1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#include <vcg/math/matrix33.h>
#include <vcg/math/histogram.h>
#include <vcg/complex/algorithms/update/curvature.h>
#include <vcg/simplex/face/topology.h>
#ifndef VCG_TANGENT_FIELD_OPERATORS
#define VCG_TANGENT_FIELD_OPERATORS
namespace vcg {
namespace tri{
template <class MeshType>
class CrossField
{
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::ScalarType ScalarType;
private:
static ScalarType Sign(ScalarType a){return (ScalarType)((a>0)?+1:-1);}
public:
static CoordType FollowDirection(const FaceType &f0,
const typename FaceType &f1,
const typename CoordType &dir0)
{
///first it rotate dir to match with f1
CoordType dirR=vcg::tri::CrossField<MeshType>::Rotate(f0,f1,dir0);
///then get the closest upf to K*PI/2 rotations
CoordType dir1=f1.cPD1();
CoordType ret=vcg::tri::CrossField<MeshType>::K_PI(dir1,dirR,f1.cN());
return ret;
}
static void SetVertCrossFromCurvature(MeshType &mesh)
{
vcg::tri::UpdateTopology<MeshType>::FaceFace(mesh);
vcg::tri::UpdateTopology<MeshType>::VertexFace(mesh);
vcg::tri::UpdateBounding<MeshType>::Box(mesh);
//set as selected high curvature value
vcg::tri::UpdateCurvature<MeshType>::PrincipalDirectionsNormalCycles(mesh);
NormalizePerVertImportanceVal(mesh);
///save the curvature value
std::vector<ScalarType> K1,K2;
K1.resize(mesh.vert.size());
K2.resize(mesh.vert.size());
for (int j=0;j<mesh.vert.size();j++)
{
VertexType *v=&mesh.vert[j];
if(v->IsD())continue;
K1[j]=v->K1();
K2[j]=v->K2();
}
///then find multiscale curvature directions
vcg::tri::UpdateCurvature<MeshType>::PrincipalDirectionsPCA(mesh,mesh.bbox.Diag()/200.0);
///and save back importance val
for (int j=0;j<mesh.vert.size();j++)
{
VertexType *v=&mesh.vert[j];
if(v->IsD())continue;
v->K1()=K1[j];
v->K2()=K2[j];
}
///set normal according to curvature
for (int j=0;j<mesh.vert.size();j++)
{
VertexType *v=&mesh.vert[j];
if(v->IsD())continue;
CoordType N0=v->N();
v->N()=v->PD1()^v->PD2();
v->N().Normalize();
if (N0*v->N()<0)
v->N()=-v->N();
}
}
///fird a tranformation matrix to transform
///the 3D space to 2D tangent space specified
///by the cross field (where Z=0)
static vcg::Matrix33<ScalarType> TransformationMatrix(const FaceType &f)
{
typedef typename FaceType::CoordType CoordType;
typedef typename FaceType::ScalarType ScalarType;
///transform to 3d
CoordType axis0=f.cPD1();
CoordType axis1=f.cPD2();//axis0^f.cN();
CoordType axis2=f.cN();
return (vcg::TransformationMatrix(axis0,axis1,axis2));
}
///transform a given angle in tangent space wrt X axis of
///tangest space will return the corresponding 3D vector
static CoordType TangentAngleToVect(const FaceType &f,const ScalarType &angle)
{
///find 2D vector
vcg::Point2<ScalarType> axis2D=vcg::Point2<ScalarType>(cos(angle),sin(angle));
CoordType axis3D=CoordType(axis2D.X(),axis2D.Y(),0);
vcg::Matrix33<ScalarType> Trans=TransformationMatrix(f);
vcg::Matrix33<ScalarType> InvTrans=Inverse(Trans);
///then transform
return (InvTrans*axis3D);
}
///find an angle with respect to dirX on the plane perpendiculr to DirZ
///dirX and dirZ should be perpendicular
static ScalarType TangentVectToAngle(const CoordType dirX,
const CoordType dirZ,
const CoordType &vect3D)
{
const CoordType dirY=dirX^dirZ;
dirX.Normalize();
dirY.Normalize();
dirZ.Normalize();
vcg::Matrix33<ScalarType> Trans=TransformationMatrix(dirX,dirY,dirZ);
///trensform the vector to the reference frame by rotating it
CoordType vect_transf=Trans*vect3D;
///then put to zero to the Z coordinate
vcg::Point2<ScalarType> axis2D=vcg::Point2<ScalarType>(vect_transf.X(),vect_transf.Y());
axis2D.Normalize();
///then find the angle with respact to axis 0
ScalarType alpha=atan2(axis2D.Y(),axis2D.X()); ////to sum up M_PI?
if (alpha<0)
alpha=(2*M_PI+alpha);
if (alpha<0)
alpha=0;
return alpha;
}
///find an angle with respect to the tangent frame of given face
static ScalarType VectToAngle(const FaceType &f,const CoordType &vect3D)
{
vcg::Matrix33<ScalarType> Trans=TransformationMatrix(f);
///trensform the vector to the reference frame by rotating it
CoordType vect_transf=Trans*vect3D;
///then put to zero to the Z coordinate
vcg::Point2<ScalarType> axis2D=vcg::Point2<ScalarType>(vect_transf.X(),vect_transf.Y());
axis2D.Normalize();
///then find the angle with respact to axis 0
ScalarType alpha=atan2(axis2D.Y(),axis2D.X()); ////to sum up M_PI?
if (alpha<0)
alpha=(2*M_PI+alpha);
if (alpha<0)
alpha=0;
return alpha;
}
///return the 4 directiona of the cross field in 3D
///given a first direction as input
static void CrossVector(const CoordType &dir0,
const CoordType &norm,
CoordType axis[4])
{
axis[0]=dir0;
axis[1]=norm^axis[0];
axis[2]=-axis[0];
axis[3]=-axis[1];
}
///return the 4 direction in 3D of
///the cross field of a given face
static void CrossVector(const FaceType &f,
CoordType axis[4])
{
CoordType dir0=f.cPD1();
CoordType dir1=f.cPD2();
axis[0]=dir0;
axis[1]=dir1;
axis[2]=-dir0;
axis[3]=-dir1;
}
///return the 4 direction in 3D of
///the cross field of a given face
static void CrossVector(const VertexType &v,
CoordType axis[4])
{
CoordType dir0=v.cPD1();
CoordType dir1=v.cPD2();
axis[0]=dir0;
axis[1]=dir1;
axis[2]=-dir0;
axis[3]=-dir1;
}
///return a specific direction given an integer 0..3
///considering the reference direction of the cross field
static CoordType CrossVector(const FaceType &f,
const int &index)
{
assert((index>=0)&&(index<4));
CoordType axis[4];
CrossVector(f,axis);
return axis[index];
}
///return a specific direction given an integer 0..3
///considering the reference direction of the cross field
static CoordType CrossVector(const VertexType &v,
const int &index)
{
assert((index>=0)&&(index<4));
CoordType axis[4];
CrossVector(f,axis);
return axis[index];
}
///set the cross field of a given face
static void SetCrossVector(FaceType &f,
CoordType dir0,
CoordType dir1)
{
f.PD1()=dir0;
f.PD2()=dir1;
}
///set the face cross vector from vertex one
static void SetFaceCrossVectorFromVert(FaceType &f)
{
const CoordType &t0=f.V(0)->PD1();
const CoordType &t1=f.V(1)->PD1();
const CoordType &t2=f.V(2)->PD1();
const CoordType &N0=f.V(0)->N();
const CoordType &N1=f.V(0)->N();
const CoordType &N2=f.V(0)->N();
const CoordType &NF=f.N();
const CoordType bary=CoordType(0.33333,0.33333,0.33333);
CoordType tF0,tF1;
tF0=InterpolateCrossField(t0,t1,t2,N0,N1,N2,NF,bary);
tF1=NF^tF0;
tF0.Normalize();
tF1.Normalize();
SetCrossVector(f,tF0,tF1);
}
static void SetFaceCrossVectorFromVert(MeshType &mesh)
{
for (int i=0;i<mesh.face.size();i++)
{
FaceType *f=&mesh.face[i];
if (f->IsD())continue;
SetFaceCrossVectorFromVert(*f);
}
}
///set the face cross vector from vertex one
static void SetVertCrossVectorFromFace(VertexType &v)
{
std::vector<FaceType *> faceVec;
vcg::face::VFStarVF(&v,faceVec);
std::vector<CoordType> TangVect;
std::vector<CoordType> Norms;
for (int i=0;i<faceVec.size();i++)
{
TangVect.push_back(faceVec[i]->PD1());
Norms.push_back(faceVec[i]->N());
}
std::vector<ScalarType> Weights(TangVect.size(),1.0/(ScalarType)TangVect.size());
CoordType NRef=v.N();
CoordType N0=faceVec[0]->N();
CoordType DirRef=faceVec[0]->PD1();
///find the rotation matrix that maps between normals
vcg::Matrix33<ScalarType> rotation=vcg::RotationMatrix(N0,NRef);
DirRef=rotation*DirRef;
CoordType tF1=InterpolateCrossField(TangVect,Weights,Norms,NRef,DirRef);
tF1.Normalize();
CoordType tF2=NRef^tF1;
tF2.Normalize();
v.PD1()=tF1;
v.PD2()=tF2;
}
static void SetVertCrossVectorFromFace(MeshType &mesh)
{
for (int i=0;i<mesh.vert.size();i++)
{
VertexType *v=&mesh.vert[i];
if (v->IsD())continue;
SetVertCrossVectorFromFace(*v);
}
}
///rotate a given vector from the tangent space
///of f0 to the tangent space of f1 by considering the difference of normals
static CoordType Rotate(const FaceType &f0,const FaceType &f1,const CoordType &dir3D)
{
CoordType N0=f0.cN();
CoordType N1=f1.cN();
///find the rotation matrix that maps between normals
vcg::Matrix33<ScalarType> rotation=vcg::RotationMatrix(N0,N1);
CoordType rotated=rotation*dir3D;
return rotated;
}
// returns the 90 deg rotation of a (around n) most similar to target b
/// a and b should be in the same plane orthogonal to N
static CoordType K_PI(const CoordType &a, const CoordType &b, const CoordType &n)
{
CoordType c = (a^n).normalized();
ScalarType scorea = a*b;
ScalarType scorec = c*b;
if (fabs(scorea)>=fabs(scorec)) return a*Sign(scorea); else return c*Sign(scorec);
}
///interpolate cross field with barycentric coordinates
static CoordType InterpolateCrossField(const CoordType &t0,
const CoordType &t1,
const CoordType &t2,
const CoordType &n0,
const CoordType &n1,
const CoordType &n2,
const CoordType &target_n,
const CoordType &bary)
{
vcg::Matrix33<ScalarType> R0=vcg::RotationMatrix(n0,target_n);
vcg::Matrix33<ScalarType> R1=vcg::RotationMatrix(n1,target_n);
vcg::Matrix33<ScalarType> R2=vcg::RotationMatrix(n2,target_n);
///rotate
CoordType trans0=R0*t0;
CoordType trans1=R1*t1;
CoordType trans2=R2*t2;
///normalize it
trans0.Normalize();
trans1.Normalize();
trans2.Normalize();
///k_PI/2 rotation
trans1=K_PI(trans1,trans0,target_n);
trans2=K_PI(trans2,trans0,target_n);
trans1.Normalize();
trans2.Normalize();
CoordType sum = trans0*bary.X() + trans1 * bary.Y() + trans2 * bary.Z();
return sum;
}
///interpolate cross field with barycentric coordinates using normalized weights
static typename typename CoordType InterpolateCrossField(const std::vector<CoordType> &TangVect,
const std::vector<ScalarType> &Weight,
const std::vector<CoordType> &Norms,
const typename CoordType &BaseNorm,
const typename CoordType &BaseDir)
{
typedef typename FaceType::CoordType CoordType;
typedef typename FaceType::ScalarType ScalarType;
CoordType sum = CoordType(0,0,0);
for (int i=0;i<TangVect.size();i++)
{
CoordType N1=Norms[i];
///find the rotation matrix that maps between normals
vcg::Matrix33<ScalarType> rotation=vcg::RotationMatrix(N1,BaseNorm);
CoordType rotated=rotation*TangVect[i];
CoordType Tdir=K_PI(rotated,BaseDir,BaseNorm);
Tdir.Normalize();
sum+=(Tdir*Weight[i]);
}
sum.Normalize();
return sum;
}
///interpolate cross field with scalar weight
static typename FaceType::CoordType InterpolateCrossFieldLine(const typename FaceType::CoordType &t0,
const typename FaceType::CoordType &t1,
const typename FaceType::CoordType &n0,
const typename FaceType::CoordType &n1,
const typename FaceType::CoordType &target_n,
const typename FaceType::ScalarType &weight)
{
vcg::Matrix33<ScalarType> R0=vcg::RotationMatrix(n0,target_n);
vcg::Matrix33<ScalarType> R1=vcg::RotationMatrix(n1,target_n);
CoordType trans0=R0*t0;
CoordType trans1=R1*t1;
//CoordType trans0=t0;//R0*t0;
//CoordType trans1=t1;//R1*t1;
trans0.Normalize();
trans1.Normalize();
trans1=K_PI(trans1,trans0,target_n);
trans1.Normalize();
CoordType sum = trans0*weight + trans1 * (1.0-weight);
return sum;
}
///return the difference of two cross field, values between [0,0.5]
static typename FaceType::ScalarType DifferenceCrossField(const typename FaceType::CoordType &t0,
const typename FaceType::CoordType &t1,
const typename FaceType::CoordType &n)
{
CoordType trans0=t0;
CoordType trans1=K_PI(t1,t0,n);
ScalarType diff = 1-fabs(trans0*trans1);
return diff;
}
///return the difference of two cross field, values between [0,0.5]
static typename FaceType::ScalarType DifferenceCrossField(const typename vcg::Point2<ScalarType> &t0,
const typename vcg::Point2<ScalarType> &t1)
{
CoordType t03D=CoordType(t0.X(),t0.Y(),0);
CoordType t13D=CoordType(t1.X(),t1.Y(),0);
CoordType trans0=t03D;
CoordType n=CoordType(0,0,1);
CoordType trans1=K_PI(t13D,t03D,n);
ScalarType diff = 1-fabs(trans0*trans1);
return diff;
}
///compute the mismatch between 2 directions
///each one si perpendicular to its own normal
static int MissMatch(const CoordType &dir0,
const CoordType &dir1,
const CoordType &N0,
const CoordType &N1)
{
CoordType dir0Rot=Rotate(dir0,N0,N1);
CoordType dir1Rot=dir1;
dir0Rot.Normalize();
dir1Rot.Normalize();
ScalarType angle_diff=VectToAngle(dir0Rot,N0,dir1Rot);
ScalarType step=M_PI/2.0;
int i=(int)floor((angle_diff/step)+0.5);
int k=0;
if (i>=0)
k=i%4;
else
k=(-(3*i))%4;
return k;
}
///compute the mismatch between 2 faces
static int MissMatch(const FaceType &f0,
const FaceType &f1)
{
CoordType dir0=CrossVector(f0,0);
CoordType dir1=CrossVector(f1,0);
CoordType dir1Rot=Rotate(f1,f0,dir1);
dir1Rot.Normalize();
ScalarType angle_diff=VectToAngle(f0,dir1Rot);
ScalarType step=M_PI/2.0;
int i=(int)floor((angle_diff/step)+0.5);
int k=0;
if (i>=0)
k=i%4;
else
k=(-(3*i))%4;
return k;
}
///return true if a given vertex is singular,
///return also the missmatch
static bool IsSingular(const VertexType &v,int &missmatch)
{
typedef typename VertexType::FaceType FaceType;
///check that is on border..
if (v.IsB())return false;
std::vector<FaceType*> faces;
//SortedFaces(v,faces);
vcg::face::VFOrderedStarVF_FF(v,faces);
missmatch=0;
for (int i=0;i<faces.size();i++)
{
FaceType *curr_f=faces[i];
FaceType *next_f=faces[(i+1)%faces.size()];
///find the current missmatch
missmatch+=MissMatch(*curr_f,*next_f);
}
missmatch=missmatch%4;
return(missmatch!=0);
}
///select singular vertices
static void SelectSingular(MeshType &mesh)
{
for (int i=0;i<mesh.vert.size();i++)
{
if (mesh.vert[i].IsD())continue;
int missmatch;
if (IsSingular(mesh.vert[i],missmatch))
mesh.vert[i].SetS();
else
mesh.vert[i].ClearS();
}
}
///load a field on the mesh, it could be a vfield file (per vertex)
///or an ffield file (per face)
static bool LoadFIELD(MeshType *mesh,
const char *path,
bool per_vertex=false)
{
FILE *f = fopen(path,"rt");
if (!f)
{
return false;
}
{
char word[512]; word[0]=0;
fscanf(f,"%s",word);
char c=0;
if (word[0]=='#') {
// skip comment line
while (fscanf(f,"%c",&c)!=EOF) if (c=='\n') break;
}
else
{
return false;
}
int nnv = -1;
if (fscanf(f,"%d",&nnv)!=1)
{
while (fscanf(f,"%c",&c)!=EOF) if (c=='\n') break; // skip
fscanf(f,"%d",&nnv);
}
int targetnum=mesh->fn;
if (per_vertex)
targetnum=mesh->vn;
if (nnv != (int)targetnum)
{
//if (errorMsg) sprintf(errorMsg,"Wrong element number. Found: %d. Expected: %d.",nnv,mesh->vn);
return false;
}
while (fscanf(f,"%c",&c)!=EOF) if (c=='\n') break; // skip
// skip strange string line
while (fscanf(f,"%c",&c)!=EOF) if (c=='\n') break;
for (int i=0; i<nnv; i++){
vcg::Point3<ScalarType> u,v;
int a,b;
if (fscanf(f,
"%d %d %lf %lf %lf %lf %lf %lf",
&a,&b,
&(v.X()),&(v.Y()),&(v.Z()),
&(u.X()),&(u.Y()),&(u.Z())
)!=8) {
//if (errorMsg) sprintf(errorMsg,"Format error reading vertex n. %d",i);
return false;
}
//node[i]->TF().Import(u);
if (per_vertex)
{
mesh->vert[i].PD1()=u;
mesh->vert[i].PD2()=v;
}
else
{
mesh->face[i].PD1()=u;
mesh->face[i].PD2()=v;
}
}
}
fclose(f);
return true;
}
///transform curvature to UV space
static vcg::Point2<ScalarType> CrossToUV(FaceType &f)
{
typedef typename FaceType::ScalarType ScalarType;
typedef typename FaceType::CoordType CoordType;
CoordType Curv=CrossVector(f,0);
Curv.Normalize();
CoordType bary3d=(f.P(0)+f.P(1)+f.P(2))/3.0;
vcg::Point2<ScalarType> Uv0=f.V(0)->T().P();
vcg::Point2<ScalarType> Uv1=f.V(1)->T().P();
vcg::Point2<ScalarType> Uv2=f.V(2)->T().P();
vcg::Point2<ScalarType> baryUV=(Uv0+Uv1+Uv2)/3.0;
CoordType direct3d=bary3d+Curv;
CoordType baryCoordsUV;
vcg::InterpolationParameters<FaceType,ScalarType>(f,direct3d,baryCoordsUV);
vcg::Point2<ScalarType> curvUV=baryCoordsUV.X()*Uv0+
baryCoordsUV.Y()*Uv1+
baryCoordsUV.Z()*Uv2-baryUV;
curvUV.Normalize();
return curvUV;
}
};///end class
} //End Namespace Tri
} // End Namespace vcg
#endif
|