File: quality.h

package info (click to toggle)
meshlab 1.3.2%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 21,060 kB
  • ctags: 33,549
  • sloc: cpp: 224,813; ansic: 8,170; xml: 119; makefile: 80
file content (375 lines) | stat: -rw-r--r-- 12,663 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004                                                \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *   
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
#ifndef __VCG_TRI_UPDATE_QUALITY
#define __VCG_TRI_UPDATE_QUALITY
#include <vcg/simplex/face/pos.h>
#include <vcg/simplex/face/topology.h>
#include <vcg/complex/algorithms/update/flag.h>
#include <vcg/complex/algorithms/stat.h>
#include <algorithm>
#include <vector>
#include <stack>
#include <assert.h>

namespace vcg {
namespace tri {
/// \ingroup trimesh 

/// \headerfile quality.h vcg/complex/algorithms/update/quality.h

/// \brief Generation of per-vertex and per-face qualities. 
/**
 It works according to various strategy, like geodesic distance from the border (UpdateQuality::VertexGeodesicFromBorder) or curvature ecc.
 This class is templated over the mesh and (like all other Update* classes) has only static members; Typical usage:
\code
MyMeshType m;
UpdateQuality<MyMeshType>::VertexGeodesicFromBorder(m);
\endcode
*/

template <class UpdateMeshType>
class UpdateQuality
{
public:
  typedef UpdateMeshType MeshType; 
  typedef typename MeshType::ScalarType     ScalarType;
  typedef typename MeshType::VertexType     VertexType;
  typedef typename MeshType::VertexPointer  VertexPointer;
  typedef typename MeshType::VertexIterator VertexIterator;
  typedef typename MeshType::FaceType       FaceType;
  typedef typename MeshType::FacePointer    FacePointer;
  typedef typename MeshType::FaceIterator   FaceIterator;

class VQualityHeap
{
public:
	float q;
	VertexPointer p;
	inline VQualityHeap( VertexPointer np )
	{
		q = np->Q();
		p = np;
	}
		// Attenzione il minore e' maggiore
	inline bool operator <  ( const VQualityHeap & vq ) const { return q >  vq.q; }
	inline bool operator == ( const VQualityHeap & vq ) const { return q == vq.q; }
	inline bool operator >  ( const VQualityHeap & vq ) const { return q <  vq.q; }
	inline bool operator != ( const VQualityHeap & vq ) const { return q != vq.q; }
	inline bool operator <= ( const VQualityHeap & vq ) const { return q >= vq.q; }
	inline bool operator >= ( const VQualityHeap & vq ) const { return q <= vq.q; }
	inline bool is_valid() const { return q==p->Q(); }
};



// *** IMPORTANT REQUIREMENTS 
//            VF topology 
//            Border FLags 
//        tri::UpdateTopology<SMesh>::VertexFace(sm);
//        tri::UpdateFlags<SMesh>::FaceBorderFromVF(sm);   
//
// Calcola la qualita' come distanza geodesica dal bordo della mesh.
// Robusta funziona anche per mesh non manifold.
// La qualita' memorizzata indica la distanza assoluta dal bordo della mesh.
// Nota prima del 13/11/03 in alcuni casi rari SPT andava in loop perche' poteva capitare
// che per approx numeriche ben strane pw->Q() > pv->Q()+d ma durante la memorizzazione 
// della nuova distanza essa rimanesse uguale a prima. Patchato rimettendo i vertici nello 
// heap solo se migliorano la distanza di un epsilon == 1/100000 della mesh diag.

/// \brief Compute, for each vertex of the mesh the geodesic distance from the border of the mesh itself.

/** 
It uses the classical Dijkstra Shortest Path Tree algorithm. 
The geodesic distance is approximated by allowing to walk only along edges of the mesh.
 
\warning VF topology, Per Vertex Quality and border flags already computed (see UpdateFlags::FaceBorderFromVF and UpdateTopology::VertexFace);

*/
static void VertexGeodesicFromBorder(MeshType &m)	// R1
{
	//Requirements
  assert(HasPerVertexVFAdjacency(m) && HasPerFaceVFAdjacency(m));
  assert(HasPerVertexQuality(m));

  std::vector< VQualityHeap > heap;
	VertexIterator v;
	FaceIterator f;
	int j;

	for(v=m.vert.begin();v!=m.vert.end();++v)
		(*v).Q() = -1;
	for(f=m.face.begin();f!=m.face.end();++f)			// Inserisco nell'heap i v di bordo
		if(!(*f).IsD())
			for(j=0;j<3;++j)
				if( (*f).IsB(j) )
				{
					for(int k=0;k<2;++k)
					{
						VertexPointer pv = (*f).V((j+k)%3);
						if( pv->Q()==-1 )
						{
							pv->Q() = 0;
							heap.push_back(VQualityHeap(pv));
						}
					}
				}
	
 const ScalarType loc_eps=m.bbox.Diag()/ScalarType(100000);
 while( heap.size()!=0 )							// Shortest path tree
	{
		VertexPointer pv;
    std::pop_heap(heap.begin(),heap.end());
		if( ! heap.back().is_valid() )
		{
			heap.pop_back();
			continue;
		}
		pv = heap.back().p;
		heap.pop_back();
	  
		for(face::VFIterator<FaceType> vfi(pv) ; !vfi.End(); ++vfi )
		{
			for(int k=0;k<2;++k)
			{
				VertexPointer pw;
				float d;
				if(k==0) pw = vfi.f->V1(vfi.z);
				else     pw = vfi.f->V2(vfi.z);
				d = Distance(pv->P(),pw->P());
				if( pw->Q()==-1 || pw->Q() > pv->Q()+d + loc_eps)
				{
					pw->Q() = pv->Q()+d;
					heap.push_back(VQualityHeap(pw));
          std::push_heap(heap.begin(),heap.end());
				}
			}
		}
	}

	for(v=m.vert.begin();v!=m.vert.end();++v)
		if(v->Q()==-1)
			v->Q() = 0;
}


/** Assign to each vertex of the mesh a constant quality value. Useful for initialization.
*/
static void VertexConstant(MeshType &m, float q)
{
	VertexIterator vi;
	for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD()) 
		(*vi).Q()=q;
}

/** Clamp each vertex of the mesh with a range of values.
*/
static void VertexClamp(MeshType &m, float qmin, float qmax)
{
  VertexIterator vi;
  for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD())
    (*vi).Q()=std::min(qmax, std::max(qmin,(*vi).Q()));
}

/** Normalize the vertex quality so that it fits in the specified range.
*/
static void VertexNormalize(MeshType &m, float qmin=0.0, float qmax=1.0)
{
  ScalarType deltaRange = qmax-qmin;
  std::pair<ScalarType,ScalarType> minmax = tri::Stat<MeshType>::ComputePerVertexQualityMinMax(m);
  VertexIterator vi;
  for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
    (*vi).Q() = qmin+deltaRange*((*vi).Q() - minmax.first)/(minmax.second - minmax.first);
}

/** Normalize the face quality so that it fits in the specified range.
*/
static void FaceNormalize(MeshType &m, float qmin=0.0, float qmax=1.0)
{
  ScalarType deltaRange = qmax-qmin;
  std::pair<ScalarType,ScalarType> minmax = tri::Stat<MeshType>::ComputePerFaceQualityMinMax(m);
  FaceIterator fi;
  for(fi = m.face.begin(); fi != m.face.end(); ++fi)
    (*fi).Q() = qmin+deltaRange*((*fi).Q() - minmax.first)/(minmax.second - minmax.first);
}

/** Assign to each face of the mesh a constant quality value. Useful for initialization.
*/
static void FaceConstant(MeshType &m, float q)
{
	FaceIterator fi;
	for(fi=m.face.begin();fi!=m.face.end();++fi)		
		(*fi).Q()=q;
}

/** Assign to each face of the mesh its double area.
*/
static void FaceArea(MeshType &m)
{
	FaceIterator fi;
	for(fi=m.face.begin();fi!=m.face.end();++fi)		
		(*fi).Q()=vcg::DoubleArea(*fi)/2;
}

static void FaceFromVertex( MeshType &m)
{
	FaceIterator fi;
	for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
	{
		(*fi).Q() = ((*fi).V(0)->Q()+(*fi).V(1)->Q()+(*fi).V(2)->Q())/3.0f;
	}
}

static void VertexFromPlane(MeshType &m, const Plane3<ScalarType> &pl)
{
  VertexIterator vi;
  for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD())
    (*vi).Q() =SignedDistancePlanePoint(pl,(*vi).cP());
}

static void VertexFromGaussianCurvature(MeshType &m)
{ 
	VertexIterator vi;
	for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD()) 
		(*vi).Q() = (*vi).Kg();
}

static void VertexFromMeanCurvature(MeshType &m)
{ 
	VertexIterator vi;
	for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD()) 
		(*vi).Q() = (*vi).Kh();
}

/*
 *  Absolute Curvature                     
 *
 *                  2|H|                if K >= 0
 *  |k1| + |k2| = <
 *                  2 * sqrt(|H|^2-K)   otherwise
 *
 * defs and formulas taken from 
 *     
 * Improved curvature estimation for watershed segmentation of 3-dimensional meshes
 * S Pulla, A Razdan, G Farin - Arizona State University, Tech. Rep, 2001
 * and from
 * Optimizing 3D triangulations using discrete curvature analysis  
 * N Dyn, K Hormann, SJ Kim, D Levin - Mathematical Methods for Curves and Surfaces: Oslo, 2000 
 */

static void VertexFromAbsoluteCurvature(MeshType &m)
{ 
	VertexIterator vi;
	for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD()) 
	{
		if((*vi).Kg() >= 0) 
					(*vi).Q() = math::Abs( 2*(*vi).Kh() );
		else
		      (*vi).Q() = 2*math::Sqrt(math::Abs( (*vi).Kh()*(*vi).Kh() - (*vi).Kg())); 
	}
}

/*
 * RMS Curvature =   sqrt(4H^2-2K)
 * def and formula taken from 
 *     
 * Improved curvature estimation for watershed segmentation of 3-dimensional meshes
 * S Pulla, A Razdan, G Farin - Arizona State University, Tech. Rep, 2001
 */ 
static void VertexFromRMSCurvature(MeshType &m)
{ 
	VertexIterator vi;
	for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD()) 
		(*vi).Q() = math::Sqrt(math::Abs( 4*(*vi).Kh()*(*vi).Kh() - 2*(*vi).Kg())); 
}



/*
  Saturate the vertex quality so that for each vertex the gradient of the quality is lower than the given threshold value (in absolute value)
  The saturation is done in a conservative way (quality is always decreased and never increased)

  Note: requires VF adjacency.
  */
static void VertexSaturate(MeshType &m, ScalarType gradientThr=1.0)
{
  UpdateFlags<MeshType>::VertexClearV(m);
  std::stack<VertexPointer> st;

  st.push(&*m.vert.begin());

  while(!st.empty())
    {
     VertexPointer vc = st.top();  // the center
     //printf("Stack size %i\n",st.size());
     //printf("Pop elem %i %f\n",st.top() - &*m.vert.begin(), st.top()->Q());
     st.pop();
     vc->SetV();
     std::vector<VertexPointer> star;
     typename std::vector<VertexPointer>::iterator vvi;
     face::VVStarVF<FaceType>(vc,star);
     for(vvi=star.begin();vvi!=star.end();++vvi )
     {
       float &qi = (*vvi)->Q();
       float distGeom = Distance((*vvi)->cP(),vc->cP()) / gradientThr;
       // Main test if the quality varies more than the geometric displacement we have to lower something.
       if( distGeom < fabs(qi - vc->Q()))
       {
         // center = 0  other=10 -> other =
         // center = 10 other=0
         if(vc->Q() > qi)  // first case: the center of the star has to be lowered (and re-inserted in the queue).
         {
           //printf("Reinserting center %i \n",vc - &*m.vert.begin());
           vc->Q() = qi+distGeom-0.00001f;
           assert( distGeom > fabs(qi - vc->Q()));
           st.push(vc);
           break;
         }
         else
         {
           // second case: you have to lower qi, the vertex under examination.
           assert( distGeom < fabs(qi - vc->Q()));
           assert(vc->Q() < qi);
           float newQi = vc->Q() + distGeom -0.00001f;
           assert(newQi <= qi);
           assert(vc->Q() < newQi);
           assert( distGeom > fabs(newQi - vc->Q()) );
//             printf("distGeom %f, qi %f, vc->Q() %f, fabs(qi - vc->Q()) %f\n",distGeom,qi,vc->Q(),fabs(qi - vc->Q()));
           qi = newQi;
           (*vvi)->ClearV();
         }
       }
       if(!(*vvi)->IsV())
       {
         st.push( *vvi);
//         printf("Reinserting side %i \n",*vvi - &*m.vert.begin());
         (*vvi)->SetV();
       }
     }
    }
  }


}; //end class
} // end namespace
} // end namespace
#endif