File: hole.h

package info (click to toggle)
meshlab 1.3.2%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 21,060 kB
  • ctags: 33,549
  • sloc: cpp: 224,813; ansic: 8,170; xml: 119; makefile: 80
file content (860 lines) | stat: -rw-r--r-- 24,880 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004                                                \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *   
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
#ifndef __VCG_TRI_UPDATE_HOLE
#define __VCG_TRI_UPDATE_HOLE

#include <wrap/callback.h>
#include <vcg/math/base.h>
#include <vcg/complex/algorithms/clean.h>
#include <float.h>

// This file contains three Ear Classes
// - TrivialEar
// - MinimumWeightEar
// - SelfIntersectionEar
// and a static class Hole for filling holes that is templated on the ear class



namespace vcg {
	namespace tri {

	/*
	An ear is identified by TWO pos.
	The Three vertexes of an Ear are:
	e0.VFlip().v
	e0.v
	e1.v
	Invariants:
	  e1 == e0.NextB();
	  e1.FlipV() == e0;

	Situazioni ear non manifold, e degeneri (buco triangolare)

	T  XXXXXXXXXXXXX    A        /XXXXX        B      en/XXXXX
	/XXXXXXXXXXXXXXX            /XXXXXX                /XXXXXX
	XXXXXXep==en XXX     ep\   /en XXXX               /e1 XXXX
	XXXXXX ----/| XX   ------ ----/| XX       ------ ----/|XXX
	XXXXXX|   /e1 XX   XXXXXX|   /e1 XX       XXXXXX|  o/e0 XX
	XXXXXX|  /XXXXXX   XXXXXX|  /XXXXXX       XXXXXX|  /XXXXXX
	XXX e0|o/XXXXXXX   XXX e0|o/XXXXXXX       XXX ep| /XXXXXXX
	XXX  \|/XXXXXXXX   XXX  \|/XXXXXXXX       XXX  \|/XXXXXXXX
	XXXXXXXXXXXXXXXX   XXXXXXXXXXXXXXXX       XXXXXXXXXXXXXXXX
	*/
template<class MESH> class TrivialEar
{
public:
  typedef typename MESH::FaceType FaceType;
  typedef typename MESH::FacePointer FacePointer;
  typedef typename face::Pos<FaceType>    PosType;
  typedef typename MESH::ScalarType ScalarType;
  typedef typename MESH::CoordType CoordType;

  PosType e0;
  PosType e1;
  CoordType n; // the normal of the face defined by the ear
  const char * Dump() {return 0;}
  // The following members are useful to consider the Ear as a generic <triangle>
  // with p0 the 'center' of the ear.
  const CoordType &cP(int i) const {return P(i);}
  const CoordType &P(int i) const {
    switch(i) {
    case 0 : return e0.v->cP();
    case 1 : return e1.v->cP();
    case 2 : return e0.VFlip()->cP();
    default: assert(0);
    }
    return e0.v->cP();
  }

  ScalarType quality;
  ScalarType angleRad;
  TrivialEar(){}
  TrivialEar(const PosType & ep)
  {
    e0=ep;
    assert(e0.IsBorder());
    e1=e0;
    e1.NextB();
    n=vcg::Normal<TrivialEar>(*this);
    ComputeQuality();
    ComputeAngle();
  }

  /// Compute the angle of the two edges of the ear.
  // it tries to make the computation in a precision safe way.
  // the angle computation takes into account the case of reversed ears
  void ComputeAngle()
  {
    angleRad=Angle(cP(2)-cP(0), cP(1)-cP(0));
    ScalarType flipAngle = n.dot(e0.v->N());
    if(flipAngle<0)		angleRad = (2.0 *(ScalarType)M_PI) - angleRad;
  }

  virtual inline bool operator < ( const TrivialEar & c ) const { return quality <  c.quality; }

  bool IsNull(){return e0.IsNull() || e1.IsNull();}
  void SetNull(){e0.SetNull();e1.SetNull();}
  virtual	void ComputeQuality() {	quality = QualityFace(*this) ; }
  bool IsUpToDate()	{return ( e0.IsBorder() && e1.IsBorder());}
  // An ear is degenerated if both of its two endpoints are non manifold.
  bool IsDegen(const int nonManifoldBit)
  {
    if(e0.VFlip()->IsUserBit(nonManifoldBit) && e1.V()->IsUserBit(nonManifoldBit))
      return true;
    else return false;
  }
  bool IsConcave() const {return(angleRad > (float)M_PI);}

  virtual bool Close(PosType &np0, PosType &np1, FaceType * f)
  {
    // simple topological check
    if(e0.f==e1.f) {
      //printf("Avoided bad ear");
      return false;
    }

    //usato per generare una delle due nuove orecchie.
    PosType	ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
    PosType	en=e1; en.NextB();												 // he successivo a e1

    (*f).V(0) = e0.VFlip();
    (*f).V(1) = e0.v;
    (*f).V(2) = e1.v;
    ComputeNormal(*f);

    face::FFAttachManifold(f,0,e0.f,e0.z);
    face::FFAttachManifold(f,1,e1.f,e1.z);
    face::FFSetBorder(f,2);

    // caso ear degenere per buco triangolare
    if(ep==en)
    {
      //printf("Closing the last triangle");
      face::FFAttachManifold(f,2,en.f,en.z);
      np0.SetNull();
      np1.SetNull();
    }
    // Caso ear non manifold a
    else if(ep.v==en.v)
    {
      //printf("Ear Non manif A\n");
      PosType	enold=en;
      en.NextB();
      face::FFAttachManifold(f,2,enold.f,enold.z);
      np0=ep;
      np1=en;
    }
    // Caso ear non manifold b
    else if(ep.VFlip()==e1.v)
    {
      //printf("Ear Non manif B\n");
      PosType	epold=ep;
      ep.FlipV(); ep.NextB(); ep.FlipV();
      face::FFAttachManifold(f,2,epold.f,epold.z);
      np0=ep;  // assign the two new
      np1=en;  // pos that denote the ears
    }
    else // caso standard // Now compute the new ears;
    {
      np0=ep;
      np1=PosType(f,2,e1.v);
    }

    return true;
  }

};  // end TrivialEar Class

//Ear with FillHoleMinimumWeight's quality policy
template<class MESH> class MinimumWeightEar : public TrivialEar<MESH>
{
public:
  static float &DiedralWeight() { static float _dw=0.1; return _dw;}
  typedef TrivialEar<MESH> TE;
  typename MESH::ScalarType dihedralRad;
  typename MESH::ScalarType aspectRatio;
  const char * Dump() {
    static char buf[200];
    if(this->IsConcave()) sprintf(buf,"Dihedral -(deg) %6.2f Quality %6.2f\n",math::ToDeg(dihedralRad),aspectRatio);
    else sprintf(buf,"Dihedral  (deg) %6.2f Quality %6.2f\n",math::ToDeg(dihedralRad),aspectRatio);
    return buf;
  }

  MinimumWeightEar(){}
  MinimumWeightEar(const typename face::Pos<typename MESH::FaceType>& ep) : TrivialEar<MESH>(ep)
  {
    ComputeQuality();
  }

  // In the heap, by default, we retrieve the LARGEST value,
  // so if we need the ear with minimal dihedral angle, we must reverse the sign of the comparison.
  // The concave elements must be all in the end of the heap, sorted accordingly,
  // So if only one of the two ear is Concave that one is always the minimum one.
  // the pow function is here just to give a way to play with different weighting schemas, balancing in a different way

  virtual inline bool operator <  ( const MinimumWeightEar & c ) const
  {
    if(TE::IsConcave()  && ! c.IsConcave() ) return true;
    if(!TE::IsConcave()  &&  c.IsConcave() ) return false;

    return aspectRatio - (dihedralRad/M_PI)*DiedralWeight() < c.aspectRatio -(c.dihedralRad/M_PI)*DiedralWeight();

//      return (pow((float)dihedralRad,(float)DiedralWeight())/aspectRatio) > (pow((float)c.dihedralRad,(float)DiedralWeight())/c.aspectRatio);
  }

  // the real core of the whole hole filling strategy.
  virtual void ComputeQuality()
  {
    //compute quality by (dihedral ancgle, area/sum(edge^2) )
    typename MESH::CoordType  n1=TE::e0.FFlip()->cN();
    typename MESH::CoordType n2=TE::e1.FFlip()->cN();

    dihedralRad = std::max(Angle(TE::n,n1),Angle(TE::n,n2));
    aspectRatio = QualityFace(*this);
  }

};  // end class MinimumWeightEar


//Ear for selfintersection algorithm
template<class MESH> class SelfIntersectionEar : public MinimumWeightEar<MESH>
{
public:
  typedef typename MESH::FaceType FaceType;
  typedef typename MESH::FacePointer FacePointer;
  typedef typename face::Pos<FaceType>    PosType;
  typedef typename MESH::ScalarType ScalarType;
  typedef typename MESH::CoordType CoordType;

  static std::vector<FacePointer> &AdjacencyRing()
  {
    static std::vector<FacePointer> ar;
    return ar;
  }

  SelfIntersectionEar(){}
  SelfIntersectionEar(const PosType & ep):MinimumWeightEar<MESH>(ep){}

  virtual bool Close(PosType &np0, PosType &np1, FacePointer f)
  {
    PosType	ep=this->e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
    PosType	en=this->e1; en.NextB();	// he successivo a e1
//    bool triangularHole = false;
//    if(en==ep || en-) triangularHole=true;


    //costruisco la faccia e poi testo, o copio o butto via.
    (*f).V(0) = this->e0.VFlip();
    (*f).V(1) = this->e0.v;
    (*f).V(2) = this->e1.v;
    face::FFSetBorder(f,0);
    face::FFSetBorder(f,1);
    face::FFSetBorder(f,2);

    typename std::vector< FacePointer >::iterator it;
    for(it = this->AdjacencyRing().begin();it!= this->AdjacencyRing().end();++it)
    {
      if(!(*it)->IsD())
      {
        if(	tri::Clean<MESH>::TestFaceFaceIntersection(f,*it))
          return false;
        // We must also check that the newly created face does not have any edge in common with other existing surrounding faces
        // Only the two faces of the ear can share an edge with the new face
        if(face::CountSharedVertex(f,*it)==2)
        {
          int e0,e1;
          bool ret=face::FindSharedEdge(f,*it,e0,e1);
          assert(ret);
          if(!face::IsBorder(**it,e1))
            return false;
        }
      }
    }
    bool ret=TrivialEar<MESH>::Close(np0,np1,f);
    if(ret) AdjacencyRing().push_back(f);
    return ret;
  }
}; // end class SelfIntersectionEar

// Funzione principale per chiudier un buco in maniera topologicamente corretta.
// Gestisce situazioni non manifold ragionevoli
// (tutte eccetto quelle piu' di 2 facce per 1 edge).
// Controlla che non si generino nuove situazioni non manifold chiudendo orecchie
// che sottendono un edge che gia'esiste.

template <class MESH>
class Hole
{
public:
			typedef typename MESH::VertexType				VertexType;
			typedef typename MESH::VertexPointer		VertexPointer;
			typedef	typename MESH::ScalarType				ScalarType;
			typedef typename MESH::FaceType					FaceType;
			typedef typename MESH::FacePointer			FacePointer;
			typedef typename MESH::FaceIterator			FaceIterator;
			typedef typename MESH::CoordType				CoordType;
      typedef typename vcg::Box3<ScalarType>  Box3Type;
			typedef typename face::Pos<FaceType>    PosType;

public:

		class Info
		{
		public: 
			Info(){}
			Info(PosType const &pHole, int  const pHoleSize, Box3<ScalarType> &pHoleBB)
			{
				p=pHole;	
				size=pHoleSize;
				bb=pHoleBB;
			}

			PosType p;
			int size;
			Box3Type  bb;
			
			bool operator <  (const  Info & hh) const {return size <  hh.size;}

			ScalarType Perimeter()
			{
				ScalarType sum=0;
				PosType ip = p;
				do
				{
					sum+=Distance(ip.v->cP(),ip.VFlip()->cP());
					ip.NextB();
				}
				while (ip != p);
				return sum;				
			}

      // Support function to test the validity of a single hole loop
      // for now it test only that all the edges are border;
      // The real test should check if all non manifold vertices 
      // are touched only by edges belonging to this hole loop.
      bool CheckValidity()
      {
       if(!p.IsBorder()) 
         return false;
       PosType ip=p;ip.NextB();
       for(;ip!=p;ip.NextB())
       {
          if(!ip.IsBorder()) 
            return false;
       }       
       return true;
      }
		};


		class EdgeToBeAvoided
		{
		  VertexPointer v0,v1;
		  EdgeToBeAvoided(VertexPointer _v0, VertexPointer _v1):v0(_v0),v1(_v1)
		  {
			if(v0>v1) swap(v0,v1);
		  }
		  bool operator < (const EdgeToBeAvoided &e)
		  {
			if(this->v0!=e.v0) return this->v0<e.v0;
			return this->v1<e.v1;
		  }
		};
/// Main Single Hole Filling Function
/// Given a specific hole (identified by the Info h) it fills it
/// It also update a vector of face pointers
/// It uses an heap to choose the best ear to be closed

template<class EAR>
	static void FillHoleEar(MESH &m, // The mesh to be filled
							Info &h, // the particular hole to be filled
							std::vector<FacePointer *> &facePointersToBeUpdated)
	{
	  //Aggiungo le facce e aggiorno il puntatore alla faccia!
	  FaceIterator f = tri::Allocator<MESH>::AddFaces(m, h.size-2, facePointersToBeUpdated);

	  assert(h.p.f >= &*m.face.begin());
	  assert(h.p.f <= &m.face.back());
	  assert(h.p.IsBorder());

	  std::vector< EAR > EarHeap;
	  EarHeap.reserve(h.size);
	  int nmBit= VertexType::NewBitFlag(); // non manifoldness bit

	  //First loops around the hole to mark non manifold vertices.
	  PosType ip = h.p;   // Pos iterator
	  do{
		ip.V()->ClearUserBit(nmBit);
		ip.V()->ClearV();
		ip.NextB();
	  } while(ip!=h.p);

	  ip = h.p;   // Re init the pos iterator for another loop (useless if everithing is ok!!)
	  do{
		if(!ip.V()->IsV())
		  ip.V()->SetV();   // All the vertexes that are visited more than once are non manifold
		else ip.V()->SetUserBit(nmBit);
		ip.NextB();
	  } while(ip!=h.p);

	  PosType fp = h.p;
	  do{
		EAR appEar = EAR(fp);
		EarHeap.push_back( appEar );
		//printf("Adding ear %s ",app.Dump());
		fp.NextB();
		assert(fp.IsBorder());
	  }while(fp!=h.p);

	  int cnt=h.size;

	  make_heap(EarHeap.begin(), EarHeap.end());

	  //finche' il buco non e' chiuso o non ci sono piu' orecchie da analizzare.
	  while( cnt > 2 && !EarHeap.empty() )
	  {
		//printf("Front of the heap is %s", H.front().Dump());
		pop_heap(EarHeap.begin(), EarHeap.end());	 // retrieve the MAXIMUM value and put in the back;
		EAR BestEar=EarHeap.back();
		EarHeap.pop_back();

		if(BestEar.IsUpToDate() && !BestEar.IsDegen(nmBit))
		{
		  if((*f).HasPolyInfo()) (*f).Alloc(3);
		  PosType ep0,ep1;
		  if(BestEar.Close(ep0,ep1,&*f))
		  {
			if(!ep0.IsNull()){
			  EarHeap.push_back(EAR(ep0));
			  push_heap( EarHeap.begin(), EarHeap.end());
			}
			if(!ep1.IsNull()){
			  EarHeap.push_back(EAR(ep1));
			  push_heap( EarHeap.begin(), EarHeap.end());
			}
			--cnt;
			++f;
		  }
		}//is update()
	  }//fine del while principale.

	  while(f!=m.face.end()){
		tri::Allocator<MESH>::DeleteFace(m,*f);
		f++;
	  }

	  VertexType::DeleteBitFlag(nmBit); // non manifoldness bit
	}

	template<class EAR>
	static int EarCuttingFill(MESH &m, int sizeHole, bool Selected = false, CallBackPos *cb=0)
	{
	  std::vector< Info > vinfo;
	  GetInfo(m, Selected,vinfo);

	  typename std::vector<Info >::iterator ith;
	  int indCb=0;
	  int holeCnt=0;
	  std::vector<FacePointer *> facePtrToBeUpdated;
	  for(ith = vinfo.begin(); ith!= vinfo.end(); ++ith)
		facePtrToBeUpdated.push_back( &(*ith).p.f );

	  for(ith = vinfo.begin(); ith!= vinfo.end(); ++ith)
	  {
		indCb++;
		if(cb) (*cb)(indCb*10/vinfo.size(),"Closing Holes");
		if((*ith).size < sizeHole){
		  holeCnt++;
		  FillHoleEar< EAR >(m, *ith,facePtrToBeUpdated);
		}
	  }
	  return holeCnt;
	}

/// Main Hole Filling function.
/// Given a mesh search for all the holes smaller than a given size and fill them
/// It returns the number of filled holes.

template<class EAR>
	static int EarCuttingIntersectionFill(MESH &m, const int maxSizeHole, bool Selected, CallBackPos *cb=0)
	{
	  std::vector<Info > vinfo;
	  GetInfo(m, Selected,vinfo);
	  typename std::vector<Info>::iterator ith;

	  // collect the face pointer that has to be updated by the various addfaces
	  std::vector<FacePointer *> vfpOrig;
	  for(ith = vinfo.begin(); ith!= vinfo.end(); ++ith)
		vfpOrig.push_back( &(*ith).p.f );

	  int indCb=0;
	  int holeCnt=0;
	  for(ith = vinfo.begin(); ith!= vinfo.end(); ++ith)
	  {
		indCb++;
		if(cb) (*cb)(indCb*10/vinfo.size(),"Closing Holes");
		if((*ith).size < maxSizeHole){
		  std::vector<FacePointer *> facePtrToBeUpdated;
		  holeCnt++;
		  facePtrToBeUpdated=vfpOrig;
		  EAR::AdjacencyRing().clear();
		  //Loops around the hole to collect the faces that have to be tested for intersection.
		  PosType ip = (*ith).p;
		  do
		  {
			PosType inp = ip;
			do
			{
			  inp.FlipE();
			  inp.FlipF();
			  EAR::AdjacencyRing().push_back(inp.f);
			} while(!inp.IsBorder());
			ip.NextB();
		  }while(ip != (*ith).p);

		  typename std::vector<FacePointer>::iterator fpi;
		  for(fpi=EAR::AdjacencyRing().begin();fpi!=EAR::AdjacencyRing().end();++fpi)
			facePtrToBeUpdated.push_back( &*fpi );

		  FillHoleEar<EAR >(m, *ith,facePtrToBeUpdated);
		  EAR::AdjacencyRing().clear();
		}
	  }
	  return holeCnt;
	}



	static void GetInfo(MESH &m, bool Selected ,std::vector<Info >& VHI)
		{
	  tri::UpdateFlags<MESH>::FaceClearV(m);
			for(FaceIterator fi = m.face.begin(); fi!=m.face.end(); ++fi)
			{
				if(!(*fi).IsD())
				{
					if(Selected && !(*fi).IsS())
					{
						//se devo considerare solo i triangoli selezionati e 
						//quello che sto considerando non lo e' lo marchio e vado avanti
					  (*fi).SetV();
					}
					else
					{
							for(int j =0; j<3 ; ++j)
							{
							  if( face::IsBorder(*fi,j) && !(*fi).IsV() )
								{//Trovato una faccia di bordo non ancora visitata.
									(*fi).SetV();
							    PosType sp(&*fi, j, (*fi).V(j));
									PosType fp=sp;
									int holesize=0;

									Box3Type hbox;
									hbox.Add(sp.v->cP());
                  //printf("Looping %i : (face %i edge %i) \n", VHI.size(),sp.f-&*m.face.begin(),sp.z);
                                    sp.f->SetV();
									do
									{
										sp.f->SetV();
										hbox.Add(sp.v->cP());
										++holesize;
										sp.NextB();
										sp.f->SetV();
										assert(sp.IsBorder());
									}while(sp != fp);

									//ho recuperato l'inofrmazione su tutto il buco
									VHI.push_back( Info(sp,holesize,hbox) );
								}
							}//for sugli edge del triangolo
					}//S & !S
				}//!IsD()
			}//for principale!!!
		}

		//Minimum Weight Algorithm
		class Weight
		{
		public:

			Weight() { ang = 180; ar = FLT_MAX ;}
			Weight( float An, float Ar ) { ang=An ; ar= Ar;}
			~Weight() {}

			float angle() const { return ang; }
			float area()  const { return ar; }

			Weight operator+( const Weight & other ) const {return Weight( std::max( angle(), other.angle() ), area() + other.area());}
			bool operator<( const Weight & rhs ) const {return ( angle() < rhs.angle() ||(angle() == rhs.angle() && area() < rhs.area()));	}

		private:
			float ang;
			float ar;
		};

		/*     
    \ /        \/ 
   v1*---------*v4 
    / \       /
   /   \     /
  / 	  \   /
 /ear	   \ /
*---------*-
| v3      v2\
*/
		
	static float ComputeDihedralAngle(CoordType  p1,CoordType  p2,CoordType  p3,CoordType  p4)
		{
			CoordType  n1 = NormalizedNormal(p1,p3,p2);
			CoordType	 n2 = NormalizedNormal(p1,p2,p4);
			return  math::ToDeg(AngleN(n1,n2));
		}

  static bool existEdge(PosType pi,PosType pf)
		{
			PosType app = pi;
			PosType appF = pi;
			PosType tmp;
			assert(pi.IsBorder());
			appF.NextB();
			appF.FlipV();
			do
			{
				tmp = app;
				tmp.FlipV();
				if(tmp.v == pf.v)
					return true;
				app.FlipE();
				app.FlipF();

				if(app == pi)return false;
			}while(app != appF);
			return false;
		}

	static Weight computeWeight( int i, int j, int k,
			std::vector<PosType > pv,
			std::vector< std::vector< int > >  v)
		{
			PosType pi = pv[i];
			PosType pj = pv[j];
			PosType pk = pv[k];

			//test complex edge
			if(existEdge(pi,pj) || existEdge(pj,pk)|| existEdge(pk,pi)	)	
			{
				return Weight();
			}
			// Return an infinite weight, if one of the neighboring patches
			// could not be created.
			if(v[i][j] == -1){return Weight();}
			if(v[j][k] == -1){return Weight();}

			//calcolo il massimo angolo diedrale, se esiste.
			float angle = 0.0f;
			PosType px;
			if(i + 1 == j)
			{
				px = pj; 
				px.FlipE(); px.FlipV();
				angle = std::max<float>(angle , ComputeDihedralAngle(pi.v->P(), pj.v->P(), pk.v->P(), px.v->P())	);
			}
			else
			{
				angle = std::max<float>( angle, ComputeDihedralAngle(pi.v->P(),pj.v->P(), pk.v->P(), pv[ v[i][j] ].v->P()));
			}

			if(j + 1 == k)
			{
				px = pk; 
				px.FlipE(); px.FlipV();
				angle = std::max<float>(angle , ComputeDihedralAngle(pj.v->P(), pk.v->P(), pi.v->P(), px.v->P())	);
			}
			else
			{
				angle = std::max<float>( angle, ComputeDihedralAngle(pj.v->P(),pk.v->P(), pi.v->P(), pv[ v[j][k] ].v->P()));
			}

			if( i == 0 && k == (int)v.size() - 1)
			{
				px = pi; 
				px.FlipE(); px.FlipV();
				angle = std::max<float>(angle , ComputeDihedralAngle(pk.v->P(), pi.v->P(),  pj.v->P(),px.v->P() )	);
			}

			ScalarType area = ( (pj.v->P() - pi.v->P()) ^ (pk.v->P() - pi.v->P()) ).Norm() * 0.5;

			return Weight(angle, area);
		}

	static void calculateMinimumWeightTriangulation(MESH &m, FaceIterator f,std::vector<PosType > vv )
		{
			std::vector< std::vector< Weight > > w; //matrice dei pesi minimali di ogni orecchio preso in conzideraione
			std::vector< std::vector< int    > > vi;//memorizza l'indice del terzo vertice del triangolo

			//hole size
			int nv = vv.size();
			
			w.clear();
			w.resize( nv, std::vector<Weight>( nv, Weight() ) );

			vi.resize( nv, std::vector<int>( nv, 0 ) );

			//inizializzo tutti i pesi possibili del buco
			for ( int i = 0; i < nv-1; ++i )
				w[i][i+1] = Weight( 0, 0 );

			//doppio ciclo for per calcolare di tutti i possibili triangoli i loro pesi.
			for ( int j = 2; j < nv; ++j )
			{
				for ( int i = 0; i + j < nv; ++i )
				{
					//per ogni triangolazione mi mantengo il minimo valore del peso tra i triangoli possibili
					Weight minval;

					//indice del vertice che da il peso minimo nella triangolazione corrente
					int minIndex = -1;

					//ciclo tra i vertici in mezzo a i due prefissati
					for ( int m = i + 1; m < i + j; ++m )
					{
						Weight a = w[i][m];
						Weight b = w[m][i+j];
						Weight newval =  a + b + computeWeight( i, m, i+j, vv, vi);
						if ( newval < minval )
						{
							minval = newval;
							minIndex = m;
						}
					}
					w[i][i+j] = minval;
					vi[i][i+j] = minIndex;
				}
			}

			//Triangulate
			int i, j;
			i=0; j=nv-1;
			
			triangulate(m,f, i, j, vi, vv);

			while(f!=m.face.end())
			{
				(*f).SetD();
				++f;
				m.fn--;
			}
		}


	static void triangulate(MESH &m, FaceIterator &f,int i, int j,
                          std::vector< std::vector<int> > vi, std::vector<PosType > vv)
		{
			if(i + 1 == j){return;}
			if(i==j)return;

			int k = vi[i][j];

			if(k == -1)	return;

			//Setto i vertici
			f->V(0) = vv[i].v;
			f->V(1) = vv[k].v;
			f->V(2) = vv[j].v;
			
			f++;
			triangulate(m,f,i,k,vi,vv);
			triangulate(m,f,k,j,vi,vv);
		}

  static void MinimumWeightFill(MESH &m, int holeSize, bool Selected)
		{
			std::vector<PosType > vvi;
			std::vector<FacePointer * > vfp;

			std::vector<Info > vinfo;
			typename std::vector<Info >::iterator VIT;
			GetInfo(m, Selected,vinfo);

			for(VIT = vinfo.begin(); VIT != vinfo.end();++VIT)
			{
				vvi.push_back(VIT->p);
			}

			typename std::vector<PosType >::iterator ith;
			typename std::vector<PosType >::iterator ithn;
			typename std::vector<VertexPointer >::iterator itf;

			std::vector<PosType > app;
			PosType ps;
			std::vector<FaceType > tr;
			std::vector<VertexPointer > vf;

			for(ith = vvi.begin(); ith!= vvi.end(); ++ith)
			{
				tr.clear();
				vf.clear();
				app.clear();
				vfp.clear();

				ps = *ith;
				getBoundHole(ps,app);

        if(app.size() <= size_t(holeSize) )
				{
					typename std::vector<PosType >::iterator itP;
					std::vector<FacePointer *> vfp;

					for(ithn = vvi.begin(); ithn!= vvi.end(); ++ithn)
						vfp.push_back(&(ithn->f));

					for(itP = app.begin (); itP != app.end ();++itP)
						vfp.push_back( &(*itP).f );

					//aggiungo le facce
					FaceIterator f = tri::Allocator<MESH>::AddFaces(m, (app.size()-2) , vfp);

					calculateMinimumWeightTriangulation(m,f, app);
				}
			}		

		}

	static void getBoundHole (PosType sp,std::vector<PosType >&ret)
		{
			PosType fp = sp;
			//take vertex around the hole
			do
			{
				assert(fp.IsBorder());
				ret.push_back(fp);
				fp.NextB();
			}while(sp != fp);
		}

};//close class Hole

} // end namespace tri
} // end namespace vcg
#endif