1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef VCG_UV_UTILS
#define VCG_UV_UTILS
namespace vcg {
namespace tri{
template <class MeshType>
class UV_Utils
{
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename vcg::Point2<ScalarType> UVCoordType;
public:
///calculate the BBox in UV space
static vcg::Box2<ScalarType> PerWedgeUVBox(MeshType &m)
{
vcg::Box2<ScalarType> UVBox;
FaceIterator fi;
for (fi=m.face.begin();fi!=m.face.end();fi++)
{
if ((*fi).IsD()) continue;
for (int i=0;i<3;i++)
UVBox.Add((*fi).WT(i).P());
}
return UVBox;
}
///calculate the BBox in UV space
static vcg::Box2<ScalarType> PerVertUVBox(MeshType &m)
{
vcg::Box2<ScalarType> UVBox;
VertexIterator vi;
for (vi=m.vert.begin();vi!=m.vert.end();vi++)
{
if ((*vi).IsD()) continue;
UVBox.Add((*vi).T().P());
}
return UVBox;
}
void PerWedgeMakeUnitaryUV(MeshType &m)
{
vcg::Box2<typename MeshType::ScalarType> UVBox = PerWedgeUVBox(m);
typename MeshType::FaceIterator fi;
Point2f boxSize(UVBox.max-UVBox.min);
for (fi=m.face.begin();fi!=m.face.end();fi++)
{
if ((*fi).IsD()) continue;
for (int i=0;i<3;i++)
{
(*fi).WT(i).U() = ((*fi).WT(i).U()-UVBox.min[0])/boxSize[0] ;
(*fi).WT(i).V() = ((*fi).WT(i).V()-UVBox.min[1])/boxSize[1] ;
}
}
}
///transform curvature to UV space
static UVCoordType Coord3DtoUV(FaceType &f,const CoordType &dir)
{
///then transform to UV
CoordType bary3d=(f.P(0)+f.P(1)+f.P(2))/3.0;
UVCoordType baryUV=(f.WT(0).P()+f.WT(1).P()+f.WT(2).P())/3.0;
CoordType dir3d=bary3d+dir;
CoordType baryCoordsUV;
vcg::InterpolationParameters<FaceType,ScalarType>(f,dir3d,baryCoordsUV);
UVCoordType dirUV=baryCoordsUV.X()*f.WT(0).P()+
baryCoordsUV.Y()*f.WT(1).P()+
baryCoordsUV.Z()*f.WT(2).P()-baryUV;
dirUV.Normalize();
return dirUV;
}
static void GloballyMirrorX(MeshType &m)
{
vcg::Box2<ScalarType> BBuv=PerVertUVBox(m);
ScalarType Xmin=BBuv.min.X();
ScalarType Xmax=BBuv.max.X();
ScalarType XAv=(Xmax+Xmin)/2;
VertexIterator vi;
for (vi=m.vert.begin();vi!=m.vert.end();vi++)
{
ScalarType distAV=(*vi).T().P().X()-XAv;
(*vi).T().P().X()=XAv-distAV;
}
}
static void LaplacianUVVert(MeshType &m,bool fix_borders=false,int steps=3)
{
FaceIterator fi;
for (int s=0;s<steps;s++)
{
std::vector<int> num(m.vert.size(),0);
std::vector<UVCoordType> UVpos(m.vert.size(),UVCoordType(0,0));
for (fi=m.face.begin();fi!=m.face.end();fi++)
{
for (int j=0;j<3;j++)
{
VertexType *v0=(*fi).V(0);
VertexType *v1=(*fi).V1(0);
VertexType *v2=(*fi).V2(0);
UVCoordType uv1=v1->T().P();
UVCoordType uv2=v2->T().P();
int index=v0-&(m.vert[0]);
num[index]+=2;
UVpos[index]+=uv1;
UVpos[index]+=uv2;
}
}
VertexIterator vi;
for (int i=0;i<m.vert.size();i++)
{
if ((fix_borders)&&(m.vert[i].IsB()))continue;
m.vert[i].T().P()=UVpos[i]/(ScalarType)num[i];
}
}
}
};
} //End Namespace Tri
} // End Namespace vcg
#endif
|