1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_DECIMATION_TRICOLLAPSE
#define __VCG_DECIMATION_TRICOLLAPSE
#include<vcg/complex/algorithms/edge_collapse.h>
#include<vcg/simplex/face/pos.h>
#include<vcg/complex/algorithms/local_optimization.h>
#include<vcg/complex/algorithms/update/topology.h>
namespace vcg{
namespace tri{
/** \addtogroup trimesh */
/*@{*/
/// This Class is specialization of LocalModification for the edge collapse.
/// It wraps the atomic operation EdgeCollapse to be used in a optimizatin routine.
/// Note that it has knowledge of the heap of the class LocalOptimization because
/// it is responsible of updating it after a collapse has been performed;
/// This is the base class of all the specialized collapse classes like for example Quadric Edge Collapse.
/// Each derived class
template<class TriMeshType, class VertexPair, class MYTYPE>
class TriEdgeCollapse: public LocalOptimization<TriMeshType>::LocModType
{
public:
/// static data to gather statistical information about the reasons of collapse failures
class FailStat {
public:
static int &Volume() {static int vol=0; return vol;}
static int &LinkConditionFace(){static int lkf=0; return lkf;}
static int &LinkConditionEdge(){static int lke=0; return lke;}
static int &LinkConditionVert(){static int lkv=0; return lkv;}
static int &OutOfDate() {static int ofd=0; return ofd;}
static int &Border() {static int bor=0; return bor;}
static void Init()
{
Volume() =0;
LinkConditionFace()=0;
LinkConditionEdge()=0;
LinkConditionVert()=0;
OutOfDate() =0;
Border() =0;
}
};
protected:
typedef typename TriMeshType::FaceType FaceType;
typedef typename TriMeshType::FaceType::VertexType VertexType;
// typedef typename VertexType::EdgeType EdgeType;
typedef typename FaceType::VertexType::CoordType CoordType;
typedef typename TriMeshType::VertexType::ScalarType ScalarType;
typedef typename LocalOptimization<TriMeshType>::HeapElem HeapElem;
typedef typename LocalOptimization<TriMeshType>::HeapType HeapType;
TriMeshType *mt;
///the pair to collapse
VertexPair pos;
///mark for up_dating
static int& GlobalMark(){ static int im=0; return im;}
///mark for up_dating
int localMark;
/// priority in the heap
ScalarType _priority;
public:
/// Default Constructor
inline TriEdgeCollapse()
{}
///Constructor with postype
inline TriEdgeCollapse(const VertexPair &p, int mark, BaseParameterClass *pp)
{
localMark = mark;
pos=p;
_priority = ComputePriority(pp);
}
~TriEdgeCollapse()
{}
private:
public:
inline ScalarType ComputePriority(BaseParameterClass *)
{
_priority = Distance(pos.V(0)->cP(),pos.V(1)->cP());
return _priority;
}
virtual const char *Info(TriMeshType &m) {
mt = &m;
static char buf[60];
sprintf(buf,"%i -> %i %g\n", int(pos.V(0)-&m.vert[0]), int(pos.V(1)-&m.vert[0]),-_priority);
return buf;
}
inline void Execute(TriMeshType &m, BaseParameterClass *)
{
CoordType MidPoint=(pos.V(0)->P()+pos.V(1)->P())/2.0;
EdgeCollapser<TriMeshType,VertexPair>::Do(m, pos, MidPoint);
}
static bool IsSymmetric(BaseParameterClass *) { return true;}
// This function is called after an action to re-add in the heap elements whose priority could have been changed.
// in the plain case we just put again in the heap all the edges around the vertex resulting from the previous collapse: v[1].
// if the collapse is not symmetric you should add also backward edges (because v0->v1 collapse could be different from v1->v0)
inline void UpdateHeap(HeapType & h_ret, BaseParameterClass *pp)
{
GlobalMark()++; int nn=0;
VertexType *v[2];
v[0]= pos.V(0);v[1]=pos.V(1);
v[1]->IMark() = GlobalMark();
// First loop around the remaining vertex to unmark visited flags
vcg::face::VFIterator<FaceType> vfi(v[1]);
while (!vfi.End()){
vfi.V1()->ClearV();
vfi.V2()->ClearV();
++vfi;
}
// Second Loop: add all the outgoing edges around v[1]
// for each face add the two edges outgoing from v[1] and not visited.
vfi = face::VFIterator<FaceType>(v[1]);
while (!vfi.End())
{
assert(!vfi.F()->IsD());
for (int j=0;j<3;j++)
{
if( !(vfi.V1()->IsV()) && (vfi.V1()->IsRW()))
{
vfi.V1()->SetV();
h_ret.push_back(HeapElem(new MYTYPE(VertexPair( vfi.V(),vfi.V1() ),GlobalMark(),pp)));
std::push_heap(h_ret.begin(),h_ret.end());
if(! this->IsSymmetric(pp)){
h_ret.push_back(HeapElem(new MYTYPE(VertexPair( vfi.V1(),vfi.V()),GlobalMark(),pp)));
std::push_heap(h_ret.begin(),h_ret.end());
}
}
if( !(vfi.V2()->IsV()) && (vfi.V2()->IsRW()))
{
vfi.V2()->SetV();
h_ret.push_back(HeapElem(new MYTYPE(VertexPair(vfi.F()->V(vfi.I()),vfi.F()->V2(vfi.I())),GlobalMark(),pp)));
std::push_heap(h_ret.begin(),h_ret.end());
if(! this->IsSymmetric(pp)){
h_ret.push_back(HeapElem(new MYTYPE(VertexPair (vfi.F()->V1(vfi.I()),vfi.F()->V(vfi.I())),GlobalMark(),pp)));
std::push_heap(h_ret.begin(),h_ret.end());
}
}
// if(vfi.V1()->IsRW() && vfi.V2()->IsRW() )
// {
// h_ret.push_back(HeapElem(new MYTYPE(EdgeType(vfi.V1(),vfi.V2()),this->GlobalMark())));
// std::push_heap(h_ret.begin(),h_ret.end());
// if(IsSymmetric()){
// h_ret.push_back(HeapElem(new MYTYPE(EdgeType(vfi.V2(),vfi.V1()), this->GlobalMark())));
// std::push_heap(h_ret.begin(),h_ret.end());
// }
// }
}
++vfi;nn++;
}
// printf("ADDED %d\n",nn);
}
ModifierType IsOfType(){ return TriEdgeCollapseOp;}
inline bool IsFeasible(BaseParameterClass *){
return EdgeCollapser<TriMeshType,VertexPair>::LinkConditions(pos);
}
inline bool IsUpToDate() const
{
VertexType *v0=pos.cV(0);
VertexType *v1=pos.cV(1);
if( v0->IsD() || v1->IsD() ||
localMark < v0->IMark() ||
localMark < v1->IMark() )
{
++FailStat::OutOfDate();
return false;
}
return true;
}
virtual ScalarType Priority() const {
return _priority;
}
static void Init(TriMeshType &m, HeapType &h_ret, BaseParameterClass *pp)
{
vcg::tri::UpdateTopology<TriMeshType>::VertexFace(m);
h_ret.clear();
typename TriMeshType::FaceIterator fi;
for(fi = m.face.begin(); fi != m.face.end();++fi)
if(!(*fi).IsD()){
for (int j=0;j<3;j++)
{
VertexPair p((*fi).V0(j), (*fi).V1(j));
p.Sort();
h_ret.push_back(HeapElem(new MYTYPE(p, IMark(m),pp)));
//printf("Inserting in heap coll %3i ->%3i %f\n",p.V()-&m.vert[0],p.VFlip()-&m.vert[0],h_ret.back().locModPtr->Priority());
}
}
}
};
}//end namespace tri
}//end namespace vcg
#endif
|