1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#include <assert.h>
#include <vcg/math/base.h>
#include <vcg/container/simple_temporary_data.h>
#include <vcg/simplex/face/pos.h>
#include <vcg/simplex/face/topology.h>
#include <vcg/complex/algorithms/update/quality.h>
#include <deque>
#include <vector>
#include <list>
#include <functional>
/*
class for computing approximated geodesic distances on a mesh.
basic example: farthest vertex from a specified one
MyMesh m;
MyMesh::VertexPointer seed,far;
MyMesh::ScalarType dist;
vcg::Geo<MyMesh> g;
g.FarthestVertex(m,seed,far,d);
*/
#ifndef __VCGLIB_GEODESIC
#define __VCGLIB_GEODESIC
namespace vcg{
namespace tri{
template <class MeshType>
struct EuclideanDistance{
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::ScalarType ScalarType;
EuclideanDistance(){}
ScalarType operator()(const VertexType * v0, const VertexType * v1) const
{return vcg::Distance(v0->cP(),v1->cP());}
};
template <class MeshType, class DistanceFunctor = EuclideanDistance<MeshType> >
class Geo{
public:
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::ScalarType ScalarType;
/* Auxiliary class for keeping the heap of vertices to visit and their estimated distance */
struct VertDist{
VertDist(){}
VertDist(VertexPointer _v, ScalarType _d):v(_v),d(_d){}
VertexPointer v;
ScalarType d;
};
/* Temporary data to associate to all the vertices: estimated distance and boolean flag */
struct TempData{
TempData(){}
TempData(const ScalarType & _d):d(_d),source(0),parent(0){}
ScalarType d;
VertexPointer source;//closest source
VertexPointer parent;
};
typedef SimpleTempData<std::vector<VertexType>, TempData > TempDataType;
struct pred: public std::binary_function<VertDist,VertDist,bool>{
pred(){}
bool operator()(const VertDist& v0, const VertDist& v1) const
{return (v0.d > v1.d);}
};
struct pred_addr: public std::binary_function<VertDist,VertDist,bool>{
pred_addr(){}
bool operator()(const VertDist& v0, const VertDist& v1) const
{return (v0.v > v1.v);}
};
//************** calcolo della distanza di pw in base alle distanze note di pw1 e curr
//************** sapendo che (curr,pw,pw1) e'una faccia della mesh
//************** (vedi figura in file distance.gif)
static ScalarType Distance(const VertexPointer &pw,
const VertexPointer &pw1,
const VertexPointer &curr,
const ScalarType &d_pw1,
const ScalarType &d_curr)
{
ScalarType curr_d=0;
ScalarType ew_c = DistanceFunctor()(pw,curr);
ScalarType ew_w1 = DistanceFunctor()(pw,pw1);
ScalarType ec_w1 = DistanceFunctor()(pw1,curr);
CoordType w_c = (pw->cP()-curr->cP()).Normalize() * ew_c;
CoordType w_w1 = (pw->cP() - pw1->cP()).Normalize() * ew_w1;
CoordType w1_c = (pw1->cP() - curr->cP()).Normalize() * ec_w1;
ScalarType alpha,alpha_, beta,beta_,theta,h,delta,s,a,b;
alpha = acos((w_c.dot(w1_c))/(ew_c*ec_w1));
s = (d_curr + d_pw1+ec_w1)/2;
a = s/ec_w1;
b = a*s;
alpha_ = 2*acos ( std::min<ScalarType>(1.0,sqrt( (b- a* d_pw1)/d_curr)));
if ( alpha+alpha_ > M_PI){
curr_d = d_curr + ew_c;
}else
{
beta_ = 2*acos ( std::min<ScalarType>(1.0,sqrt( (b- a* d_curr)/d_pw1)));
beta = acos((w_w1).dot(-w1_c)/(ew_w1*ec_w1));
if ( beta+beta_ > M_PI)
curr_d = d_pw1 + ew_w1;
else
{
theta = ScalarType(M_PI)-alpha-alpha_;
delta = cos(theta)* ew_c;
h = sin(theta)* ew_c;
curr_d = sqrt( pow(h,2)+ pow(d_curr + delta,2));
}
}
return (curr_d);
}
/*
This is the low level version of the geodesic computation framework.
Starting from the seeds, it assign a distance value to each vertex. The distance of a vertex is its
approximated geodesic distance to the closest seeds.
This is function is not meant to be called (although is not prevented). Instead, it is invoked by
wrapping function.
*/
static VertexPointer Visit(
MeshType & m,
std::vector<VertDist> & seedVec, // the set of seed to start from
bool farthestOnBorder = false,
ScalarType distance_threshold = std::numeric_limits<ScalarType>::max(), // cut off distance (do no compute anything farther than this value)
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * vertSource = NULL, // if present we put in this attribute the closest source for each vertex
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * vertParent = NULL, // if present we put in this attribute the parent in the path that goes from the vertex to the closest source
std::vector<VertexPointer> *InInterval=NULL)
{
std::vector<VertDist> frontier;
VertexPointer farthest=0,pw,pw1;
//Requirements
assert(HasPerVertexVFAdjacency(m) && HasPerFaceVFAdjacency(m));
assert(!seedVec.empty());
TempDataType TD(m.vert, std::numeric_limits<ScalarType>::max());
typename std::vector <VertDist >::iterator ifr;
for(ifr = seedVec.begin(); ifr != seedVec.end(); ++ifr){
(*ifr).d = 0.0;
TD[(*ifr).v].d = 0.0;
TD[(*ifr).v].source = (*ifr).v;
TD[(*ifr).v].parent = (*ifr).v;
frontier.push_back(VertDist((*ifr).v,0.0));
}
// initialize Heap
make_heap(frontier.begin(),frontier.end(),pred());
ScalarType curr_d,d_curr = 0.0,d_heap;
ScalarType max_distance=0.0;
while(!frontier.empty() && max_distance < distance_threshold)
{
pop_heap(frontier.begin(),frontier.end(),pred());
VertexPointer curr = (frontier.back()).v;
if (InInterval!=NULL) InInterval->push_back(curr);
if(vertSource!=NULL) (*vertSource)[curr] = TD[curr].source;
if(vertParent!=NULL) (*vertParent)[curr] = TD[curr].parent;
d_heap = (frontier.back()).d;
frontier.pop_back();
assert(TD[curr].d <= d_heap);
if(TD[curr].d < d_heap )// a vertex whose distance has been improved after it was inserted in the queue
continue;
assert(TD[curr].d == d_heap);
d_curr = TD[curr].d;
bool isLeaf = (!farthestOnBorder || curr->IsB());
face::VFIterator<FaceType> x;int k;
for( x.f = curr->VFp(), x.z = curr->VFi(); x.f!=0; ++x )
for(k=0;k<2;++k)
{
if(k==0) {
pw = x.f->V1(x.z);
pw1=x.f->V2(x.z);
}
else {
pw = x.f->V2(x.z);
pw1=x.f->V1(x.z);
}
const ScalarType & d_pw1 = TD[pw1].d;
{
const ScalarType inter = DistanceFunctor()(curr,pw1);//(curr->P() - pw1->P()).Norm();
const ScalarType tol = (inter + d_curr + d_pw1)*.0001f;
if ( (TD[pw1].source != TD[curr].source)||// not the same source
(inter + d_curr < d_pw1 +tol ) ||
(inter + d_pw1 < d_curr +tol ) ||
(d_curr + d_pw1 < inter +tol ) // triangular inequality
)
curr_d = d_curr + DistanceFunctor()(pw,curr);//(pw->P()-curr->P()).Norm();
else
curr_d = Distance(pw,pw1,curr,d_pw1,d_curr);
}
if(TD[pw].d > curr_d){
TD[pw].d = curr_d;
TD[pw].source = TD[curr].source;
TD[pw].parent = curr;
frontier.push_back(VertDist(pw,curr_d));
push_heap(frontier.begin(),frontier.end(),pred());
}
if(isLeaf){
if(d_curr > max_distance){
max_distance = d_curr;
farthest = curr;
}
}
}
}// end while
// Copy found distance onto the Quality (\todo parametric!)
if (InInterval==NULL)
{
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD())
(*vi).Q() = TD[&(*vi)].d;
}
else
{
assert(InInterval->size()>0);
for(size_t i=0;i<InInterval->size();i++)
(*InInterval)[i]->Q() = TD[(*InInterval)[i]].d;
}
return farthest;
}
public:
/*
Given a mesh and a vector of pointers to seed vertices, this function assigns the approximated geodesic
distance from the closest source to all the mesh vertices within the
specified interval and returns the found vertices writing on their Quality field the distance.
Optionally for each vertex it can store, in a passed attribute, its corresponding seed vertex.
To allocate such an attribute:
typename MeshType::template PerVertexAttributeHandle<VertexPointer> sources;
sources = tri::Allocator<CMeshO>::AddPerVertexAttribute<VertexPointer> (m,"sources");
*/
static bool FarthestVertex( MeshType & m,
std::vector<VertexPointer> & seedVec,
VertexPointer & farthest_vert,
ScalarType distance_thr = std::numeric_limits<ScalarType>::max(),
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sourceSeed = NULL,
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * parentSeed = NULL,
std::vector<VertexPointer> *InInterval=NULL)
{
typename std::vector<VertexPointer>::iterator fi;
std::vector<VertDist> vdSeedVec;
if(seedVec.empty()) return false;
for( fi = seedVec.begin(); fi != seedVec.end() ; ++fi)
vdSeedVec.push_back(VertDist(*fi,0.0));
farthest_vert = Visit(m, vdSeedVec, false, distance_thr, sourceSeed, parentSeed, InInterval);
return true;
}
/*
Given a mesh and a pointers to a vertex-source (source), assigns the approximated geodesic
distance from the vertex-source to all the mesh vertices and returns the pointer to the farthest
Note: it updates the field Q() of the vertices
*/
static bool FarthestVertex( MeshType & m, VertexPointer seed, ScalarType distance_thr = std::numeric_limits<ScalarType>::max())
{
std::vector<VertexPointer> seedVec(1,seed);
VertexPointer v0;
return FarthestVertex(m,seedVec,v0,distance_thr);
}
/*
Same as FarthestPoint but the returned pointer is to a border vertex
Note: update the field Q() of the vertices
*/
static void FarthestBVertex(MeshType & m,
std::vector<VertexPointer> & seedVec,
VertexPointer & farthest,
ScalarType & distance,
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL
)
{
std::vector<VertDist>fr;
for(typename std::vector<VertexPointer>::iterator fi = seedVec.begin(); fi != seedVec.end() ; ++fi)
fr.push_back(VertDist(*fi,0));
farthest = Visit(m,fr,distance,true,sources);
}
/*
Same as FarthestPoint but the returned pointer is to a border vertex
Note: update the field Q() of the vertices
*/
static void FarthestBVertex( MeshType & m,
VertexPointer seed,
VertexPointer & farthest,
ScalarType & distance,
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL)
{
std::vector<VertexPointer> fro(1,seed);
VertexPointer v0;
FarthestBVertex(m,fro,v0,distance,sources);
farthest = v0;
}
/*
Assigns to each vertex of the mesh its distance to the closest vertex on the border
Note: update the field Q() of the vertices
Note: it needs the border bit set.
*/
static bool DistanceFromBorder( MeshType & m, typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL
){
std::vector<VertexPointer> fro;
VertexIterator vi;
VertexPointer farthest;
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if( (*vi).IsB())
fro.push_back(&(*vi));
if(fro.empty()) return false;
tri::UpdateQuality<MeshType>::VertexConstant(m,0);
return FarthestVertex(m,fro,farthest,std::numeric_limits<ScalarType>::max(),sources);
}
};// end class
}// end namespace tri
}// end namespace vcg
#endif
|