1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
|
/***********F*****************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCGLIB_REFINE
#define __VCGLIB_REFINE
#include <functional>
#include <map>
#include <vector>
#include <vcg/space/sphere3.h>
#include <vcg/space/plane3.h>
#include <vcg/space/texcoord2.h>
#include <vcg/space/color4.h>
#include <vcg/simplex/face/pos.h>
#include <vcg/simplex/face/topology.h>
#include<vcg/complex/allocate.h>
#include<vcg/complex/algorithms/update/topology.h>
#include<vcg/complex/algorithms/update/flag.h>
#include<wrap/callback.h>
#include <vcg/complex/complex.h>
#include <vcg/space/triangle3.h>
namespace vcg{
/* A very short intro about the generic refinement framework,
the main fuction is the
template<class MESH_TYPE,class MIDPOINT, class EDGEPRED>
bool RefineE(MESH_TYPE &m, MIDPOINT mid, EDGEPRED ep,bool RefineSelected=false, CallBackPos *cb = 0)
You have to provide two functor objects to this, one for deciding what edge has to be spltted and one to decide position and new values for the attributes of the new point.
for example the minimal EDGEPRED is
template <class MESH_TYPE, class FLT> class EdgeLen
{
public:
FLT thr2;
bool operator()(face::Pos<typename MESH_TYPE::FaceType> ep) const
{
return SquaredDistance(ep.f->V(ep.z)->P(), ep.f->V1(ep.z)->P())>thr2;
}
};
With a bit of patience you can customize to make also slicing operation.
*/
/* The table which encodes how to subdivide a triangle depending
on the splitted edges is organized as such:
TriNum (the first number): encodes the number of triangles
TV (the following 4 triples): encodes the resulting triangles where
0, 1, 2 are the original vertices of the triangles and 3, 4, 5
(mp01, mp12, mp20) are the midpoints of the three edges.
In the case two edges are splitted the triangle has 2 possible splittings:
we need to choose a diagonal of the resulting trapezoid.
'swap' encodes the two diagonals to test: if diag1 < diag2 we swap the diagonal
like this (140, 504 -> 150, 514) (the second vertex of each triangles is replaced
by the first vertex of the other one).
2
/ \
5---4
/ \
0-------1
*/
class Split {
public:
int TriNum; // number of triangles
int TV[4][3]; // The triangles coded as the following convention
// 0..2 vertici originali del triangolo
// 3..5 mp01, mp12, mp20 midpoints of the three edges
int swap[2][2]; // the two diagonals to test for swapping
int TE[4][3]; // the edge-edge correspondence between refined triangles and the old one
// (3) means the edge of the new triangle is internal;
};
const Split SplitTab[8]={
/* m20 m12 m01 */
/* 0 0 0 */ {1, {{0,1,2},{0,0,0},{0,0,0},{0,0,0}}, {{0,0},{0,0}}, {{0,1,2},{0,0,0},{0,0,0},{0,0,0}} },
/* 0 0 1 */ {2, {{0,3,2},{3,1,2},{0,0,0},{0,0,0}}, {{0,0},{0,0}}, {{0,3,2},{0,1,3},{0,0,0},{0,0,0}} },
/* 0 1 0 */ {2, {{0,1,4},{0,4,2},{0,0,0},{0,0,0}}, {{0,0},{0,0}}, {{0,1,3},{3,1,2},{0,0,0},{0,0,0}} },
/* 0 1 1 */ {3, {{3,1,4},{0,3,2},{4,2,3},{0,0,0}}, {{0,4},{3,2}}, {{0,1,3},{0,3,2},{1,3,3},{0,0,0}} },
/* 1 0 0 */ {2, {{0,1,5},{5,1,2},{0,0,0},{0,0,0}}, {{0,0},{0,0}}, {{0,3,2},{3,1,2},{0,0,0},{0,0,0}} },
/* 1 0 1 */ {3, {{0,3,5},{3,1,5},{2,5,1},{0,0,0}}, {{3,2},{5,1}}, {{0,3,2},{0,3,3},{2,3,1},{0,0,0}} },
/* 1 1 0 */ {3, {{2,5,4},{0,1,5},{4,5,1},{0,0,0}}, {{0,4},{5,1}}, {{2,3,1},{0,3,2},{3,3,1},{0,0,0}} },
/* 1 1 1 */ //{4, {{0,3,5},{3,1,4},{5,4,2},{3,4,5}}, {{0,0},{0,0}}, {{0,3,2},{0,1,3},{3,1,2},{3,3,3}} },
/* 1 1 1 */ {4, {{3,4,5},{0,3,5},{3,1,4},{5,4,2}}, {{0,0},{0,0}}, {{3,3,3},{0,3,2},{0,1,3},{3,1,2}} },
};
// Basic subdivision class
// This class must provide methods for finding the position of the newly created vertices
// In this implemenation we simply put the new vertex in the MidPoint position.
// Color and TexCoords are interpolated accordingly.
template<class MESH_TYPE>
struct MidPoint : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::CoordType >
{
MidPoint(MESH_TYPE *_mp) { mp=_mp; }
MESH_TYPE *mp;
void operator()(typename MESH_TYPE::VertexType &nv, face::Pos<typename MESH_TYPE::FaceType> ep){
assert(mp);
nv.P()= (ep.f->V(ep.z)->P()+ep.f->V1(ep.z)->P())/2.0;
if( tri::HasPerVertexNormal(*mp))
nv.N()= (ep.f->V(ep.z)->N()+ep.f->V1(ep.z)->N()).normalized();
if( tri::HasPerVertexColor(*mp))
nv.C().lerp(ep.f->V(ep.z)->C(),ep.f->V1(ep.z)->C(),.5f);
if( tri::HasPerVertexQuality(*mp))
nv.Q() = ((ep.f->V(ep.z)->Q()+ep.f->V1(ep.z)->Q())) / 2.0;
if( tri::HasPerVertexTexCoord(*mp))
nv.T().P() = ((ep.f->V(ep.z)->T().P()+ep.f->V1(ep.z)->T().P())) / 2.0;
}
Color4<typename MESH_TYPE::ScalarType> WedgeInterp(Color4<typename MESH_TYPE::ScalarType> &c0, Color4<typename MESH_TYPE::ScalarType> &c1)
{
Color4<typename MESH_TYPE::ScalarType> cc;
return cc.lerp(c0,c1,0.5f);
}
template<class FL_TYPE>
TexCoord2<FL_TYPE,1> WedgeInterp(TexCoord2<FL_TYPE,1> &t0, TexCoord2<FL_TYPE,1> &t1)
{
TexCoord2<FL_TYPE,1> tmp;
assert(t0.n()== t1.n());
tmp.n()=t0.n();
tmp.t()=(t0.t()+t1.t())/2.0;
return tmp;
}
};
template<class MESH_TYPE>
struct MidPointArc : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::CoordType>
{
void operator()(typename MESH_TYPE::VertexType &nv, face::Pos<typename MESH_TYPE::FaceType> ep)
{
const typename MESH_TYPE::ScalarType EPS =1e-10;
typename MESH_TYPE::CoordType vp = (ep.f->V(ep.z)->P()+ep.f->V1(ep.z)->P())/2.0;
typename MESH_TYPE::CoordType n = (ep.f->V(ep.z)->N()+ep.f->V1(ep.z)->N())/2.0;
typename MESH_TYPE::ScalarType w =n.Norm();
if(w<EPS) { nv.P()=(ep.f->V(ep.z)->P()+ep.f->V1(ep.z)->P())/2.0; return;}
n/=w;
typename MESH_TYPE::CoordType d0 = ep.f->V(ep.z)->P() - vp;
typename MESH_TYPE::CoordType d1 = ep.f->V1(ep.z)->P()- vp;
typename MESH_TYPE::ScalarType d=Distance(ep.f->V(ep.z)->P(),ep.f->V1(ep.z)->P())/2.0;
typename MESH_TYPE::CoordType nn = ep.f->V1(ep.z)->N() ^ ep.f->V(ep.z)->N();
typename MESH_TYPE::CoordType np = n ^ d0; //vector perpendicular to the edge plane, normal is interpolated
np.Normalize();
double sign=1;
if(np*nn<0) sign=-1; // se le normali non divergono sposta il punto nella direzione opposta
typename MESH_TYPE::CoordType n0=ep.f->V(ep.z)->N() -np*(ep.f->V(ep.z)->N()*np);
n0.Normalize();
typename MESH_TYPE::CoordType n1=ep.f->V1(ep.z)->N()-np*(ep.f->V1(ep.z)->N()*np);
assert(n1.Norm()>EPS);
n1.Normalize();
typename MESH_TYPE::ScalarType cosa0=n0*n;
typename MESH_TYPE::ScalarType cosa1=n1*n;
if(2-cosa0-cosa1<EPS) {nv.P()=(ep.f->V(ep.z)->P()+ep.f->V1(ep.z)->P())/2.0;return;}
typename MESH_TYPE::ScalarType cosb0=(d0*n)/d;
typename MESH_TYPE::ScalarType cosb1=(d1*n)/d;
assert(1+cosa0>EPS);
assert(1+cosa1>EPS);
typename MESH_TYPE::ScalarType delta0=d*(cosb0 +sqrt( ((1-cosb0*cosb0)*(1-cosa0))/(1+cosa0)) );
typename MESH_TYPE::ScalarType delta1=d*(cosb1 +sqrt( ((1-cosb1*cosb1)*(1-cosa1))/(1+cosa1)) );
assert(delta0+delta1<2*d);
nv.P()=vp+n*sign*(delta0+delta1)/2.0;
return ;
}
// Aggiunte in modo grezzo le due wedgeinterp
Color4<typename MESH_TYPE::ScalarType> WedgeInterp(Color4<typename MESH_TYPE::ScalarType> &c0, Color4<typename MESH_TYPE::ScalarType> &c1)
{
Color4<typename MESH_TYPE::ScalarType> cc;
return cc.lerp(c0,c1,0.5f);
}
template<class FL_TYPE>
TexCoord2<FL_TYPE,1> WedgeInterp(TexCoord2<FL_TYPE,1> &t0, TexCoord2<FL_TYPE,1> &t1)
{
TexCoord2<FL_TYPE,1> tmp;
assert(t0.n()== t1.n());
tmp.n()=t0.n();
tmp.t()=(t0.t()+t1.t())/2.0;
return tmp;
}
};
/*
Versione Della Midpoint basata sul paper:
S. Karbacher, S. Seeger, G. Hausler
A non linear subdivision scheme for triangle meshes
Non funziona!
Almeno due problemi:
1) il verso delle normali influenza il risultato (e.g. si funziona solo se le normali divergono)
Risolvibile controllando se le normali divergono
2) gli archi vanno calcolati sul piano definito dalla normale interpolata e l'edge.
funziona molto meglio nelle zone di sella e non semplici.
*/
template<class MESH_TYPE>
struct MidPointArcNaive : public std::unary_function< face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::CoordType>
{
typename MESH_TYPE::CoordType operator()(face::Pos<typename MESH_TYPE::FaceType> ep)
{
typename MESH_TYPE::CoordType vp = (ep.f->V(ep.z)->P()+ep.f->V1(ep.z)->P())/2.0;
typename MESH_TYPE::CoordType n = (ep.f->V(ep.z)->N()+ep.f->V1(ep.z)->N())/2.0;
n.Normalize();
typename MESH_TYPE::CoordType d0 = ep.f->V(ep.z)->P() - vp;
typename MESH_TYPE::CoordType d1 = ep.f->V1(ep.z)->P()- vp;
typename MESH_TYPE::ScalarType d=Distance(ep.f->V(ep.z)->P(),ep.f->V1(ep.z)->P())/2.0;
typename MESH_TYPE::ScalarType cosa0=ep.f->V(ep.z)->N()*n;
typename MESH_TYPE::ScalarType cosa1=ep.f->V1(ep.z)->N()*n;
typename MESH_TYPE::ScalarType cosb0=(d0*n)/d;
typename MESH_TYPE::ScalarType cosb1=(d1*n)/d;
typename MESH_TYPE::ScalarType delta0=d*(cosb0 +sqrt( ((1-cosb0*cosb0)*(1-cosa0))/(1+cosa0)) );
typename MESH_TYPE::ScalarType delta1=d*(cosb1 +sqrt( ((1-cosb1*cosb1)*(1-cosa1))/(1+cosa1)) );
return vp+n*(delta0+delta1)/2.0;
}
};
// Basic Predicate that tells if a given edge must be splitted.
// the constructure requires the threshold.
// VERY IMPORTANT REQUIREMENT: this function must be symmetric
// e.g. it must return the same value if the Pos is VFlipped.
// If this function is not symmetric the Refine can crash.
template <class MESH_TYPE, class FLT>
class EdgeLen
{
FLT squaredThr;
public:
EdgeLen(){};
EdgeLen(FLT threshold) {setThr(threshold);}
void setThr(FLT threshold) {squaredThr = threshold*threshold; }
bool operator()(face::Pos<typename MESH_TYPE::FaceType> ep) const
{
return SquaredDistance(ep.V()->P(), ep.VFlip()->P())>squaredThr;
}
};
/*********************************************************/
/*********************************************************
Given a mesh the following function refines it according to two functor objects:
- a predicate that tells if a given edge must be splitted
- a functor that gives you the new poistion of the created vertices (starting from an edge)
If RefineSelected is true only selected faces are taken into account for being splitted.
Requirement: FF Adjacency and Manifoldness
**********************************************************/
/*********************************************************/
template <class VertexPointer>
class RefinedFaceData
{
public:
RefinedFaceData(){
ep[0]=0;ep[1]=0;ep[2]=0;
vp[0]=0;vp[1]=0;vp[2]=0;
}
bool ep[3];
VertexPointer vp[3];
};
template<class MESH_TYPE,class MIDPOINT, class EDGEPRED>
bool RefineE(MESH_TYPE &m, MIDPOINT mid, EDGEPRED ep,bool RefineSelected=false, CallBackPos *cb = 0)
{
// common typenames
typedef typename MESH_TYPE::VertexIterator VertexIterator;
typedef typename MESH_TYPE::FaceIterator FaceIterator;
typedef typename MESH_TYPE::VertexPointer VertexPointer;
typedef typename MESH_TYPE::FacePointer FacePointer;
typedef typename MESH_TYPE::FaceType FaceType;
typedef typename MESH_TYPE::FaceType::TexCoordType TexCoordType;
assert(tri::HasFFAdjacency(m));
tri::UpdateFlags<MESH_TYPE>::FaceBorderFromFF(m);
typedef face::Pos<FaceType> PosType;
int j,NewVertNum=0,NewFaceNum=0;
typedef RefinedFaceData<VertexPointer> RFD;
typedef typename MESH_TYPE :: template PerFaceAttributeHandle<RFD> HandleType;
HandleType RD = tri::Allocator<MESH_TYPE>:: template AddPerFaceAttribute<RFD> (m,std::string("RefineData"));
// Callback stuff
int step=0;
int PercStep=std::max(1,m.fn/33);
// First Loop: We analyze the mesh to compute the number of the new faces and new vertices
FaceIterator fi;
for(fi=m.face.begin(),j=0;fi!=m.face.end();++fi) if(!(*fi).IsD())
{
if(cb && (++step%PercStep)==0) (*cb)(step/PercStep,"Refining...");
// skip unselected faces if necessary
if(RefineSelected && !(*fi).IsS()) continue;
for(j=0;j<3;j++)
{
if(RD[fi].ep[j]) continue;
PosType edgeCur(&*fi,j);
if(RefineSelected && ! edgeCur.FFlip()->IsS()) continue;
if(!ep(edgeCur)) continue;
RD[edgeCur.F()].ep[edgeCur.E()]=true;
++NewFaceNum;
++NewVertNum;
assert(edgeCur.IsManifold());
if(!edgeCur.IsBorder())
{
edgeCur.FlipF();
edgeCur.F()->SetV();
RD[edgeCur.F()].ep[edgeCur.E()]=true;
++NewFaceNum;
}
}
} // end face loop
if(NewVertNum ==0 )
{
tri::Allocator<MESH_TYPE> :: template DeletePerFaceAttribute<RefinedFaceData<VertexPointer> > (m,RD);
return false;
}
VertexIterator lastv = tri::Allocator<MESH_TYPE>::AddVertices(m,NewVertNum);
// Secondo loop: We initialize a edge->vertex map
for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
{
if(cb && (++step%PercStep)==0)(*cb)(step/PercStep,"Refining...");
for(j=0;j<3;j++)
{
// skip unselected faces if necessary
if(RefineSelected && !(*fi).IsS()) continue;
for(j=0;j<3;j++)
{
PosType edgeCur(&*fi,j);
if(RefineSelected && ! edgeCur.FFlip()->IsS()) continue;
if( RD[edgeCur.F()].ep[edgeCur.E()] && RD[edgeCur.F()].vp[edgeCur.E()] ==0 )
{
RD[edgeCur.F()].vp[edgeCur.E()] = &*lastv;
mid(*lastv,edgeCur);
if(!edgeCur.IsBorder())
{
edgeCur.FlipF();
assert(RD[edgeCur.F()].ep[edgeCur.E()]);
RD[edgeCur.F()].vp[edgeCur.E()] = &*lastv;
}
++lastv;
}
}
}
}
assert(lastv==m.vert.end()); // critical assert: we MUST have used all the vertex that we forecasted we need
FaceIterator lastf = tri::Allocator<MESH_TYPE>::AddFaces(m,NewFaceNum);
FaceIterator oldendf = lastf;
/*
v0
f0
mp01 f3 mp02
f1 f2
v1 mp12 v2
*/
VertexPointer vv[6]; // The six vertices that arise in the single triangle splitting
// 0..2 Original triangle vertices
// 3..5 mp01, mp12, mp20 midpoints of the three edges
FacePointer nf[4]; // The (up to) four faces that are created.
TexCoordType wtt[6]; // per ogni faccia sono al piu' tre i nuovi valori
// di texture per wedge (uno per ogni edge)
int fca=0,fcn =0;
for(fi=m.face.begin();fi!=oldendf;++fi) if(!(*fi).IsD())
{
if(cb && (++step%PercStep)==0)(*cb)(step/PercStep,"Refining...");
fcn++;
vv[0]=(*fi).V(0);
vv[1]=(*fi).V(1);
vv[2]=(*fi).V(2);
vv[3] = RD[fi].vp[0];
vv[4] = RD[fi].vp[1];
vv[5] = RD[fi].vp[2];
int ind=((&*vv[3])?1:0)+((&*vv[4])?2:0)+((&*vv[5])?4:0);
nf[0]=&*fi;
int i;
for(i=1;i<SplitTab[ind].TriNum;++i){
nf[i]=&*lastf; ++lastf; fca++;
if(RefineSelected || (*fi).IsS()) (*nf[i]).SetS();
if(tri::HasPerFaceColor(m))
nf[i]->C()=(*fi).cC();
}
if(tri::HasPerWedgeTexCoord(m))
for(i=0;i<3;++i) {
wtt[i]=(*fi).WT(i);
wtt[3+i]=mid.WedgeInterp((*fi).WT(i),(*fi).WT((i+1)%3));
}
int orgflag= (*fi).UberFlags();
for(i=0;i<SplitTab[ind].TriNum;++i)
for(j=0;j<3;++j){
(*nf[i]).V(j)=&*vv[SplitTab[ind].TV[i][j]];
if(tri::HasPerWedgeTexCoord(m)) //analogo ai vertici...
(*nf[i]).WT(j)=wtt[SplitTab[ind].TV[i][j]];
assert((*nf[i]).V(j)!=0);
if(SplitTab[ind].TE[i][j]!=3){
if(orgflag & (MESH_TYPE::FaceType::BORDER0<<(SplitTab[ind].TE[i][j])))
(*nf[i]).SetB(j);
else
(*nf[i]).ClearB(j);
}
else (*nf[i]).ClearB(j);
}
if(SplitTab[ind].TriNum==3 &&
SquaredDistance(vv[SplitTab[ind].swap[0][0]]->P(),vv[SplitTab[ind].swap[0][1]]->P()) <
SquaredDistance(vv[SplitTab[ind].swap[1][0]]->P(),vv[SplitTab[ind].swap[1][1]]->P()) )
{ // swap the last two triangles
(*nf[2]).V(1)=(*nf[1]).V(0);
(*nf[1]).V(1)=(*nf[2]).V(0);
if(tri::HasPerWedgeTexCoord(m)){ //swap also textures coordinates
(*nf[2]).WT(1)=(*nf[1]).WT(0);
(*nf[1]).WT(1)=(*nf[2]).WT(0);
}
if((*nf[1]).IsB(0)) (*nf[2]).SetB(1); else (*nf[2]).ClearB(1);
if((*nf[2]).IsB(0)) (*nf[1]).SetB(1); else (*nf[1]).ClearB(1);
(*nf[1]).ClearB(0);
(*nf[2]).ClearB(0);
}
}
assert(lastf==m.face.end()); // critical assert: we MUST have used all the faces that we forecasted we need and that we previously allocated.
assert(!m.vert.empty());
for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()){
assert((*fi).V(0)>=&*m.vert.begin() && (*fi).V(0)<=&m.vert.back() );
assert((*fi).V(1)>=&*m.vert.begin() && (*fi).V(1)<=&m.vert.back() );
assert((*fi).V(2)>=&*m.vert.begin() && (*fi).V(2)<=&m.vert.back() );
}
tri::UpdateTopology<MESH_TYPE>::FaceFace(m);
tri::Allocator<MESH_TYPE> :: template DeletePerFaceAttribute<RefinedFaceData<VertexPointer> > (m,RD);
return true;
}
/*************************************************************************/
// simple wrapper of the base refine for lazy coder that do not need a edge predicate
template<class MESH_TYPE,class MIDPOINT>
bool Refine(MESH_TYPE &m, MIDPOINT mid, typename MESH_TYPE::ScalarType thr=0,bool RefineSelected=false, CallBackPos *cb = 0)
{
EdgeLen <MESH_TYPE, typename MESH_TYPE::ScalarType> ep(thr);
return RefineE(m,mid,ep,RefineSelected,cb);
}
/*************************************************************************/
/*
Modified Butterfly interpolation scheme,
as presented in
Zorin, Schroeder
Subdivision for modeling and animation
Siggraph 2000 Course Notes
*/
/*
vul-------vu--------vur
\ / \ /
\ / \ /
\ / fu \ /
vl--------vr
/ \ fd / \
/ \ / \
/ \ / \
vdl-------vd--------vdr
*/
template<class MESH_TYPE>
struct MidPointButterfly : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::CoordType>
{
MESH_TYPE &m;
MidPointButterfly(MESH_TYPE &_m):m(_m){}
void operator()(typename MESH_TYPE::VertexType &nv, face::Pos<typename MESH_TYPE::FaceType> ep)
{
face::Pos<typename MESH_TYPE::FaceType> he(ep.f,ep.z,ep.f->V(ep.z));
typename MESH_TYPE::CoordType *vl,*vr;
typename MESH_TYPE::CoordType *vl0,*vr0;
typename MESH_TYPE::CoordType *vu,*vd,*vul,*vur,*vdl,*vdr;
vl=&he.v->P();
he.FlipV();
vr=&he.v->P();
if( tri::HasPerVertexColor(m))
nv.C().lerp(ep.f->V(ep.z)->C(),ep.f->V1(ep.z)->C(),.5f);
if(he.IsBorder())
{
he.NextB();
vr0=&he.v->P();
he.FlipV();
he.NextB();
assert(&he.v->P()==vl);
he.NextB();
vl0=&he.v->P();
nv.P()=((*vl)+(*vr))*(9.0/16.0)-((*vl0)+(*vr0))/16.0 ;
}
else
{
he.FlipE();he.FlipV();
vu=&he.v->P();
he.FlipF();he.FlipE();he.FlipV();
vur=&he.v->P();
he.FlipV();he.FlipE();he.FlipF(); assert(&he.v->P()==vu); // back to vu (on the right)
he.FlipE();
he.FlipF();he.FlipE();he.FlipV();
vul=&he.v->P();
he.FlipV();he.FlipE();he.FlipF(); assert(&he.v->P()==vu); // back to vu (on the left)
he.FlipV();he.FlipE();he.FlipF(); assert(&he.v->P()==vl);// again on vl (but under the edge)
he.FlipE();he.FlipV();
vd=&he.v->P();
he.FlipF();he.FlipE();he.FlipV();
vdl=&he.v->P();
he.FlipV();he.FlipE();he.FlipF(); assert(&he.v->P()==vd);// back to vd (on the right)
he.FlipE();
he.FlipF();he.FlipE();he.FlipV();
vdr=&he.v->P();
nv.P()=((*vl)+(*vr))/2.0+((*vu)+(*vd))/8.0 - ((*vul)+(*vur)+(*vdl)+(*vdr))/16.0;
}
}
/// Aggiunte in modo grezzo le due wedge interp
Color4<typename MESH_TYPE::ScalarType> WedgeInterp(Color4<typename MESH_TYPE::ScalarType> &c0, Color4<typename MESH_TYPE::ScalarType> &c1)
{
Color4<typename MESH_TYPE::ScalarType> cc;
return cc.lerp(c0,c1,0.5f);
}
template<class FL_TYPE>
TexCoord2<FL_TYPE,1> WedgeInterp(TexCoord2<FL_TYPE,1> &t0, TexCoord2<FL_TYPE,1> &t1)
{
TexCoord2<FL_TYPE,1> tmp;
assert(t0.n()== t1.n());
tmp.n()=t0.n();
tmp.t()=(t0.t()+t1.t())/2.0;
return tmp;
}
};
#if 0
int rule=0;
if(vr==vul) rule+=1;
if(vl==vur) rule+=2;
if(vl==vdr) rule+=4;
if(vr==vdl) rule+=8;
switch(rule){
/* */
/* */ case 0 : return ((*vl)+(*vr))/2.0+((*vu)+(*vd))/8.0 - ((*vul)+(*vur)+(*vdl)+(*vdr))/16.0;
/* ul */ case 1 : return (*vl*6 + *vr*10 + *vu + *vd*3 - *vur - *vdl -*vdr*2 )/16.0;
/* ur */ case 2 : return (*vr*6 + *vl*10 + *vu + *vd*3 - *vul - *vdr -*vdl*2 )/16.0;
/* dr */ case 4 : return (*vr*6 + *vl*10 + *vd + *vu*3 - *vdl - *vur -*vul*2 )/16.0;
/* dl */ case 8 : return (*vl*6 + *vr*10 + *vd + *vu*3 - *vdr - *vul -*vur*2 )/16.0;
/* ul,ur */ case 3 : return (*vl*4 + *vr*4 + *vd*2 + - *vdr - *vdl )/8.0;
/* dl,dr */ case 12 : return (*vl*4 + *vr*4 + *vu*2 + - *vur - *vul )/8.0;
/* ul,dr */ case 5 :
/* ur,dl */ case 10 :
default:
return (*vl+ *vr)/2.0;
}
#endif
/*
vul-------vu--------vur
\ / \ /
\ / \ /
\ / fu \ /
vl--------vr
/ \ fd / \
/ \ / \
/ \ / \
vdl-------vd--------vdr
*/
// Versione modificata per tenere di conto in meniara corretta dei vertici con valenza alta
template<class MESH_TYPE>
struct MidPointButterfly2 : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::CoordType>
{
typename MESH_TYPE::CoordType operator()(face::Pos<typename MESH_TYPE::FaceType> ep)
{
double Rules[11][10] =
{
{.0}, // valenza 0
{.0}, // valenza 1
{.0}, // valenza 2
{ .4166666667, -.08333333333 , -.08333333333 }, // valenza 3
{ .375 , .0 , -0.125 , .0 }, // valenza 4
{ .35 , .03090169945 , -.08090169945 , -.08090169945, .03090169945 }, // valenza 5
{ .5 , .125 , -0.0625 , .0 , -0.0625 , 0.125 }, // valenza 6
{ .25 , .1088899050 , -.06042933822 , -.04846056675, -.04846056675, -.06042933822, .1088899050 }, // valenza 7
{ .21875 , .1196383476 , -.03125 , -.05713834763, -.03125 , -.05713834763, -.03125 ,.1196383476 }, // valenza 8
{ .1944444444, .1225409480 , -.00513312590 , -.05555555556, -.03407448880, -.03407448880, -.05555555556, -.00513312590, .1225409480 }, // valenza 9
{ .175 , .1213525492 , .01545084973 , -.04635254918, -.04045084973, -.025 , -.04045084973, -.04635254918, .01545084973, .1213525492 } // valenza 10
};
face::Pos<typename MESH_TYPE::FaceType> he(ep.f,ep.z,ep.f->V(ep.z));
typename MESH_TYPE::CoordType *vl,*vr;
vl=&he.v->P();
vr=&he.VFlip()->P();
if(he.IsBorder())
{he.FlipV();
typename MESH_TYPE::CoordType *vl0,*vr0;
he.NextB();
vr0=&he.v->P();
he.FlipV();
he.NextB();
assert(&he.v->P()==vl);
he.NextB();
vl0=&he.v->P();
return ((*vl)+(*vr))*(9.0/16.0)-((*vl0)+(*vr0))/16.0 ;
}
int kl=0,kr=0; // valence of left and right vertices
bool bl=false,br=false; // if left and right vertices are of border
face::Pos<typename MESH_TYPE::FaceType> heStart=he;assert(he.v->P()==*vl);
do { // compute valence of left vertex
he.FlipE();he.FlipF();
if(he.IsBorder()) bl=true;
++kl;
} while(he!=heStart);
he.FlipV();heStart=he;assert(he.v->P()==*vr);
do { // compute valence of right vertex
he.FlipE();he.FlipF();
if(he.IsBorder()) br=true;
++kr;
} while(he!=heStart);
if(br||bl) return MidPointButterfly<MESH_TYPE>()( ep );
if(kr==6 && kl==6) return MidPointButterfly<MESH_TYPE>()( ep );
// TRACE("odd vertex among valences of %i %i\n",kl,kr);
typename MESH_TYPE::CoordType newposl=*vl*.75, newposr=*vr*.75;
he.FlipV();heStart=he; assert(he.v->P()==*vl);
int i=0;
if(kl!=6)
do { // compute position of left vertex
newposl+= he.VFlip()->P() * Rules[kl][i];
he.FlipE();he.FlipF();
++i;
} while(he!=heStart);
i=0;he.FlipV();heStart=he;assert(he.v->P()==*vr);
if(kr!=6)
do { // compute position of right vertex
newposr+=he.VFlip()->P()* Rules[kr][i];
he.FlipE();he.FlipF();
++i;
} while(he!=heStart);
if(kr==6) return newposl;
if(kl==6) return newposr;
return newposl+newposr;
}
};
/* The two following classes are the functor and the predicate that you need for using the refine framework to cut a mesh along a linear interpolation of the quality.
This can be used for example to slice a mesh with a plane. Just set the quality value as distance from plane and then functor and predicate
initialized 0 and invoke the refine
MyMesh A;
tri::UpdateQuality:MyMesh>::VertexFromPlane(plane);
QualityMidPointFunctor<MyMesh> slicingfunc(0.0);
QualityEdgePredicate<MyMesh> slicingpred(0.0);
tri::UpdateTopology<MyMesh>::FaceFace(A);
RefineE<MyMesh, QualityMidPointFunctor<MyMesh>, QualityEdgePredicate<MyMesh> > (A, slicingfunc, slicingpred, false);
Note that they store in the vertex quality the plane distance.
*/
template<class MESH_TYPE>
class QualityMidPointFunctor : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::CoordType>
{
public:
typedef Point3<typename MESH_TYPE::ScalarType> Point3x;
typedef typename MESH_TYPE::ScalarType ScalarType;
ScalarType thr;
QualityMidPointFunctor(ScalarType _thr):thr(_thr){}
void operator()(typename MESH_TYPE::VertexType &nv, const face::Pos<typename MESH_TYPE::FaceType> &ep){
Point3x p0=ep.f->V0(ep.z)->P();
Point3x p1=ep.f->V1(ep.z)->P();
ScalarType q0=ep.f->V0(ep.z)->Q()-thr;
ScalarType q1=ep.f->V1(ep.z)->Q()-thr;
double pp= q0/(q0-q1);
nv.P()=p1*pp + p0*(1.0-pp);
nv.Q()=thr;
}
Color4<typename MESH_TYPE::ScalarType> WedgeInterp(Color4<typename MESH_TYPE::ScalarType> &c0, Color4<typename MESH_TYPE::ScalarType> &c1)
{
Color4<typename MESH_TYPE::ScalarType> cc;
return cc.lerp(c0,c1,0.5f);
}
template<class FL_TYPE>
TexCoord2<FL_TYPE,1> WedgeInterp(TexCoord2<FL_TYPE,1> &t0, TexCoord2<FL_TYPE,1> &t1)
{
TexCoord2<FL_TYPE,1> tmp;
assert(t0.n()== t1.n());
tmp.n()=t0.n();
tmp.t()=(t0.t()+t1.t())/2.0;
return tmp;
}
};
template <class MESH_TYPE>
class QualityEdgePredicate
{
public:
typedef Point3<typename MESH_TYPE::ScalarType> Point3x;
typedef typename MESH_TYPE::ScalarType ScalarType;
ScalarType thr;
QualityEdgePredicate(const ScalarType &thr):thr(thr) {}
bool operator()(face::Pos<typename MESH_TYPE::FaceType> ep)
{
ScalarType q0=ep.f->V0(ep.z)->Q()-thr;
ScalarType q1=ep.f->V1(ep.z)->Q()-thr;
if(q0>q1) std::swap(q0,q1);
if ( q0*q1 > 0) return false;
// now a small check to be sure that we do not make too thin crossing.
double pp= q0/(q0-q1);
if(fabs(pp)< 0.001) return false;
return true;
}
};
template<class MESH_TYPE>
struct MidPointSphere : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::CoordType>
{
Sphere3<typename MESH_TYPE::ScalarType> sph;
typedef Point3<typename MESH_TYPE::ScalarType> Point3x;
void operator()(typename MESH_TYPE::VertexType &nv, face::Pos<typename MESH_TYPE::FaceType> ep){
Point3x &p0=ep.f->V0(ep.z)->P();
Point3x &p1=ep.f->V1(ep.z)->P();
nv.P()= sph.c+((p0+p1)/2.0 - sph.c ).Normalize();
}
Color4<typename MESH_TYPE::ScalarType> WedgeInterp(Color4<typename MESH_TYPE::ScalarType> &c0, Color4<typename MESH_TYPE::ScalarType> &c1)
{
Color4<typename MESH_TYPE::ScalarType> cc;
return cc.lerp(c0,c1,0.5f);
}
template<class FL_TYPE>
TexCoord2<FL_TYPE,1> WedgeInterp(TexCoord2<FL_TYPE,1> &t0, TexCoord2<FL_TYPE,1> &t1)
{
TexCoord2<FL_TYPE,1> tmp;
assert(t0.n()== t1.n());
tmp.n()=t0.n();
tmp.t()=(t0.t()+t1.t())/2.0;
return tmp;
}
};
template <class FLT>
class EdgeSplSphere
{
public:
Sphere3<FLT> sph;
bool operator()(const Point3<FLT> &p0, const Point3<FLT> &p1) const
{
if(Distance(sph,p0)>0) {
if(Distance(sph,p1)>0) return false;
else return true;
}
else if(Distance(sph,p1)<=0) return false;
return true;
}
};
/*!
* Triangle split
*/
template<class TRIMESH_TYPE>
struct CenterPoint : public std::unary_function<typename TRIMESH_TYPE::FacePointer, typename TRIMESH_TYPE::CoordType>
{
typename TRIMESH_TYPE::CoordType operator()(typename TRIMESH_TYPE::FacePointer f){
return vcg::Barycenter<typename TRIMESH_TYPE::FaceType>(*f);
}
};
template<class TRIMESH_TYPE, class CenterPoint>
void TriSplit(typename TRIMESH_TYPE::FacePointer f,
typename TRIMESH_TYPE::FacePointer f1,typename TRIMESH_TYPE::FacePointer f2,
typename TRIMESH_TYPE::VertexPointer vB, CenterPoint Center)
{
vB->P() = Center(f);
//i tre vertici della faccia da dividere
typename TRIMESH_TYPE::VertexType* V0,*V1,*V2;
V0 = f->V(0);
V1 = f->V(1);
V2 = f->V(2);
//risistemo la faccia di partenza
(*f).V(2) = &(*vB);
//Faccia nuova #1
(*f1).V(0) = &(*vB);
(*f1).V(1) = V1;
(*f1).V(2) = V2;
//Faccia nuova #2
(*f2).V(0) = V0;
(*f2).V(1) = &(*vB);
(*f2).V(2) = V2;
if(f->HasFFAdjacency())
{
//adiacenza delle facce adiacenti a quelle aggiunte
f->FFp(1)->FFp(f->FFi(1)) = f1;
f->FFp(2)->FFp(f->FFi(2)) = f2;
//adiacenza ff
typename TRIMESH_TYPE::FacePointer FF0,FF1,FF2;
FF0 = f->FFp(0);
FF1 = f->FFp(1);
FF2 = f->FFp(2);
//Indici di adiacenza ff
char FFi0,FFi1,FFi2;
FFi0 = f->FFi(0);
FFi1 = f->FFi(1);
FFi2 = f->FFi(2);
//adiacenza della faccia di partenza
(*f).FFp(1) = &(*f1);
(*f).FFi(1) = 0;
(*f).FFp(2) = &(*f2);
(*f).FFi(2) = 0;
//adiacenza della faccia #1
(*f1).FFp(0) = f;
(*f1).FFi(0) = 1;
(*f1).FFp(1) = FF1;
(*f1).FFi(1) = FFi1;
(*f1).FFp(2) = &(*f2);
(*f1).FFi(2) = 1;
//adiacenza della faccia #2
(*f2).FFp(0) = f;
(*f2).FFi(0) = 2;
(*f2).FFp(1) = &(*f1);
(*f2).FFi(1) = 2;
(*f2).FFp(2) = FF2;
(*f2).FFi(2) = FFi2;
}
}
} // namespace vcg
#endif
|