File: normal.h

package info (click to toggle)
meshlab 1.3.2%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 21,060 kB
  • ctags: 33,549
  • sloc: cpp: 224,813; ansic: 8,170; xml: 119; makefile: 80
file content (399 lines) | stat: -rw-r--r-- 12,002 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004                                                \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *   
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/

#ifndef __VCG_TRI_UPDATE_NORMALS
#define __VCG_TRI_UPDATE_NORMALS

#include <vcg/space/triangle3.h>
#include <vcg/math/matrix33.h>
#include <vcg/simplex/face/component.h>
#include <vcg/complex/algorithms/update/normal.h>
#include <vcg/complex/algorithms/update/flag.h>

namespace vcg {
namespace tri {

/// \ingroup trimesh

/// \headerfile normal.h vcg/complex/algorithms/update/normal.h

/// \brief Management, updating and computation of per-vertex and per-face normals.
/**
This class is used to compute or update the normals that can be stored in the vertex or face component of a mesh.
*/

template <class ComputeMeshType>
class UpdateNormals
{
public:
typedef ComputeMeshType MeshType; 	
typedef typename MeshType::VertexType     VertexType;
typedef typename MeshType::CoordType     CoordType;
typedef typename VertexType::NormalType     NormalType;
typedef typename VertexType::ScalarType ScalarType;
typedef typename MeshType::VertexPointer  VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::FaceType       FaceType;
typedef typename MeshType::FacePointer    FacePointer;
typedef typename MeshType::FaceIterator   FaceIterator;

/**
 Set to zero all the normals. Usued by all the face averaging algorithms.
 by default it does not clear the normals of unreferenced vertices because they could be still useful
 */
static void PerVertexClear(ComputeMeshType &m, bool ClearAllVertNormal=false)
{
  assert(HasPerVertexNormal(m));
  if(ClearAllVertNormal)
    UpdateFlags<ComputeMeshType>::VertexClearV(m);
  else
  {
    UpdateFlags<ComputeMeshType>::VertexSetV(m);
    for(FaceIterator f=m.face.begin();f!=m.face.end();++f)
     if( !(*f).IsD() )
       for(int i=0;i<3;++i) (*f).V(i)->ClearV();
   }
  VertexIterator vi;
  for(vi=m.vert.begin();vi!=m.vert.end();++vi)
     if( !(*vi).IsD() && (*vi).IsRW() && (!(*vi).IsV()) )
         (*vi).N() = NormalType((ScalarType)0,(ScalarType)0,(ScalarType)0);
}

/// \brief Calculates the face normal (if stored in the current face type)

static void PerFace(ComputeMeshType &m)
{
	if( !HasPerFaceNormal(m)) return;
	FaceIterator f;
	for(f=m.face.begin();f!=m.face.end();++f)
            if( !(*f).IsD() )	face::ComputeNormal(*f);
}

/// \brief Calculates the vertex normal. Exploiting or current face normals.
/**
	The normal of a vertex v is the weigthed average of the normals of the faces incident on v.
*/
static void PerVertexFromCurrentFaceNormal(ComputeMeshType &m)
{
 if( !HasPerVertexNormal(m)) return;
 
 VertexIterator vi;
 for(vi=m.vert.begin();vi!=m.vert.end();++vi)
   if( !(*vi).IsD() && (*vi).IsRW() )
     (*vi).N()=CoordType(0,0,0);

 FaceIterator fi;
 for(fi=m.face.begin();fi!=m.face.end();++fi)
   if( !(*fi).IsD())
   { 
    for(int j=0; j<3; ++j)
			if( !(*fi).V(j)->IsD())  
					(*fi).V(j)->N() += (*fi).cN();
   }
}
/// \brief Calculates the vertex normal. Exploiting or current face normals.
/**
	The normal of a face f is the average of the normals of the vertices of f.
*/
static void PerFaceFromCurrentVertexNormal(ComputeMeshType &m)
{
	for (FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi)
   if( !(*fi).IsD())
	 	{
		NormalType n;
		n.SetZero();
		for(int j=0; j<3; ++j)
			n += fi->V(j)->cN();
		n.Normalize();
		fi->N() = n;
	}
}


///  \brief Calculates the vertex normal. Without exploiting or touching face normals.
/**
 The normal of a vertex v computed as a weighted sum f the incident face normals. 
 The weight is simlply the angle of the involved wedge.  Described in:
 
G. Thurmer, C. A. Wuthrich 
"Computing vertex normals from polygonal facets"
Journal of Graphics Tools, 1998
 */
 
static void PerVertexAngleWeighted(ComputeMeshType &m)
{
	assert(HasPerVertexNormal(m));
  PerVertexClear(m);
 FaceIterator f;
 for(f=m.face.begin();f!=m.face.end();++f)
   if( !(*f).IsD() && (*f).IsR() )
   {
    typename FaceType::NormalType t = vcg::NormalizedNormal(*f);
		NormalType e0 = ((*f).V1(0)->cP()-(*f).V0(0)->cP()).Normalize();
		NormalType e1 = ((*f).V1(1)->cP()-(*f).V0(1)->cP()).Normalize();
		NormalType e2 = ((*f).V1(2)->cP()-(*f).V0(2)->cP()).Normalize();
		
		(*f).V(0)->N() += t*AngleN(e0,-e2);
		(*f).V(1)->N() += t*AngleN(-e0,e1);
		(*f).V(2)->N() += t*AngleN(-e1,e2);
   }
}

///  \brief Calculates the vertex normal. Without exploiting or touching face normals.
/**
 The normal of a vertex v is computed according to the formula described by Nelson Max in 
 Max, N., "Weights for Computing Vertex Normals from Facet Normals", Journal of Graphics Tools, 4(2) (1999)
 
 The weight for each wedge is the cross product of the two edge over the product of the square of the two edge lengths. 
 According to the original paper it is perfect only for spherical surface, but it should perform well...
 */
static void PerVertexNelsonMaxWeighted(ComputeMeshType &m)
{
 assert(HasPerVertexNormal(m));

 PerVertexClear(m);

 FaceIterator f;
 for(f=m.face.begin();f!=m.face.end();++f)
   if( !(*f).IsD() && (*f).IsR() )
   {
    typename FaceType::NormalType t = vcg::Normal(*f);
		ScalarType e0 = SquaredDistance((*f).V0(0)->cP(),(*f).V1(0)->cP());
		ScalarType e1 = SquaredDistance((*f).V0(1)->cP(),(*f).V1(1)->cP());
		ScalarType e2 = SquaredDistance((*f).V0(2)->cP(),(*f).V1(2)->cP());
		
		(*f).V(0)->N() += t/(e0*e2);
		(*f).V(1)->N() += t/(e0*e1);
		(*f).V(2)->N() += t/(e1*e2);
   }
}

///  \brief Calculates the vertex normal. Without exploiting or touching face normals.
/**
 The normal of a vertex v is the classical area weigthed average of the normals of the faces incident on v.
 */
 
static void PerVertex(ComputeMeshType &m)
{
 assert(HasPerVertexNormal(m));
 
 PerVertexClear(m);

 FaceIterator f;
 for(f=m.face.begin();f!=m.face.end();++f)
   if( !(*f).IsD() && (*f).IsR() )
   {
    //typename FaceType::NormalType t = (*f).Normal();
    typename FaceType::NormalType t = vcg::Normal(*f);
 
    for(int j=0; j<3; ++j)
     if( !(*f).V(j)->IsD() && (*f).V(j)->IsRW() )  
      (*f).V(j)->N() += t;
   }
}


/// \brief Calculates both vertex and face normals.
/**
 The normal of a vertex v is the weigthed average of the normals of the faces incident on v.
*/

static void PerVertexPerFace(ComputeMeshType &m)
{
 if( !HasPerVertexNormal(m) || !HasPerFaceNormal(m)) return;
 
 PerFace(m);
 PerVertexClear(m);

 FaceIterator f;

 for(f=m.face.begin();f!=m.face.end();++f)
   if( !(*f).IsD() && (*f).IsR() )
   {
     for(int j=0; j<3; ++j)
     if( !(*f).V(j)->IsD() && (*f).V(j)->IsRW() )  
      (*f).V(j)->N() += (*f).cN();
   }
}

/// \brief Calculates both vertex and face normals.
/**
 The normal of a vertex v is the weigthed average of the normals of the faces incident on v.
*/

static void PerVertexNormalizedPerFace(ComputeMeshType &m)
{
	PerVertexPerFace(m);
	NormalizeVertex(m);
}

/// \brief Normalize the lenght of the face normals.
static void NormalizeVertex(ComputeMeshType &m)
{
	VertexIterator vi;
	for(vi=m.vert.begin();vi!=m.vert.end();++vi)
		if( !(*vi).IsD() && (*vi).IsRW() ) 
			(*vi).N().Normalize();
}

/// \brief Normalize the lenght of the face normals.
static void NormalizeFace(ComputeMeshType &m)
{
	FaceIterator fi;
	for(fi=m.face.begin();fi!=m.face.end();++fi)
      if( !(*fi).IsD() )	(*fi).N().Normalize();
}

static void AreaNormalizeFace(ComputeMeshType &m)
{
	FaceIterator fi;
	for(fi=m.face.begin();fi!=m.face.end();++fi)
      if( !(*fi).IsD() )	
			{
				(*fi).N().Normalize();
				(*fi).N() = (*fi).N() * DoubleArea(*fi);
			}
}

static void PerVertexNormalizedPerFaceNormalized(ComputeMeshType &m)
{
	PerVertexNormalizedPerFace(m);
	NormalizeFace(m);
}

static void PerFaceRW(ComputeMeshType &m, bool normalize=false)
{
	if( !HasPerFaceNormal(m)) return;

	FaceIterator f;
	bool cn = true;

	if(normalize)
	{
		for(f=m.m.face.begin();f!=m.m.face.end();++f)
		if( !(*f).IsD() && (*f).IsRW() )
		{
			for(int j=0; j<3; ++j)
				if( !(*f).V(j)->IsR()) 	cn = false;
      if( cn ) face::ComputeNormalizedNormal(*f);
			cn = true;
		}
	}
	else
	{
		for(f=m.m.face.begin();f!=m.m.face.end();++f)
			if( !(*f).IsD() && (*f).IsRW() )
			{
				for(int j=0; j<3; ++j)
					if( !(*f).V(j)->IsR()) 	cn = false;

				if( cn )
					(*f).ComputeNormal();
				cn = true;
			}
	}
}


static void PerFaceNormalized(ComputeMeshType &m)
{
	if( !HasPerFaceNormal(m)) return;
	FaceIterator f;
		for(f=m.face.begin();f!=m.face.end();++f)
      if( !(*f).IsD() )	face::ComputeNormalizedNormal(*f);
}

static void PerBitQuadFaceNormalized(ComputeMeshType &m)
{
	if( !HasPerFaceNormal(m)) return;
	PerFace(m);

	FaceIterator f;
	for(f=m.face.begin();f!=m.face.end();++f) {
      if( !(*f).IsD() )	{
        for (int k=0; k<3; k++) if (f->IsF(k)) 
        if (&*f < f->FFp(k)) {
          f->N() = f->FFp(k)->N() = (f->FFp(k)->N() + f->N()).Normalize();
        }
      }
  }
}


/// \brief Calculates the vertex normal.
static void PerVertexNormalized(ComputeMeshType &m)
{
  if( !HasPerVertexNormal(m)) return;
  PerVertex(m);
  for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
   if( !(*vi).IsD() && (*vi).IsRW() )
     (*vi).N().Normalize();
}

/// \brief Multiply the vertex normals by the matrix passed. By default, the scale component is removed.
static void PerVertexMatrix(ComputeMeshType &m, const Matrix44<ScalarType> &mat, bool remove_scaling= true){
	float scale;

	Matrix33<ScalarType> mat33(mat,3);
	
	if( !HasPerVertexNormal(m)) return;

	if(remove_scaling){
		scale = pow(mat33.Determinant(),(ScalarType)(1.0/3.0));
		mat33[0][0]/=scale;
		mat33[1][1]/=scale;
		mat33[2][2]/=scale;
	}
	
  for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
   if( !(*vi).IsD() && (*vi).IsRW() )
     (*vi).N()  = mat33*(*vi).N();
}

/// \brief Multiply the face normals by the matrix passed. By default, the scale component is removed.
static void PerFaceMatrix(ComputeMeshType &m, const Matrix44<ScalarType> &mat, bool remove_scaling= true){
	float scale; 

	Matrix33<ScalarType> mat33(mat,3);

	if( !HasPerFaceNormal(m)) return;

	if(remove_scaling){
		scale = pow(mat33.Determinant(),ScalarType(1.0/3.0));
		mat33[0][0]/=scale;
		mat33[1][1]/=scale;
		mat33[2][2]/=scale;
	}
	
  for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
   if( !(*fi).IsD() && (*fi).IsRW() )
     (*fi).N() = mat33* (*fi).N();
}

}; // end class

}	// End namespace
}	// End namespace


#endif