File: voronoi_atlas.h

package info (click to toggle)
meshlab 1.3.2%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 21,060 kB
  • ctags: 33,549
  • sloc: cpp: 224,813; ansic: 8,170; xml: 119; makefile: 80
file content (232 lines) | stat: -rw-r--r-- 7,273 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#ifndef VORONOI_ATLAS_H
#define VORONOI_ATLAS_H
#include<vcg/complex/algorithms/parametrization/poisson_solver.h>
#include<vcg/complex/algorithms/parametrization/uv_utils.h>
#include<vcg/complex/algorithms/parametrization/distortion.h>
#include<vcg/space/poly_packer.h>
#include<vcg/complex/append.h>
#include<vcg/complex/algorithms/update/texture.h>
#include<vcg/complex/algorithms/point_sampling.h>
#include<vcg/complex/algorithms/voronoi_clustering.h>

namespace vcg {
namespace tri {

template <class MeshType>
class VoronoiAtlas
{
//private:
public:
  class VoroEdge;
  class VoroFace;
  class VoroVertex;
  struct VoroUsedTypes : public UsedTypes<	Use<VoroVertex>   ::template AsVertexType,
                                          Use<VoroEdge>     ::template AsEdgeType,
                                          Use<VoroFace>     ::template AsFaceType>{};

  class VoroVertex  : public Vertex< VoroUsedTypes, vertex::Coord3f, vertex::Normal3f, vertex::TexCoord2f, vertex::VFAdj , vertex::Qualityf, vertex::Color4b, vertex::BitFlags  >{};
  class VoroFace    : public Face<  VoroUsedTypes, face::VertexRef, face::BitFlags, face::FFAdj ,face::VFAdj , face::WedgeTexCoord2f> {};
  class VoroEdge    : public Edge< VoroUsedTypes>{};
  class VoroMesh    : public tri::TriMesh< std::vector<VoroVertex>, std::vector<VoroFace> , std::vector<VoroEdge>  > {};

  typedef typename VoroMesh::FaceIterator FaceIterator;
  typedef typename VoroMesh::VertexType VertexType;
  typedef typename VoroMesh::FaceType FaceType;

  static void CollectUVBorder(VoroMesh *rm, std::vector<Point2f> &uvBorder)
  {
    tri::UpdateTopology<VoroMesh>::FaceFace(*rm);
    tri::UpdateFlags<VoroMesh>::FaceClearV(*rm);
    for(FaceIterator fi=rm->face.begin();fi!=rm->face.end();++fi)
    {
      for(int j=0;j<3;++j)
        if(face::IsBorder(*fi,j) && !(fi->IsV()))
        {
          face::Pos<FaceType> pp(&*fi,j,fi->V(j));
          assert(pp.IsBorder());
          face::Pos<FaceType> startPos = pp;
          do
          {
            uvBorder.push_back( pp.F()->WT(pp.VInd()).P() );
            pp.F()->SetV();
            pp.NextB();
          } while(pp != startPos);
        }
    }
  }

 // take a mesh and rescale its uv so that they are in the 0..1 range
 static void RegularizeTexArea(VoroMesh &m)
  {
    float areaTex=0;
    float areaGeo=0;

    vcg::Box2f UVBox = tri::UV_Utils<VoroMesh>::PerWedgeUVBox(m);
    for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
    {
      areaTex+= fabs((fi->WT(1).P() - fi->WT(0).P()) ^ (fi->WT(2).P() - fi->WT(0).P())) ;
      areaGeo+= DoubleArea(*fi);
    }

    float ratio = sqrt(areaGeo/areaTex);

    for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
    {
      for(int j=0;j<3;++j)
        fi->WT(j).P() = (fi->WT(j).P()-UVBox.min) *ratio;
    }
  }


public:
 struct VoronoiAtlasParam
 {
   VoronoiAtlasParam()
   {
     sampleNum=10;
     overlap=false;
   }

   struct Stat
   {
     void clear() { iterNum=totalTime=unwrapTime=voronoiTime=samplingTime=0;}
     int totalTime;
     int unwrapTime;
     int voronoiTime;
     int samplingTime;

     int regionNum;
     int iterNum;
   };

   int sampleNum;
   bool overlap;
   Stat vas;
 };

 // Main parametrization function:
 // it takes a startMesh, copy it and


  static void Build( MeshType &startMesh, MeshType &paraMesh, VoronoiAtlasParam &pp)
  {
    pp.vas.clear();
   int t0=clock();
  VoroMesh m;  // the mesh used for the processing is a copy of the passed one.
  tri::Append<VoroMesh, MeshType>::Mesh(m, startMesh);
  tri::Clean<VoroMesh>::RemoveUnreferencedVertex(m);
  tri::Allocator<VoroMesh>::CompactVertexVector(m);
  tri::Allocator<VoroMesh>::CompactFaceVector(m);

  tri::UpdateBounding<VoroMesh>::Box(m);
  std::vector<VoroMesh *> meshRegionVec;
  std::vector< std::vector<Point2f> > uvBorders;

  // Main processing loop
  do
  {
    int st0=clock();
    std::vector<Point3f> PoissonSamples;
    float diskRadius=0;
    tri::PoissonSampling(m,PoissonSamples,pp.sampleNum,diskRadius);
    int st1=clock();
    pp.vas.samplingTime+= st1-st0;
    printf("Sampling created a new mesh of %lu points\n",PoissonSamples.size());
    std::vector<VertexType *> seedVec;
    tri::VoronoiProcessing<VoroMesh>::SeedToVertexConversion(m,PoissonSamples,seedVec);
    tri::UpdateTopology<VoroMesh>::VertexFace(m);
    tri::VoronoiProcessing<VoroMesh>::ComputePerVertexSources(m,seedVec);
    tri::VoronoiProcessing<VoroMesh>::FaceAssociateRegion(m);
    tri::VoronoiProcessing<VoroMesh>::VoronoiColoring(m,seedVec,true);
    std::vector<VoroMesh *> badRegionVec;
    int st2=clock();
    pp.vas.voronoiTime+=st2-st1;
    for(size_t i=0; i<seedVec.size();++i)
    {
      VoroMesh *rm = new VoroMesh();
      int selCnt = tri::VoronoiProcessing<VoroMesh>::FaceSelectAssociateRegion(m,seedVec[i]);
      assert(selCnt>0);
      if(pp.overlap){
      tri::UpdateSelection<VoroMesh>::VertexFromFaceLoose(m);
      tri::UpdateSelection<VoroMesh>::FaceFromVertexLoose(m);
      }
      tri::Append<VoroMesh,VoroMesh>::Mesh(*rm, m, true);
      int tp0=clock();
      tri::PoissonSolver<VoroMesh> PS(*rm);
      if(PS.IsFeaseable())
      {
        PS.Init();
        PS.FixDefaultVertices();
        PS.SolvePoisson(false);
        tri::UpdateTexture<VoroMesh>::WedgeTexFromVertexTex(*rm);
        RegularizeTexArea(*rm);

        std::vector<Point2f> uvBorder;
        CollectUVBorder(rm,uvBorder);
        meshRegionVec.push_back(rm);
        uvBorders.push_back(uvBorder);
      } else
      {
        qDebug("ACH - mesh %i is NOT homeomorphic to a disk\n",i);
        badRegionVec.push_back(rm);
      }
      int tp1=clock();
      pp.vas.unwrapTime +=tp1-tp0;
      ++pp.vas.iterNum;
    }

    VoroMesh *rm = new VoroMesh();
    tri::VoronoiProcessing<VoroMesh>::FaceSelectAssociateRegion(m,0);
    tri::Append<VoroMesh,VoroMesh>::Mesh(*rm, m, true);

    if(rm->fn>0)
    {
      qDebug("ACH - unreached faces %i fn\n",rm->fn);
      badRegionVec.push_back(rm);
    }
    m.Clear();
    pp.sampleNum = 10;
    if(!badRegionVec.empty())
    {
      for(size_t i=0;i<badRegionVec.size();++i)
        if(badRegionVec[i]->fn>10)
          tri::Append<VoroMesh,VoroMesh>::Mesh(m, *badRegionVec[i], false);

      tri::Clean<VoroMesh>::RemoveDuplicateFace(m);
      tri::Clean<VoroMesh>::RemoveUnreferencedVertex(m);
      tri::Allocator<VoroMesh>::CompactVertexVector(m);
      tri::Allocator<VoroMesh>::CompactFaceVector(m);
    }
  } while (m.fn>0);

  std::vector<Similarity2f> trVec;
  Point2f finalSize;
  PolyPacker<float>::PackAsObjectOrientedRect(uvBorders,Point2f(1024.0f,1024.0f),trVec,finalSize);
  // loop again over all the patches
  pp.vas.regionNum=meshRegionVec.size();
  for(size_t i=0; i<meshRegionVec.size();++i)
  {
    VoroMesh *rm = meshRegionVec[i];
    for(FaceIterator fi=rm->face.begin();fi!=rm->face.end();++fi)
    {
      for(int j=0;j<3;++j)
      {
        Point2f pp(fi->WT(j).U(),fi->WT(j).V());
        Point2f newpp=trVec[i]*pp;
        fi->WT(j).U()=newpp[0]/1024.0f;
        fi->WT(j).V()=newpp[1]/1024.0f;
      }
    }
    tri::Append<MeshType,VoroMesh>::Mesh(paraMesh, *rm, false);
  }
  int t2=clock();
  pp.vas.totalTime=t2-t0;
}
}; //end


} // end namespace vcg
} // end namespace tri


#endif // VORONOI_ATLAS_H