File: tridecimator.cpp

package info (click to toggle)
meshlab 1.3.2%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 20,900 kB
  • ctags: 33,325
  • sloc: cpp: 224,813; ansic: 8,170; xml: 119; makefile: 78
file content (203 lines) | stat: -rw-r--r-- 7,978 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#include <vector>
#include <limits>

#include <stdio.h>
#include <stdlib.h>


// stuff to define the mesh
#include <vcg/simplex/vertex/base.h>
#include <vcg/simplex/face/base.h>
#include <vcg/simplex/edge/base.h>
#include <vcg/complex/complex.h>

#include <vcg/math/quadric.h>
#include <vcg/complex/algorithms/clean.h>

// io
#include <wrap/io_trimesh/import.h>
#include <wrap/io_trimesh/export_ply.h>

// update
#include <vcg/complex/algorithms/update/topology.h>

// local optimization
#include <vcg/complex/algorithms/local_optimization.h>
#include <vcg/complex/algorithms/local_optimization/tri_edge_collapse_quadric.h>

using namespace vcg;
using namespace tri;

/**********************************************************
Mesh Classes for Quadric Edge collapse based simplification

For edge collpases we need verteses with:
- V->F adjacency
- per vertex incremental mark
- per vertex Normal


Moreover for using a quadric based collapse the vertex class 
must have also a Quadric member Q();
Otherwise the user have to provide an helper function object 
to recover the quadric.

******************************************************/
// The class prototypes.
class MyVertex;
class MyEdge;
class MyFace;

struct MyUsedTypes: public UsedTypes<Use<MyVertex>::AsVertexType,Use<MyEdge>::AsEdgeType,Use<MyFace>::AsFaceType>{};

class MyVertex  : public Vertex< MyUsedTypes,
  vertex::VFAdj,
  vertex::Coord3f,
  vertex::Normal3f,
  vertex::Mark,
  vertex::BitFlags  >{
public:
  vcg::math::Quadric<double> &Qd() {return q;}
private:
  math::Quadric<double> q;
  };

class MyEdge : public Edge< MyUsedTypes> {};

typedef BasicVertexPair<MyVertex> VertexPair;

class MyFace    : public Face< MyUsedTypes,
  face::VFAdj,
  face::VertexRef,
  face::BitFlags > {};

// the main mesh class
class MyMesh    : public vcg::tri::TriMesh<std::vector<MyVertex>, std::vector<MyFace> > {};


class MyTriEdgeCollapse: public vcg::tri::TriEdgeCollapseQuadric< MyMesh, VertexPair, MyTriEdgeCollapse, QInfoStandard<MyVertex>  > {
            public:
            typedef  vcg::tri::TriEdgeCollapseQuadric< MyMesh,  VertexPair, MyTriEdgeCollapse, QInfoStandard<MyVertex>  > TECQ;
            typedef  MyMesh::VertexType::EdgeType EdgeType;
            inline MyTriEdgeCollapse(  const VertexPair &p, int i, BaseParameterClass *pp) :TECQ(p,i,pp){}
};

void Usage()
{
  	printf(
           "---------------------------------\n"
           "         TriSimp V.1.0 \n"
           "     http://vcg.isti.cnr.it\n"
           "    http://vcg.sourceforge.net\n"
           "   release date: "__DATE__"\n"
           "---------------------------------\n\n"
		  "TriDecimator 1.0 \n"__DATE__"\n"
      "Copyright 2003-2012 Visual Computing Lab I.S.T.I. C.N.R.\n"
      "\nUsage:  "\
      "tridecimator fileIn fileOut face_num [opt]\n"\
      "Where opt can be:\n"\
      "     -e# QuadricError threshold  (range [0,inf) default inf)\n"
			"     -b# Boundary Weight (default .5)\n"
			"     -q# Quality threshold (range [0.0, 0.866],  default .3 )\n"
			"     -n# Normal threshold  (degree range [0,180] default 90)\n"
			"     -E# Minimal admitted quadric value (default 1e-15, must be >0)\n"
			"     -Q[y|n]  Use or not Quality Threshold (default yes)\n"
			"     -N[y|n]  Use or not Normal Threshold (default no)\n"
			"     -A[y|n]  Use or not Area Weighted Quadrics (default yes)\n"
			"     -O[y|n]  Use or not vertex optimal placement (default yes)\n"
			"     -S[y|n]  Use or not Scale Independent quadric measure(default yes) \n"
			"     -B[y|n]  Preserve or not mesh boundary (default no)\n"
			"     -T[y|n]  Preserve or not Topology (default no)\n"
			"     -H[y|n]  Use or not Safe Heap Update (default no)\n"
		  "     -P       Before simplification, remove duplicate & unreferenced vertices\n"
                                       );
  exit(-1);
}

// mesh to simplify
MyMesh mesh;

int main(int argc ,char**argv){
if(argc<4) Usage();

  int FinalSize=atoi(argv[3]);
  //int t0=clock();
  int err=vcg::tri::io::Importer<MyMesh>::Open(mesh,argv[1]);
  if(err)
  {
    printf("Unable to open mesh %s : '%s'\n",argv[1],vcg::tri::io::Importer<MyMesh>::ErrorMsg(err));
    exit(-1);
  }
  printf("mesh loaded %d %d \n",mesh.vn,mesh.fn);
    
  TriEdgeCollapseQuadricParameter qparams;
  qparams.QualityThr  =.3;
  float TargetError=std::numeric_limits<float>::max();
  bool CleaningFlag =false;
     // parse command line.
    for(int i=4; i < argc;)
    {
      if(argv[i][0]=='-')
        switch(argv[i][1])
      {
        case 'H' : qparams.SafeHeapUpdate=true; printf("Using Safe heap option\n"); break;
        case 'Q' : if(argv[i][2]=='y') { qparams.QualityCheck	= true;  printf("Using Quality Checking\n");	}
                                  else { qparams.QualityCheck	= false; printf("NOT Using Quality Checking\n");	}                break;
        case 'N' : if(argv[i][2]=='y') { qparams.NormalCheck	= true;  printf("Using Normal Deviation Checking\n");	}
                                  else { qparams.NormalCheck	= false; printf("NOT Using Normal Deviation Checking\n");	}        break;
        case 'O' : if(argv[i][2]=='y') { qparams.OptimalPlacement	= true;  printf("Using OptimalPlacement\n");	}
                                  else { qparams.OptimalPlacement	= false; printf("NOT Using OptimalPlacement\n");	}        break;
        case 'S' : if(argv[i][2]=='y') { qparams.ScaleIndependent	= true;  printf("Using ScaleIndependent\n");	}
                                  else { qparams.ScaleIndependent	= false; printf("NOT Using ScaleIndependent\n");	}        break;
        case 'B' : if(argv[i][2]=='y') { qparams.PreserveBoundary	= true;  printf("Preserving Boundary\n");	}
                                  else { qparams.PreserveBoundary	= false; printf("NOT Preserving Boundary\n");	}        break;
        case 'T' : if(argv[i][2]=='y') { qparams.PreserveTopology	= true;  printf("Preserving Topology\n");	}
                                  else { qparams.PreserveTopology	= false; printf("NOT Preserving Topology\n");	}        break;
        case 'q' :	qparams.QualityThr	= atof(argv[i]+2);	           printf("Setting Quality Thr to %f\n",atof(argv[i]+2)); 	 break;
        case 'n' :	qparams.NormalThrRad = math::ToRad(atof(argv[i]+2));  printf("Setting Normal Thr to %f deg\n",atof(argv[i]+2)); break;
        case 'b' :	qparams.BoundaryWeight  = atof(argv[i]+2);			printf("Setting Boundary Weight to %f\n",atof(argv[i]+2)); break;
        case 'e' :	TargetError = float(atof(argv[i]+2));			printf("Setting TargetError to %g\n",atof(argv[i]+2)); break;
        case 'P' :	CleaningFlag=true;  printf("Cleaning mesh before simplification\n"); break;

        default  :  printf("Unknown option '%s'\n", argv[i]);
          exit(0);
      }
      i++;
    }



  if(CleaningFlag){
      int dup = tri::Clean<MyMesh>::RemoveDuplicateVertex(mesh);
      int unref =  tri::Clean<MyMesh>::RemoveUnreferencedVertex(mesh);
      printf("Removed %i duplicate and %i unreferenced vertices from mesh \n",dup,unref);
  }


  printf("reducing it to %i\n",FinalSize);
	
  vcg::tri::UpdateBounding<MyMesh>::Box(mesh);
  
  // decimator initialization
  vcg::LocalOptimization<MyMesh> DeciSession(mesh,&qparams);
	
  int t1=clock();
  DeciSession.Init<MyTriEdgeCollapse>();
  int t2=clock();
  printf("Initial Heap Size %i\n",int(DeciSession.h.size()));

  DeciSession.SetTargetSimplices(FinalSize);
  DeciSession.SetTimeBudget(0.5f);
  if(TargetError< std::numeric_limits<float>::max() ) DeciSession.SetTargetMetric(TargetError);

  while(DeciSession.DoOptimization() && mesh.fn>FinalSize && DeciSession.currMetric < TargetError)
    printf("Current Mesh size %7i heap sz %9i err %9g \r",mesh.fn, int(DeciSession.h.size()),DeciSession.currMetric);

  int t3=clock();
  printf("mesh  %d %d Error %g \n",mesh.vn,mesh.fn,DeciSession.currMetric);
  printf("\nCompleted in (%i+%i) msec\n",t2-t1,t3-t2);
	
  vcg::tri::io::ExporterPLY<MyMesh>::Save(mesh,argv[2]);
	return 0;

}