File: tangent_field_operators.h

package info (click to toggle)
meshlab 1.3.2%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 21,060 kB
  • ctags: 33,549
  • sloc: cpp: 224,813; ansic: 8,170; xml: 119; makefile: 80
file content (630 lines) | stat: -rw-r--r-- 20,057 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004                                                \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *   
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
#include <vcg/math/matrix33.h>
#include <vcg/math/histogram.h>
#include <vcg/complex/algorithms/update/curvature.h>
#include <vcg/simplex/face/topology.h>

#ifndef VCG_TANGENT_FIELD_OPERATORS
#define VCG_TANGENT_FIELD_OPERATORS

namespace vcg {
	namespace tri{

		template <class MeshType>
		class CrossField
		{
			typedef typename MeshType::FaceType FaceType;
			typedef typename MeshType::VertexType VertexType;
			typedef typename MeshType::CoordType CoordType;
			typedef typename MeshType::ScalarType ScalarType;

		private:
			static ScalarType Sign(ScalarType a){return (ScalarType)((a>0)?+1:-1);}

		public:

			static CoordType FollowDirection(const FaceType &f0,
				const typename FaceType &f1,
				const typename CoordType &dir0)
			{
				///first it rotate dir to match with f1
				CoordType dirR=vcg::tri::CrossField<MeshType>::Rotate(f0,f1,dir0);
				///then get the closest upf to K*PI/2 rotations
				CoordType dir1=f1.cPD1();
				CoordType ret=vcg::tri::CrossField<MeshType>::K_PI(dir1,dirR,f1.cN());
				return ret;
			}

			static void SetVertCrossFromCurvature(MeshType &mesh)
			{
				vcg::tri::UpdateTopology<MeshType>::FaceFace(mesh);
				vcg::tri::UpdateTopology<MeshType>::VertexFace(mesh);
				vcg::tri::UpdateBounding<MeshType>::Box(mesh);

				//set as selected high curvature value
				vcg::tri::UpdateCurvature<MeshType>::PrincipalDirectionsNormalCycles(mesh);
				NormalizePerVertImportanceVal(mesh);
				///save the curvature value
				std::vector<ScalarType> K1,K2;
				K1.resize(mesh.vert.size());
				K2.resize(mesh.vert.size());
				for (int j=0;j<mesh.vert.size();j++)
				{
					VertexType *v=&mesh.vert[j];
					if(v->IsD())continue;
					K1[j]=v->K1();
					K2[j]=v->K2();
				}
				///then find multiscale curvature directions
				vcg::tri::UpdateCurvature<MeshType>::PrincipalDirectionsPCA(mesh,mesh.bbox.Diag()/200.0);
				///and save back importance val
				for (int j=0;j<mesh.vert.size();j++)
				{
					VertexType *v=&mesh.vert[j];
					if(v->IsD())continue;
					v->K1()=K1[j];
					v->K2()=K2[j];
				}

				///set normal according to curvature
				for (int j=0;j<mesh.vert.size();j++)
				{
					VertexType *v=&mesh.vert[j];
					if(v->IsD())continue;
					CoordType N0=v->N();
					v->N()=v->PD1()^v->PD2();
					v->N().Normalize();
					if (N0*v->N()<0)
						v->N()=-v->N();
				}
			}



			///fird a tranformation matrix to transform 
			///the 3D space to 2D tangent space specified 
			///by the cross field (where Z=0)
			static vcg::Matrix33<ScalarType> TransformationMatrix(const FaceType &f)
			{
				typedef typename FaceType::CoordType CoordType;
				typedef typename FaceType::ScalarType ScalarType;

				///transform to 3d
				CoordType axis0=f.cPD1();
				CoordType axis1=f.cPD2();//axis0^f.cN();
				CoordType axis2=f.cN();

				return (vcg::TransformationMatrix(axis0,axis1,axis2));
			}


			///transform a given angle in tangent space wrt X axis of
			///tangest space will return the corresponding 3D vector
			static CoordType TangentAngleToVect(const FaceType &f,const ScalarType &angle)
			{
				///find 2D vector
				vcg::Point2<ScalarType> axis2D=vcg::Point2<ScalarType>(cos(angle),sin(angle));
				CoordType axis3D=CoordType(axis2D.X(),axis2D.Y(),0);
				vcg::Matrix33<ScalarType> Trans=TransformationMatrix(f);
				vcg::Matrix33<ScalarType> InvTrans=Inverse(Trans);
				///then transform
				return (InvTrans*axis3D);
			}

			///find an angle with respect to dirX on the plane perpendiculr to DirZ
			///dirX and dirZ should be perpendicular
			static ScalarType TangentVectToAngle(const CoordType dirX,
				const CoordType dirZ,
				const CoordType &vect3D)
			{
				const CoordType dirY=dirX^dirZ;
				dirX.Normalize();
				dirY.Normalize();
				dirZ.Normalize();
				vcg::Matrix33<ScalarType> Trans=TransformationMatrix(dirX,dirY,dirZ);
				///trensform the vector to the reference frame by rotating it
				CoordType vect_transf=Trans*vect3D;

				///then put to zero to the Z coordinate
				vcg::Point2<ScalarType> axis2D=vcg::Point2<ScalarType>(vect_transf.X(),vect_transf.Y());
				axis2D.Normalize();

				///then find the angle with respact to axis 0
				ScalarType alpha=atan2(axis2D.Y(),axis2D.X());	////to sum up M_PI?
				if (alpha<0)
					alpha=(2*M_PI+alpha);
				if (alpha<0)
					alpha=0;
				return alpha;
			}

			///find an angle with respect to the tangent frame of given face
			static ScalarType VectToAngle(const FaceType &f,const CoordType &vect3D)
			{
				vcg::Matrix33<ScalarType> Trans=TransformationMatrix(f);

				///trensform the vector to the reference frame by rotating it
				CoordType vect_transf=Trans*vect3D;

				///then put to zero to the Z coordinate
				vcg::Point2<ScalarType> axis2D=vcg::Point2<ScalarType>(vect_transf.X(),vect_transf.Y());
				axis2D.Normalize();

				///then find the angle with respact to axis 0
				ScalarType alpha=atan2(axis2D.Y(),axis2D.X());	////to sum up M_PI?
				if (alpha<0)
					alpha=(2*M_PI+alpha);
				if (alpha<0)
					alpha=0;
				return alpha;
			}

			///return the 4 directiona of the cross field in 3D
			///given a first direction as input
			static void CrossVector(const CoordType &dir0,
				const CoordType &norm,
				CoordType axis[4])
			{
				axis[0]=dir0;
				axis[1]=norm^axis[0];
				axis[2]=-axis[0];
				axis[3]=-axis[1];
			}

			///return the 4 direction in 3D of 
			///the cross field of a given face
			static void CrossVector(const FaceType &f,
				CoordType axis[4])
			{
				CoordType dir0=f.cPD1();
				CoordType dir1=f.cPD2();
				axis[0]=dir0;
				axis[1]=dir1;
				axis[2]=-dir0;
				axis[3]=-dir1;
			}

			///return the 4 direction in 3D of 
			///the cross field of a given face
			static void CrossVector(const VertexType &v,
				CoordType axis[4])
			{
				CoordType dir0=v.cPD1();
				CoordType dir1=v.cPD2();
				axis[0]=dir0;
				axis[1]=dir1;
				axis[2]=-dir0;
				axis[3]=-dir1;
			}

			///return a specific direction given an integer 0..3
			///considering the reference direction of the cross field
			static CoordType CrossVector(const FaceType &f,
				const int &index)
			{
				assert((index>=0)&&(index<4));
				CoordType axis[4];
				CrossVector(f,axis);
				return axis[index];
			}

			///return a specific direction given an integer 0..3
			///considering the reference direction of the cross field
			static CoordType CrossVector(const VertexType &v,
				const int &index)
			{
				assert((index>=0)&&(index<4));
				CoordType axis[4];
				CrossVector(f,axis);
				return axis[index];
			}

			///set the cross field of a given face
			static void SetCrossVector(FaceType &f,
				CoordType dir0,
				CoordType dir1)
			{
				f.PD1()=dir0;
				f.PD2()=dir1;
			}

			///set the face cross vector from vertex one
			static void SetFaceCrossVectorFromVert(FaceType &f)
			{
				const CoordType &t0=f.V(0)->PD1();
				const CoordType &t1=f.V(1)->PD1();
				const CoordType &t2=f.V(2)->PD1();
				const CoordType &N0=f.V(0)->N();
				const CoordType &N1=f.V(0)->N();
				const CoordType &N2=f.V(0)->N();
				const CoordType &NF=f.N();
				const CoordType bary=CoordType(0.33333,0.33333,0.33333);
				CoordType tF0,tF1;
				tF0=InterpolateCrossField(t0,t1,t2,N0,N1,N2,NF,bary);
				tF1=NF^tF0;
				tF0.Normalize();
				tF1.Normalize();
				SetCrossVector(f,tF0,tF1);
			}

			static void SetFaceCrossVectorFromVert(MeshType &mesh)
			{
				for (int i=0;i<mesh.face.size();i++)
				{
					FaceType *f=&mesh.face[i];
					if (f->IsD())continue;
					SetFaceCrossVectorFromVert(*f);
				}
			}

			///set the face cross vector from vertex one
			static void SetVertCrossVectorFromFace(VertexType &v)
			{
				std::vector<FaceType *> faceVec;
				vcg::face::VFStarVF(&v,faceVec);
				std::vector<CoordType> TangVect;
				std::vector<CoordType> Norms;
				for (int i=0;i<faceVec.size();i++)
				{
					TangVect.push_back(faceVec[i]->PD1());
					Norms.push_back(faceVec[i]->N());
				}
				std::vector<ScalarType> Weights(TangVect.size(),1.0/(ScalarType)TangVect.size());
				CoordType NRef=v.N();
				CoordType N0=faceVec[0]->N();
				CoordType DirRef=faceVec[0]->PD1();
				///find the rotation matrix that maps between normals
				vcg::Matrix33<ScalarType> rotation=vcg::RotationMatrix(N0,NRef);
				DirRef=rotation*DirRef;

				CoordType tF1=InterpolateCrossField(TangVect,Weights,Norms,NRef,DirRef);
				tF1.Normalize();
				CoordType tF2=NRef^tF1;
				tF2.Normalize();
				v.PD1()=tF1;
				v.PD2()=tF2;
			}

			static void SetVertCrossVectorFromFace(MeshType &mesh)
			{
				for (int i=0;i<mesh.vert.size();i++)
				{
					VertexType *v=&mesh.vert[i];
					if (v->IsD())continue;
					SetVertCrossVectorFromFace(*v);
				}
			}

			///rotate a given vector from the tangent space
			///of f0 to the tangent space of f1 by considering the difference of normals
			static CoordType Rotate(const FaceType &f0,const FaceType &f1,const CoordType &dir3D)
			{
				CoordType N0=f0.cN();
				CoordType N1=f1.cN();

				///find the rotation matrix that maps between normals
				vcg::Matrix33<ScalarType> rotation=vcg::RotationMatrix(N0,N1);
				CoordType rotated=rotation*dir3D;
				return rotated;
			}

			// returns the 90 deg rotation of a (around n) most similar to target b
			/// a and b should be in the same plane orthogonal to N
			static CoordType K_PI(const CoordType &a, const CoordType &b, const CoordType &n)
			{
				CoordType c = (a^n).normalized();
				ScalarType scorea = a*b;
				ScalarType scorec = c*b;
				if (fabs(scorea)>=fabs(scorec)) return a*Sign(scorea); else return c*Sign(scorec);
			}

			///interpolate cross field with barycentric coordinates
			static CoordType InterpolateCrossField(const CoordType &t0,
				const CoordType &t1,
				const CoordType &t2,
				const CoordType &n0,
				const CoordType &n1,
				const CoordType &n2,
				const CoordType &target_n,
				const CoordType &bary)
			{
				vcg::Matrix33<ScalarType> R0=vcg::RotationMatrix(n0,target_n);
				vcg::Matrix33<ScalarType> R1=vcg::RotationMatrix(n1,target_n);
				vcg::Matrix33<ScalarType> R2=vcg::RotationMatrix(n2,target_n);
				///rotate
				CoordType trans0=R0*t0;
				CoordType trans1=R1*t1;
				CoordType trans2=R2*t2;
				///normalize it
				trans0.Normalize();
				trans1.Normalize();
				trans2.Normalize();
				///k_PI/2 rotation
				trans1=K_PI(trans1,trans0,target_n);
				trans2=K_PI(trans2,trans0,target_n);
				trans1.Normalize();
				trans2.Normalize();

				CoordType sum = trans0*bary.X() + trans1 * bary.Y() + trans2 * bary.Z();
				return sum;
			}

			///interpolate cross field with barycentric coordinates using normalized weights
			static typename typename CoordType InterpolateCrossField(const std::vector<CoordType> &TangVect,
				const std::vector<ScalarType> &Weight,
				const std::vector<CoordType> &Norms,
				const typename CoordType &BaseNorm,
				const typename CoordType &BaseDir)
			{
				typedef typename FaceType::CoordType CoordType;
				typedef typename FaceType::ScalarType ScalarType;

				CoordType sum = CoordType(0,0,0);
				for (int i=0;i<TangVect.size();i++)
				{
					CoordType N1=Norms[i];
					///find the rotation matrix that maps between normals
					vcg::Matrix33<ScalarType> rotation=vcg::RotationMatrix(N1,BaseNorm);
					CoordType rotated=rotation*TangVect[i];
					CoordType Tdir=K_PI(rotated,BaseDir,BaseNorm);
					Tdir.Normalize();
					sum+=(Tdir*Weight[i]);
				}
				sum.Normalize();
				return sum;
			}

			///interpolate cross field with scalar weight
			static typename FaceType::CoordType InterpolateCrossFieldLine(const typename FaceType::CoordType &t0,
				const typename FaceType::CoordType &t1,
				const typename FaceType::CoordType &n0,
				const typename FaceType::CoordType &n1,
				const typename FaceType::CoordType &target_n,
				const typename FaceType::ScalarType &weight)
			{
				vcg::Matrix33<ScalarType> R0=vcg::RotationMatrix(n0,target_n);
				vcg::Matrix33<ScalarType> R1=vcg::RotationMatrix(n1,target_n);
				CoordType trans0=R0*t0;
				CoordType trans1=R1*t1;
				//CoordType trans0=t0;//R0*t0;
				//CoordType trans1=t1;//R1*t1;
				trans0.Normalize();
				trans1.Normalize();
				trans1=K_PI(trans1,trans0,target_n);
				trans1.Normalize();
				CoordType sum = trans0*weight + trans1 * (1.0-weight);
				return sum;
			}


			///return the difference of two cross field, values between [0,0.5]
			static typename FaceType::ScalarType DifferenceCrossField(const typename FaceType::CoordType &t0,
				const typename FaceType::CoordType &t1,
				const typename FaceType::CoordType &n)
			{
				CoordType trans0=t0;
				CoordType trans1=K_PI(t1,t0,n);
				ScalarType diff = 1-fabs(trans0*trans1);
				return diff;
			}

			///return the difference of two cross field, values between [0,0.5]
			static typename FaceType::ScalarType DifferenceCrossField(const typename vcg::Point2<ScalarType> &t0,
				const typename vcg::Point2<ScalarType> &t1)
			{
				CoordType t03D=CoordType(t0.X(),t0.Y(),0);
				CoordType t13D=CoordType(t1.X(),t1.Y(),0);
				CoordType trans0=t03D;
				CoordType n=CoordType(0,0,1);
				CoordType trans1=K_PI(t13D,t03D,n);
				ScalarType diff = 1-fabs(trans0*trans1);
				return diff;
			}

			///compute the mismatch between 2 directions 
			///each one si perpendicular to its own normal
			static int MissMatch(const CoordType &dir0,
				const CoordType &dir1,
				const CoordType &N0,
				const CoordType &N1)
			{
				CoordType dir0Rot=Rotate(dir0,N0,N1);
				CoordType dir1Rot=dir1;

				dir0Rot.Normalize();
				dir1Rot.Normalize();

				ScalarType angle_diff=VectToAngle(dir0Rot,N0,dir1Rot);

				ScalarType step=M_PI/2.0;
				int i=(int)floor((angle_diff/step)+0.5);
				int k=0;
				if (i>=0)
					k=i%4;
				else
					k=(-(3*i))%4;
				return k;
			}

			///compute the mismatch between 2 faces
			static int MissMatch(const FaceType &f0,
				const FaceType &f1)
			{
				CoordType dir0=CrossVector(f0,0);
				CoordType dir1=CrossVector(f1,0);

				CoordType dir1Rot=Rotate(f1,f0,dir1);
				dir1Rot.Normalize();

				ScalarType angle_diff=VectToAngle(f0,dir1Rot);

				ScalarType step=M_PI/2.0;
				int i=(int)floor((angle_diff/step)+0.5);
				int k=0;
				if (i>=0)
					k=i%4;
				else
					k=(-(3*i))%4;
				return k;
			}


			///return true if a given vertex is singular,
			///return also the missmatch
			static bool IsSingular(const VertexType &v,int &missmatch)
			{
				typedef typename VertexType::FaceType FaceType;
				///check that is on border..
				if (v.IsB())return false;

				std::vector<FaceType*> faces;
				//SortedFaces(v,faces);
				vcg::face::VFOrderedStarVF_FF(v,faces);

				missmatch=0;
				for (int i=0;i<faces.size();i++)
				{
					FaceType *curr_f=faces[i];
					FaceType *next_f=faces[(i+1)%faces.size()];

					///find the current missmatch
					missmatch+=MissMatch(*curr_f,*next_f);

				}
				missmatch=missmatch%4;
				return(missmatch!=0);
			}

			///select singular vertices
			static void SelectSingular(MeshType &mesh)
			{
				for (int i=0;i<mesh.vert.size();i++)
				{
					if (mesh.vert[i].IsD())continue;
					int missmatch;
					if (IsSingular(mesh.vert[i],missmatch))
						mesh.vert[i].SetS();
					else
						mesh.vert[i].ClearS();
				}
			}

			///load a field on the mesh, it could be a vfield file (per vertex)
			///or an ffield file (per face)
			static bool LoadFIELD(MeshType *mesh,
				const char *path,
				bool per_vertex=false)
			{

				FILE *f = fopen(path,"rt");
				if (!f)
				{
					return false;
				}
				{
					char word[512]; word[0]=0;
					fscanf(f,"%s",word);
					char c=0;
					if (word[0]=='#') {
						// skip comment line
						while (fscanf(f,"%c",&c)!=EOF) if (c=='\n') break;
					} 
					else 
					{
						return false;
					}
					int nnv = -1;
					if (fscanf(f,"%d",&nnv)!=1) 
					{
						while (fscanf(f,"%c",&c)!=EOF) if (c=='\n') break; // skip
						fscanf(f,"%d",&nnv);
					}
					int targetnum=mesh->fn;
					if (per_vertex)
						targetnum=mesh->vn;
					if (nnv != (int)targetnum) 
					{
						//if (errorMsg) sprintf(errorMsg,"Wrong element number. Found: %d. Expected: %d.",nnv,mesh->vn);
						return false;
					}
					while (fscanf(f,"%c",&c)!=EOF) if (c=='\n') break; // skip
					// skip strange string line
					while (fscanf(f,"%c",&c)!=EOF) if (c=='\n') break;
					for (int i=0; i<nnv; i++){
						vcg::Point3<ScalarType> u,v;
						int a,b;
						if (fscanf(f,
							"%d %d %lf %lf %lf %lf %lf %lf",
							&a,&b,
							&(v.X()),&(v.Y()),&(v.Z()),
							&(u.X()),&(u.Y()),&(u.Z())
							)!=8) {
								//if (errorMsg) sprintf(errorMsg,"Format error reading vertex n. %d",i);
								return false;
						}
						//node[i]->TF().Import(u);
						if (per_vertex)
						{
							mesh->vert[i].PD1()=u;
							mesh->vert[i].PD2()=v;
						}
						else
						{
							mesh->face[i].PD1()=u;
							mesh->face[i].PD2()=v;
						}
					}
				}
				fclose(f);
				return true;
			}

			///transform curvature to UV space
			static vcg::Point2<ScalarType> CrossToUV(FaceType &f)
			{
				typedef typename FaceType::ScalarType ScalarType;
				typedef typename FaceType::CoordType CoordType;

				CoordType Curv=CrossVector(f,0);
				Curv.Normalize();

				CoordType bary3d=(f.P(0)+f.P(1)+f.P(2))/3.0;
				vcg::Point2<ScalarType> Uv0=f.V(0)->T().P();
				vcg::Point2<ScalarType> Uv1=f.V(1)->T().P();
				vcg::Point2<ScalarType> Uv2=f.V(2)->T().P();
				vcg::Point2<ScalarType> baryUV=(Uv0+Uv1+Uv2)/3.0;
				CoordType direct3d=bary3d+Curv;
				CoordType baryCoordsUV;
				vcg::InterpolationParameters<FaceType,ScalarType>(f,direct3d,baryCoordsUV);
				vcg::Point2<ScalarType> curvUV=baryCoordsUV.X()*Uv0+
					baryCoordsUV.Y()*Uv1+
					baryCoordsUV.Z()*Uv2-baryUV;
				curvUV.Normalize();
				return curvUV;
			}

		};///end class
	} //End Namespace Tri
} // End Namespace vcg
#endif