printf("Setting Quality Thr to %f\n",atof(argv[i]+2)); break;
case 'n' : qparams.NormalThrRad = math::ToRad(atof(argv[i]+2)); printf("Setting Normal Thr to %f deg\n",atof(argv[i]+2)); break;
case 'b' : qparams.BoundaryWeight = atof(argv[i]+2); printf("Setting Boundary Weight to %f\n",atof(argv[i]+2)); break;
case 'e' : TargetError = float(atof(argv[i]+2)); printf("Setting TargetError to %g\n",atof(argv[i]+2)); break;
case 'P' : CleaningFlag=true; printf("Cleaning mesh before simplification\n"); break;
default : printf("Unknown option '%s'\n", argv[i]);
exit(0);
}
i++;
}
if(CleaningFlag){
int dup = tri::Clean<MyMesh>::RemoveDuplicateVertex(mesh);
int unref = tri::Clean<MyMesh>::RemoveUnreferencedVertex(mesh);
printf("Removed %i duplicate and %i unreferenced vertices from mesh \n",dup,unref);
}
printf("reducing it to %i\n",FinalSize);
vcg::tri::UpdateBounding<MyMesh>::Box(mesh);
// decimator initialization
vcg::LocalOptimization<MyMesh> DeciSession(mesh,&qparams);
int t1=clock();
DeciSession.Init<MyTriEdgeCollapse>();
int t2=clock();
printf("Initial Heap Size %i\n",int(DeciSession.h.size()));
DeciSession.SetTargetSimplices(FinalSize);
DeciSession.SetTimeBudget(0.5f);
if(TargetError< std::numeric_limits<float>::max() ) DeciSession.SetTargetMetric(TargetError);
while(DeciSession.DoOptimization() && mesh.fn>FinalSize && DeciSession.currMetric < TargetError)
printf("Current Mesh size %7i heap sz %9i err %9g \r",mesh.fn, int(DeciSession.h.size()),DeciSession.currMetric);
int t3=clock();
printf("mesh %d %d Error %g \n",mesh.vn,mesh.fn,DeciSession.currMetric);
printf("\nCompleted in (%i+%i) msec\n",t2-t1,t3-t2);
vcg::tri::io::ExporterPLY<MyMesh>::Save(mesh,argv[2]);
return 0;
}
|