1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef VCG_POISSON_SOLVER
#define VCG_POISSON_SOLVER
#define EIGEN_YES_I_KNOW_SPARSE_MODULE_IS_NOT_STABLE_YET
#include <eigen3/Eigen/Sparse>
#include <eigen3/Eigen/src/SparseCore/SparseMatrix.h>
#include <eigen3/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h>
#include <eigen3/unsupported/Eigen/SparseExtra>
#include <time.h>
#include <vcg/complex/allocate.h>
#include <vcg/complex/algorithms/clean.h>
#include <vcg/complex/algorithms/update/flag.h>
#include <vcg/complex/algorithms/update/bounding.h>
#include <vcg/complex/algorithms/parametrization/distortion.h>
namespace vcg {
namespace tri{
template <class MeshType>
class PoissonSolver
{
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType:: template PerFaceAttributeHandle<CoordType> PerFaceCoordHandle;
///the mesh itself
MeshType &mesh;
///solver data
std::map<VertexType*,int> VertexToInd;
std::map<int, VertexType*> IndToVertex;
///vertices to fix
std::vector<VertexType *> to_fix;
///unknown vector
Eigen:: DynamicSparseMatrix<double> A; // A
Eigen::VectorXd b,x;// x and b
//number of variables
unsigned int n_vert_vars;
///total system size
unsigned int total_size;
///number of fixed variables
unsigned int n_fixed_vars;
///if you intend to follow the cross field
bool use_direction_field,fix_selected,correct_fixed;
///size of the scalar field
ScalarType fieldScale;
///handle per direction field
PerFaceCoordHandle Fh0,Fh1;
int VertexIndex(VertexType* v)
{
typename std::map<VertexType*,int>::iterator iteMap=VertexToInd.find(v);
assert(iteMap!=VertexToInd.end());
return ((*iteMap).second);
}
VertexType* IndexVertex(int index)
{
typename std::map<int,VertexType*>::iterator iteMap=IndToVertex.find(index);
assert(iteMap!=IndToVertex.end());
return ((*iteMap).second);
}
void AddVertexIndex(VertexType* v,int index)
{
VertexToInd.insert(std::pair<VertexType*,int>(v,index));
IndToVertex.insert(std::pair<int,VertexType*>(index,v));
}
///set the value of A of the system Ax=b
void SetValA(int Xindex,int Yindex,ScalarType val)
{
//int size=(int)S.nrows();
assert(0 <= Xindex && Xindex < int(total_size));
assert(0 <= Yindex && Yindex < int(total_size));
//S.A().addEntryReal(Xindex,Yindex,val);
//if (Xindex>=Yindex)
A.coeffRef(Xindex,Yindex) +=val;
}
/*void FindFarestVert(VertexType* &v0,VertexType* &v1)
{
UpdateBounding<MeshType>::Box(mesh);
ScalarType d0=mesh.bbox.Diag();
ScalarType d1=d0;
v0=NULL;
v1=NULL;
for (unsigned int j=0;j<mesh.vert.size();j++)
{
VertexType *v=&mesh.vert[j];
if (!v->IsD())
{
ScalarType d_test=(v->P()-mesh.bbox.min).Norm();
if (d_test<d0)
{
v0=v;
d0=d_test;
}
d_test=(v->P()-mesh.bbox.max).Norm();
if (d_test<d1)
{
v1=v;
d1=d_test;
}
}
}
assert(v0!=NULL);
assert(v1!=NULL);
}*/
void FindFarthestVert(VertexType* &v0,VertexType* &v1)
{
UpdateBounding<MeshType>::Box(mesh);
tri::UpdateTopology<MeshType>::FaceFace(mesh);
tri::UpdateFlags<MeshType>::FaceBorderFromFF(mesh);
tri::UpdateFlags<MeshType>::VertexBorderFromFace(mesh);
ScalarType dmax=0;
v0=NULL;
v1=NULL;
for (unsigned int i=0;i<mesh.vert.size();i++)
for (unsigned int j=(i+1);j<mesh.vert.size();j++)
{
VertexType *vt0=&mesh.vert[i];
VertexType *vt1=&mesh.vert[j];
if (vt0->IsD())continue;
if (vt1->IsD())continue;
if (!vt0->IsB())continue;
if (!vt1->IsB())continue;
ScalarType d_test=(vt0->P()-vt1->P()).Norm();
if (d_test>dmax)
{
dmax=d_test;
v0=vt0;
v1=vt1;
}
}
assert(v0!=NULL);
assert(v1!=NULL);
}
///set the value of b of the system Ax=b
void SetValB(int Xindex,
ScalarType val)
{
/*S.b()[Xindex] += val;*/
b[Xindex] += val;
}
///add the area term, scalefactor is used to sum up
///and normalize on the overlap zones
void AddAreaTerm(int index[3][3][2],ScalarType ScaleFactor)
{
const ScalarType entry=0.5*ScaleFactor;
ScalarType val[3][3]= { {0, entry, -entry},
{-entry, 0, entry},
{entry, -entry, 0} };
for (int i=0;i<3;i++)
for (int j=0;j<3;j++)
{
///add for both u and v
int Xindex=index[i][j][0]*2;
int Yindex=index[i][j][1]*2;
SetValA(Xindex+1,Yindex,-val[i][j]);
SetValA(Xindex,Yindex+1,val[i][j]);
}
}
///set the diagonal of the matrix (which is zero at the beginning)
///as the sum of the other element inverted by sign
void SetDiagonal(ScalarType val[3][3])
{
for (int i=0;i<3;i++)
{
ScalarType sum=0;
for (int j=0;j<3;j++)
sum+=val[i][j];
val[i][i]=-sum;
}
}
///add this values to the right hand side
void AddRHS(ScalarType b[6],
int index[3])
{
for (int i=0;i<3;i++)
{
ScalarType valU=b[i*2];
ScalarType valV=b[(i*2)+1];
SetValB((index[i]*2),valU);
SetValB((index[i]*2)+1,valV);
}
}
///add a 3x3 block matrix to the system matrix...
///indexes are specified in the 3x3 matrix of x,y pairs
///indexes must be multiplied by 2 cause u and v
void Add33Block(ScalarType val[3][3],int index[3][3][2])
{
for (int i=0;i<3;i++)
for (int j=0;j<3;j++)
{
///add for both u and v
int Xindex=index[i][j][0]*2;
int Yindex=index[i][j][1]*2;
assert(Xindex<int(n_vert_vars*2));
assert(Yindex<int(n_vert_vars*2));
SetValA(Xindex,Yindex,val[i][j]);
SetValA(Xindex+1,Yindex+1,val[i][j]);
}
}
///add a 3x3 block matrix to the system matrix...
///indexes are specified in the 3x3 matrix of x,y pairs
///indexes must be multiplied by 2 cause u and v
void Add44Block(ScalarType val[4][4],int index[4][4][2])
{
for (int i=0;i<4;i++)
for (int j=0;j<4;j++)
{
///add for both u and v
int Xindex=index[i][j][0]*2;
int Yindex=index[i][j][1]*2;
assert(Xindex<(n_vert_vars*2));
assert(Yindex<(n_vert_vars*2));
SetValA(Xindex,Yindex,val[i][j]);
SetValA(Xindex+1,Yindex+1,val[i][j]);
}
}
///return the LHS for a given face
void perElementLHS(FaceType *f,
ScalarType val[3][3],
int index[3][3][2])
{
///initialize to zero
for (int x=0;x<3;x++)
for (int y=0;y<3;y++)
val[x][y]=0;
///get the vertices
VertexType *v[3];
v[0]=f->V(0);
v[1]=f->V(1);
v[2]=f->V(2);
///get the indexes of vertex instance (to consider cuts)
///for the current face
int Vindexes[3];
Vindexes[0]=VertexIndex(f->V(0));
Vindexes[1]=VertexIndex(f->V(1));
Vindexes[2]=VertexIndex(f->V(2));
///initialize the indexes for the block
for (int x=0;x<3;x++)
for (int y=0;y<3;y++)
{
index[x][y][0]=Vindexes[x];
index[x][y][1]=Vindexes[y];
}
///initialize edges
CoordType e[3];
for (int k=0;k<3;k++)
e[k]=v[(k+2)%3]->P()-v[(k+1)%3]->P();
///then consider area but also considering scale factor dur to overlaps
ScalarType areaT=((f->P(1)-f->P(0))^(f->P(2)-f->P(0))).Norm()/2.0;
for (int x=0;x<3;x++)
for (int y=0;y<3;y++)
if (x!=y)
{
ScalarType num=(e[x]*e[y]);
val[x][y] =num/(4.0*areaT);
}
///set the matrix as diagonal
SetDiagonal(val);
}
///return the RHS for a given face
void perElementRHS(FaceType *f,
ScalarType b[6],
ScalarType vector_field_scale=1)
{
/// then set the rhs
CoordType scaled_Kreal;
CoordType scaled_Kimag;
CoordType fNorm=f->N();
fNorm.Normalize();
CoordType p[3];
p[0]=f->P0(0);
p[1]=f->P0(1);
p[2]=f->P0(2);
CoordType neg_t[3];
neg_t[0] = fNorm ^ (p[2] - p[1]);
neg_t[1] = fNorm ^ (p[0] - p[2]);
neg_t[2] = fNorm ^ (p[1] - p[0]);
CoordType K1,K2;
/*MyMesh::PerFaceCoordHandle<ScalarType> Fh = tri::Allocator<MyMesh>::AddPerVertexAttribute<float> (m,std::string("Irradiance"));
bool CrossDir0 = tri::HasPerVertexAttribute(mesh,"CrossDir0");
bool CrossDir1 = tri::HasPerVertexAttribute(mesh,"CrossDir1");
assert(CrossDir0);
assert(CrossDir1);*/
//K1=f->Q3();
K1=Fh0[f];
K1.Normalize();
//K2=fNorm^K1;
K2=Fh1[f];
K2.Normalize();
scaled_Kreal = K1*(vector_field_scale);///2);
scaled_Kimag = K2*(vector_field_scale);///2);
b[0] = scaled_Kreal * neg_t[0];
b[1] = scaled_Kimag * neg_t[0];
b[2] = scaled_Kreal * neg_t[1];
b[3] = scaled_Kimag * neg_t[1];
b[4] = scaled_Kreal * neg_t[2];
b[5] = scaled_Kimag * neg_t[2];
////fine codice mio
}
///return the LHS and RHS for a given face
void PerElementSystemReal(FaceType *f,
ScalarType val[3][3],
int index[3][3][2],
ScalarType b[6],
ScalarType vector_field_scale=1.0)
{
perElementLHS(f,val,index);
if (use_direction_field)
perElementRHS(f,b,vector_field_scale);
}
void FixPointLSquares()
{
ScalarType penalization=1000;
int offset_row=n_vert_vars;
assert(to_fix.size()>0);
for (size_t i=0;i<to_fix.size();i++)
{
///take a vertex
VertexType *v=to_fix[i];
assert(!v->IsD());
int index=VertexIndex(v);
//v->vertex_index[0];
int indexvert=index*2;
int indexRow=(offset_row+i)*2;
SetValA(indexRow,indexRow,penalization);
SetValA(indexRow+1,indexRow+1,penalization);
///add values to the B vector
ScalarType U=v->T().U()*penalization;
ScalarType V=v->T().V()*penalization;
SetValB(indexRow,U);
SetValB(indexRow+1,V);
/*///set upper right part
SetValA(indexvert,indexCol,penalization);
SetValA(indexvert+1,indexCol+1,penalization);*/
SetValA(indexvert,indexvert,penalization);
SetValA(indexvert+1,indexvert+1,penalization);
SetValA(indexRow,indexRow,penalization);
SetValA(indexRow+1,indexRow+1,penalization);
SetValA(indexvert,indexRow,-penalization);
SetValA(indexvert+1,indexRow+1,-penalization);
SetValA(indexRow,indexvert,-penalization);
SetValA(indexRow+1,indexvert+1,-penalization);
//SetValA(indexCol+1,indexCol+1,-1);
}
}
//build the laplacian matrix cyclyng over all rangemaps
//and over all faces
void BuildLaplacianMatrix(double vfscale=1)
{
///then for each face
for (unsigned int j=0;j<mesh.face.size();j++)
{
FaceType *f=&mesh.face[j];
if (f->IsD())
continue;
int var_idx[3];//vertex variable indices
for(int k = 0; k < 3; ++k)
{
VertexType *v=f->V(k);
var_idx[k] = VertexIndex(v);
}
ScalarType val[3][3];
int index[3][3][2];
ScalarType b[6];
PerElementSystemReal(f, val,index, b, vfscale);
//Add the element to the matrix
Add33Block(val,index);
/////add area term.. to test if needed
/*if (!use_direction_field)
AddAreaTerm(index,1.0);//f->area);*/
/*ScalarType area=((f->P(1)-f->P(0))^(f->P(2)-f->P(0))).Norm();
if (!use_direction_field)
AddAreaTerm(index,area);*/
//ScalarType area=((f->P(1)-f->P(0))^(f->P(2)-f->P(0))).Norm();
if (!use_direction_field)
AddAreaTerm(index,1);
///add right hand side
if (use_direction_field)
AddRHS(b,var_idx);
}
}
void FindSizes()
{
// tag vertices and compute numbers of equations to determine the number of rows in the matrix
//TagVertices_Constrained(n_vert_vars, n_transition_eqs, n_align_sharp_eqs);
n_vert_vars=mesh.vn;
///initialize matrix size
total_size = (n_fixed_vars + n_vert_vars)*2;///must be multiplied by 2 becasue of u and v
}
void AllocateSystem()
{
//--- Allocates the data for Ax=b
A=Eigen::DynamicSparseMatrix<double>(total_size, total_size); // A
b = Eigen::VectorXd::Zero(total_size); // x and b
}
///intitialize the whole matrix
void InitMatrix()
{
FindSizes();
AllocateSystem();
}
bool Solve()
{
//A.finalize();
//Eigen::SparseMatrix<double> As=Eigen::SparseMatrix<double>(A);
//As.finalize();
//
//SparseLDLT<SparseMatrix<double>,Taucs> ldlt_of_A(As);
//if(!ldlt_of_A.succeeded())
//{
// printf("Decomposition Failed \n");
// return false;
//}
///*printf("\n");*/
//ldlt_of_A.solveInPlace(b);
//return true;
A.finalize();
Eigen::SparseMatrix<double> As=Eigen::SparseMatrix<double>(A);
As.finalize();
Eigen::SimplicialCholesky<Eigen::SparseMatrix<double> > solver(As);
x = solver.solve(b);
return (solver.info()==Eigen::Success);
}
void InitIndex()
{
for (size_t i=0;i<mesh.vert.size();i++)
if (!mesh.vert[i].IsD())
AddVertexIndex(&mesh.vert[i],i);
}
///map back values to vertex
///if normalize==true then set the
///coordinates between 0 and 1
void MapCoords(bool normalize=false,
ScalarType /*fieldScale*/=1.0)
{
///clear Visited Flag
if (correct_fixed)
tri::UpdateFlags<MeshType>::VertexClearV(mesh);
//set fixed to V
for (size_t i=0;i<to_fix.size();i++)
to_fix[i]->SetV();
Box2<ScalarType> bbox;
if (normalize)
{
for (size_t i=0;i<n_vert_vars;i++)
{
ScalarType U=x[i*2];
ScalarType V=x[(i*2)+1];
bbox.Add(Point2<ScalarType>(U,V));
}
}
//for each vertex
for (size_t i=0;i<n_vert_vars;i++)
{
VertexType* v=IndexVertex(i);
//take U and V
ScalarType U=x[i*2];
ScalarType V=x[(i*2)+1];
Point2<ScalarType> p;
if (!v->IsV())
p=Point2<ScalarType>(U,V);
else
p=v->T().P();
//p/=fieldScale;
if (normalize)
{
p-=bbox.min;
p*=1/bbox.Diag();
}
v->T().P()=p;
}
///then copy to faces
for (size_t i=0;i<mesh.face.size();i++)
{
FaceType *f=&mesh.face[i];
for (int j=0;j<3;j++)
{
VertexType* v=f->V(j);
Point2<ScalarType> p=v->T().P();
f->WT(j).P()=p;
}
}
}
public:
///return true if is possible to
bool IsFeaseable()
{
tri::UpdateTopology<MeshType>::FaceFace(mesh);
int NNmanifoldE=tri::Clean<MeshType>::CountNonManifoldEdgeFF(mesh);
if (NNmanifoldE!=0)return false;
/*int NNmanifoldV=tri::Clean<MeshType>::CountNonManifoldVertexFF(mesh);
if (NNmanifoldV!=0)return false;*/
int G=tri::Clean<MeshType>::MeshGenus(mesh);
int numholes=tri::Clean<MeshType>::CountHoles(mesh);
if (numholes==0) return false;
return (G==0);
}
///set the border as fixed
void SetBorderAsFixed()
{
for (size_t i=0;i<mesh.vert.size();i++)
{
VertexType* v=&mesh.vert[i];
if (v->IsD())continue;
if(v->IsB())to_fix.push_back(v);
}
std::sort(to_fix.begin(),to_fix.end());
typename std::vector<VertexType*>::iterator new_end=std::unique(to_fix.begin(),to_fix.end());
int dist=distance(to_fix.begin(),new_end);
to_fix.resize(dist);
}
///set selected vertices as fixed
void SetSelectedAsFixed()
{
for (int i=0;i<mesh.vert.size();i++)
{
VertexType* v=&mesh.vert[i];
if (v->IsD())continue;
if(v->IsS())to_fix.push_back(v);
}
std::sort(to_fix.begin(),to_fix.end());
typename std::vector<VertexType*>::iterator new_end=std::unique(to_fix.begin(),to_fix.end());
int dist=distance(to_fix.begin(),new_end);
to_fix.resize(dist);
}
/*///fix default vertices no need if already border on other vertices are fixed
///you need at least 2 fixed for solving without field ,
///while only 1 if you conforms to a given cross field
void FixDefaultVertices()
{
///in this case there are already vertices fixed, so no need to fix by default
assert(to_fix.size()==0);
///then fix only one vertex
if (use_direction_field)
{
for (size_t i=0;i<mesh.vert.size();i++)
if (!mesh.vert[i].IsD())
{
mesh.vert[i].T().P()=Point2<ScalarType>(0,0);
to_fix.push_back(&mesh.vert[i]);
return;
}
}
///then fix 2 vertices
else
{
VertexType *v0;
VertexType *v1;
FindFarestVert(v0,v1);
if (v0==v1)
{
tri::io::ExporterPLY<MeshType>::Save(mesh,"./parametrized.ply");
assert(0);
}
v0->T().P()=Point2<ScalarType>(0,0);
v1->T().P()=Point2<ScalarType>(1,0);
to_fix.push_back(v0);
to_fix.push_back(v1);
return;
}
}*/
///fix default vertices no need if already border on other vertices are fixed
///you need at least 2 fixed for solving without field ,
///while only 1 if you conforms to a given cross field
void FixDefaultVertices()
{
///in this case there are already vertices fixed, so no need to fix by default
assert(to_fix.size()==0);
///then fix only one vertex
if (use_direction_field)
{
for (size_t i=0;i<mesh.vert.size();i++)
if (!mesh.vert[i].IsD())
{
mesh.vert[i].T().P()=Point2<ScalarType>(0,0);
to_fix.push_back(&mesh.vert[i]);
return;
}
}
///then fix 2 vertices
else
{
VertexType *v0;
VertexType *v1;
FindFarthestVert(v0,v1);
if (v0==v1)
{
// tri::io::ExporterPLY<MeshType>::Save(mesh,"./parametrized.ply");
assert(0);
}
v0->T().P()=Point2<ScalarType>(0,0);
v1->T().P()=Point2<ScalarType>(1,0);
to_fix.push_back(v0);
to_fix.push_back(v1);
return;
}
}
///intialize parameters and setup fixed vertices vector
void Init(bool _use_direction_field=false,
bool _correct_fixed=true,
ScalarType _fieldScale=1.0)
{
use_direction_field=_use_direction_field;
//query if an attribute is present or not
if (use_direction_field)
{
bool CrossDir0 = tri::HasPerFaceAttribute(mesh,"CrossDir0");
bool CrossDir1 = tri::HasPerFaceAttribute(mesh,"CrossDir1");
assert(CrossDir0);
assert(CrossDir1);
Fh0= tri::Allocator<MeshType> :: template GetPerFaceAttribute<CoordType>(mesh,std::string("CrossDir0"));
Fh1= tri::Allocator<MeshType> :: template GetPerFaceAttribute<CoordType>(mesh,std::string("CrossDir1"));
}
correct_fixed=_correct_fixed;
fieldScale=_fieldScale;
to_fix.clear();
}
///solve the system, it return false if the matrix is singular
bool SolvePoisson(bool _write_messages=false,
ScalarType fieldScale=1.0,
bool solve_global_fold=true)
{
int t0,t1,t2,t3;
///Initializing Matrix
if (_write_messages)
{
printf("\n INITIALIZING THE MATRIX \n");
t0=clock();
}
///set vertex indexes
InitIndex();
/*///find vertex to fix
std::vector<VertexType *> to_fix;
FindFixedVertices(to_fix);
n_fixed_vars=to_fix.size();*/
if (use_direction_field)
{
assert(to_fix.size()>0);
}
else
{
assert(to_fix.size()>1);
}
n_fixed_vars=to_fix.size();
///initialize the matrix ALLOCATING SPACE
InitMatrix();
if (use_direction_field)
{
bool CrossDir0 = tri::HasPerFaceAttribute(mesh,"CrossDir0");
bool CrossDir1 = tri::HasPerFaceAttribute(mesh,"CrossDir1");
assert(CrossDir0);
assert(CrossDir1);
}
///build the laplacian system
BuildLaplacianMatrix(fieldScale);
////add the lagrange multiplier
FixPointLSquares();
if (_write_messages)
{
t1=clock();
printf("\n time:%d \n",t1-t0);
printf("\n SOLVING \n");
}
//int n_vars=(n_vert_vars)*2;
//int integer_constr_size=(n_transition_vars+n_fixed_vars+n_bary_transition_vars)*2;
//X=std::vector< double >(n_vars+n_fixed_vars*2);
bool done=Solve();
if (!done)
return false;
if (_write_messages)
{
t2=clock();
printf("\n time:%d \n",t2-t1);
printf("\n ASSIGNING COORDS \n");
}
MapCoords(false,fieldScale);
if (_write_messages)
{
t3=clock();
printf("\n time:%d \n",t3-t2);
}
///then check if majority of faces are folded
if (!solve_global_fold)return true;
if (tri::Distortion<MeshType>::GloballyUnFolded(mesh))
{
tri::UV_Utils<MeshType>::GloballyMirrorX(mesh);
assert(!tri::Distortion<MeshType>::GloballyUnFolded(mesh));
}
return true;
}
PoissonSolver(MeshType &_mesh):mesh(_mesh)
{
assert(mesh.vert.size()>3);
assert(mesh.face.size()>1);
}
}; // end class
} //End Namespace Tri
} // End Namespace vcg
#endif
|