File: pivot.h

package info (click to toggle)
meshlab 1.3.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 21,096 kB
  • ctags: 33,630
  • sloc: cpp: 224,813; ansic: 8,170; xml: 119; makefile: 80
file content (753 lines) | stat: -rw-r--r-- 24,872 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
#ifndef VCG_PIVOT_H
#define VCG_PIVOT_H

#include <vector>
#include <list>


#include "vcg/space/index/grid_static_ptr.h"
#include "vcg/complex/algorithms/closest.h"

namespace vcg {
namespace tri {


struct Hinge { 
      int v0, v1, v2;   //v0, v1 represent the Hinge, v2 the other vertex in the face
                        //this Hinge belongs to
      int face;        //corresponding face
      Point3f center;  //center of the sphere touching the face
      int count;   //test delay touch Hinges.  
      
      //the loops in the front are mantained as a double linked list
      std::list<Hinge>::iterator next;            
      std::list<Hinge>::iterator previous;
    
      Hinge() {}
      Hinge(int _v0, int _v1, int _v2, int _face, Point3f &_center): 
               v0(_v0), v1(_v1), v2(_v2), 
               face(_face), center(_center), count(0) {
                 assert(v0 != v1 && v1 != v2 && v0 != v2);
               }
    };
    
template <class MESH>
class Pivot {
  public:
//    typedef CMesh MESH;
    typedef GridStaticPtr<typename MESH::VertexType, typename MESH::ScalarType > StaticGrid;
    
    

    float radius;  //default 1 (not meaningful
    float mindist; //minimum distance between points in the mesh (% of radius)   
    float crease;  // -0.5 
    Box3f box;
    
    MESH &mesh;    
    StaticGrid grid;
    
    /* front Hinges of the mesh: 
       to expand the front we get the first Hinge
       if an Hinge cannot create a new triangle it is marked dead and moved
       to the end of the list
       the new Hinges are inserted to the back (before dead_begin) */
       
    std::list<Hinge> front;   
    std::list<Hinge> deads;
    std::vector<int> nb; //number of fronts a vertex is into,
                         //this is used for the Visited and Border flags
                         //but adding topology may not be needed anymode

      
    Pivot(MESH &_mesh, float _radius, float _mindist = 0.05, float _crease = -0.5): 
       mesh(_mesh), radius(_radius), mindist(_mindist), crease(_crease) {
    
      //Compute bounding box. (this may be passed as a parameter?
      for(int i = 0; i < mesh.vert.size(); i++)
        box.Add(mesh.vert[i].P());
     
      /* we need to enlarge the grid to allow queries from little outside of the box 
         Someone is a bit lazy... */        
      box.Offset(4*radius);
      grid.Set(mesh.vert.begin(), mesh.vert.end(), box);
      nb.clear();
      nb.resize(mesh.vert.size(), 0);
      for(int i = 0; i < mesh.vert.size(); i++) 
         mesh.vert[i].ClearFlags();
      
    }
    
    
    /* select a vertex at random, a small group of nearby vertices and looks
       for a sphere that touches 3 and contains none.
       Use the center of the box to get a sphere inside (or outside) the model 
       You may be unlucky... */
       
    bool seed(bool outside = true, int start = -1) {         
      //pick a random point (well...)
      if(start == -1) start = rand()%mesh.vert.size();
      
      //get a sphere of neighbours
      std::vector<int> targets;
      std::vector<float> dists;
      int n = getInSphere(mesh.vert[start].P(), 2*radius, targets, dists);
      if(n < 3) { 
        //bad luck. we should call seed again (assuming random pick) up to
        //some maximum tries. im lazy.
        return false;
      }
      int v0, v1, v2;
      bool found = false;
      //find a triplet that does not contains any other point
      Point3f center;
      for(int i = 0; i < n; i++) {
        v0 = targets[i];
        CVertex &vv0 = mesh.vert[v0];
        if(vv0.IsD() || vv0.IsB() || vv0.IsV()) continue;
        Point3f &p0 = mesh.vert[v0].P();
        Point3f out = (p0 - box.Center());
        if(!outside) out = -out;
    
        for(int k = i+1; k < n; k++) {
          v1 = targets[k];            
          CVertex &vv1 = mesh.vert[v1];
          if(vv1.IsD() || vv1.IsB() || vv1.IsV()) continue;
          Point3f &p1 = mesh.vert[v1].P();            
          if((p1 - p0).Norm() < mindist*radius) continue;
    
          for(int j = k+1; j < n; j++) {
            v2 = targets[j];
            CVertex &vv2 = mesh.vert[v2];
            if(vv2.IsD() || vv2.IsB() || vv2.IsV()) continue;
            Point3f &p2 = mesh.vert[v2].P();
            if((p2 - p0).Norm() < mindist*radius) continue;
            if((p2 - p1).Norm() < mindist*radius) continue;
            Point3f normal = (p1 - p0)^(p2 - p0);
            //check normal pointing inside
            if(normal * out < 0) continue;
            if(!findSphere(p0, p1, p2, center)) continue;
            
            bool failed = false;
            //check no other point inside
            for(int t = 0; t < n; t++) {
              Point3f &p = mesh.vert[targets[t]].P();
              if((center - p).Norm() <= radius) {
                failed = true;
                break;
              }
            }
            if(failed) continue;  
            found = true;
            i = k = j = n;
          }
        }
      }
      
      if(!found)  //see bad luck above
        return false;
      
      assert(!front.size());
      //TODO: should i check the Hinges too?
      addFace(v0, v1, v2);
      
      //create the border of the first face  
      std::list<Hinge>::iterator e = front.end();
      std::list<Hinge>::iterator last;
      for(int i = 0; i < 3; i++) {
        int v0 = (int)(mesh.face.back().V0(i));
        int v1 = (int)(mesh.face.back().V1(i));    
        int v2 = (int)(mesh.face.back().V2(i));    
        nb[v0] = 1;
        assert(!mesh.vert[v0].IsB());
        mesh.vert[v0].SetB();
        Hinge Hinge(v0, v1, v2, 0, center);
        Hinge.previous = e;
        e = front.insert(front.begin(), Hinge);
        if(i == 0) last = e;
        (*Hinge.previous).next = e;
        
        cluster(v0);
      } 
    
      //connect last and first
      (*e).next = last;
      (*last).previous = e;
      return true;
    }
      
         
    /* expand the front adding 1 face. Return false on failure (id when
       all Hinges are dead  returns:
       1: added a face
       0: added nothing
       -1: finished */
    int addFace() {
      //We try to seed again
      if(!mesh.face.size()) {
        for(int i = 0; i < 100; i++) 
          if(seed()) return 1;
        return -1;
      }
      
      if(!front.size()) {
        //maybe there are unconnected parts of the mesh:
        //find a non D, V, B point and try to seed if failed D it.
        for(int i = 0; i < mesh.vert.size();i ++) {
          CVertex &v = mesh.vert[i];
          if(v.IsD() || v.IsV() || v.IsB()) continue;
          if(seed(true, i)) return 1;
          v.SetD();
        }
        return -1;
      }
    
      std::list<Hinge>::iterator ei = front.begin();
      Hinge &e = *ei;
      Hinge &previous = *e.previous;           
      Hinge &next = *e.next;  
      int v0 = e.v0, v1 = e.v1;
    
      //last triangle missing. or it is the first?
      if(0 &&next.next == e.previous) {  
    
        int v[3] = { previous.v0, next.v0, e.v0 };
        int c[3] = { 0, 0, 0 };
            
        for(int k = 0; k < 3; k++) {
          int vert = v[k];
          nb[vert]--;
          if(nb[vert] == 0) {       
            mesh.vert[vert].SetV();
            mesh.vert[vert].ClearB();
          }              
        }        
        assert(previous.previous == e.next); 
        addFace(previous.v0, next.v0, e.v0);                       
    
        front.erase(e.previous);
        front.erase(e.next);        
        front.erase(ei);    
        
        return 1;
      }
    
      int v2;
      Point3f center;
    
      std::vector<int> targets;
      bool success = pivot(e, v2, center, targets);
    
      //if no pivoting move this thing to the end and try again
      //or we are trying to connect to the inside of the mesh. BAD.
      if(!success || mesh.vert[v2].IsV()) {
        killHinge(ei);
        return 0;
      } 
    
      //does v2 belongs to a front? (and which?)
      std::list<Hinge>::iterator touch = touches(v2, ei);
    
      assert(v2 != v0 && v2 != v1);  
    
      int fn = mesh.face.size();
      if(touch != front.end()) {       
    
        if(!checkHinge(v0, v2) || !checkHinge(v2, v1)) {                      
          killHinge(ei);
          return 0;
        }
        
        if(v2 == previous.v0) {    
          /*touching previous Hinge  (we reuse previous)        
                                    next
             ------->v2 -----> v1------>
                      \       /
                       \     /
               previous \   / e
                         \ /
                          v0           */
          
          detach(v0);
        
          previous.v1 = v1;       
          previous.v2 = v0;
          previous.face = fn;
          previous.center = center;
          
          previous.next = e.next;
          next.previous = e.previous;
          moveBack(e.previous);            
          
          //this checks if we can glue something to e.previous
          trovamiunnome(e.previous);      
          front.erase(ei);    
          
           
        } else if(v2 == next.v1) {
        /*touching previous Hinge  (we reuse next)        
          previous
             ------->v0 -----> v2------>
                      \       /
                       \     /
                        \   / next
                         \ /
                          v1           */      
    
          detach(v1);
          
          next.v0 = v0;
          next.v2 = v1;
          next.face = fn;
          next.center = center;
          next.previous = e.previous;
          previous.next = e.next;
    //      moveBack(e.next);
          
          //this checks if we can glue something to e.previous
          trovamiunnome(e.next);         
          front.erase(ei);
              
        } else {
    
    /*   this code would delay the joining Hinge to avoid bad situations not used but..
         if(e.count < 2) {
            e.count++;
            moveBack(ei);
            return true;         
          }*/
    
        //touching some loop: split (or merge it is local does not matter.
        //like this 
        /*                 
                    left        right
                  <--------v2-<------
                          /|\
                         /   \
                     up /     \ down
                       /       \
                      /         V
                 ----v0 - - - > v1---------
                          e                         */           
          std::list<Hinge>::iterator left = touch;
          std::list<Hinge>::iterator right = (*touch).previous;      
          std::list<Hinge>::iterator up = ei;
          
          if(v1 == (*right).v0 || v0 == (*left).v1) {
//            cout << "Bad join.\n";
            killHinge(ei);
            return 0;
          }
          
          nb[v2]++;    
                      
          std::list<Hinge>::iterator down = newHinge(Hinge(v2, v1, v0, fn, center));      
    
          (*right).next = down;
          (*down).previous = right;
    
          (*down).next = e.next;
          next.previous = down;      
    
          (*left).previous = up;
          (*up).next = left;
          
          (*up).v2 = v1;      
          (*up).v1 = v2;
          (*up).face = fn;
          (*up).center = center;
          moveBack(ei);
        }                         
    
              
      
      } else {
        assert(!mesh.vert[v2].IsB()); //fatal error! a new point is already a border?
    
        /*  adding a new vertex
                 
                           v2
                          /|\
                         /   \
                     up /     \ down
                       /       \
                      /         V
                 ----v0 - - - > v1--------- */
        cluster(v2);        
        nb[v2]++;                 
        mesh.vert[v2].SetB();
        std::list<Hinge>::iterator down = newHinge(Hinge(v2, v1, v0, fn, center));
        (*down).previous = ei;
        (*down).next = e.next;
        next.previous = down;
        
        e.v2 = v1;    
        e.v1 = v2;
        e.face = fn;
        e.center = center;
        e.next = down; 
        moveBack(ei);
      }
      addFace(v0, v2, v1);
      return 1;
    }        
    

    
    /* return new vertex and the center of the new sphere pivoting from Hinge
       if the vertex belongs to another Hinge, touch points to it. */
    bool pivot(Hinge &Hinge, int &candidate, Point3f &end_pivot, std::vector<int> &targets) {
        Point3f v0 = mesh.vert[Hinge.v0].P();
        Point3f v1 = mesh.vert[Hinge.v1].P();  
        Point3f v2 = mesh.vert[Hinge.v2].P();  
        /* TODO why using the face normals everything goes wrong? should be
           exactly the same................................................
           Check if the e.face is correct.
           Point3f &normal = mesh.face[Hinge.face].N();
        */
    
        Point3f normal = ((v1 - v0)^(v2 - v0)).Normalize();
        
        Point3f middle = (v0 + v1)/2;    
        Point3f start_pivot = Hinge.center - middle;          
        Point3f axis = (v1 - v0);
        
        float axis_len = axis.SquaredNorm();
        if(axis_len > 4*radius*radius) return false;
        axis.Normalize();
        
        // r is the radius of the thorus of all possible spheres passing throug v0 and v1
        float r = sqrt(radius*radius - axis_len/4);
        
    
        std::vector<float> dists;    
        getInSphere(middle, r + radius, targets, dists);
    
        if(targets.size() == 0) return false; //this really would be strange but one never knows.
    
        candidate = -1;
        float minangle = 0;
        Point3f center;  //to be computed for each sample
        for(int i = 0; i < targets.size(); i++) {      
          int id = targets[i];
          
          if(id == Hinge.v0 || id == Hinge.v1 || id == Hinge.v2) continue;
    
          if(mesh.vert[id].IsD()) {
            continue;      
          }
    
    
          Point3f p = mesh.vert[id].P();
    
          /* Prevent 360 Hinges, also often reject ~ 50% points */      
          Point3f n = ((p - v0)^(v1 - v0)).Normalize();
          if(n * normal < -0.5) {
            continue;               
          }
          
    
          /* Find the sphere through v0, p, v1 (store center on end_pivot */
          if(!findSphere(v0, p, v1, center)) {
            continue;      
          }
          
          /* Angle between old center and new center */
          float alpha = angle(start_pivot, center - middle, axis);
    
          /* adding a small bias to already chosen vertices.
             doesn't solve numerical problems, but helps. */
          if(mesh.vert[id].IsB()) alpha -= 0.001;
          
          /* Sometimes alpha might be little less then M_PI while it should be 0,
             by numerical errors: happens for example pivoting 
             on the diagonal of a square. */
          
          if(alpha > 2*M_PI - 0.8) {               
            // Angle between old center and new *point* 
            //TODO is this really overshooting? shouldbe enough to alpha -= 2*M_PI
            Point3f proj = p - axis * (axis * p - axis * middle);
            float beta = angle(start_pivot, proj - middle, axis);
          
            if(alpha > beta) alpha -= 2*M_PI; 
          }
          if(candidate == -1 || alpha < minangle) {        
            candidate = id; 
            minangle = alpha;
            end_pivot = center;
          }
        }
        //found no point suitable.
        if(candidate == -1) {
          return false;
        }
           
        assert(candidate != Hinge.v0 && candidate != Hinge.v1);
        return true;
    }         
    
  private:
     //front management:
     //Add a new Hinge to the back of the queue
     std::list<Hinge>::iterator newHinge(Hinge e) {                  
       return front.insert(front.end(), e);
     }     
     //move an Hinge among the dead ones
     void killHinge(std::list<Hinge>::iterator e) {
       deads.splice(deads.end(), front, e);
     }

     //move an Hinge to the back of the queue
     void moveBack(std::list<Hinge>::iterator e) {
       front.splice(front.end(), front, e);          
     }
     
     void moveFront(std::list<Hinge>::iterator e) {
       front.splice(front.begin(), front, e);
     }
    bool checkHinge(int v0, int v1) {
      int tot = 0;
      //HACK to speed up things until i can use a seach structure
      int i = mesh.face.size() - 2*(front.size());
    //  i = 0;
      if(i < 0) i = 0;
      for(; i < mesh.face.size(); i++) { 
        CFace &f = mesh.face[i];
        for(int k = 0; k < 3; k++) {
          if(v1== (int)f.V(k) && v0 == (int)f.V((k+1)%3)) ++tot;
          else if(v0 == (int)f.V(k) && v1 == (int)f.V((k+1)%3)) { //orientation non constistent
             return false;
          }
        }
        if(tot >= 2) { //non manifold
          return false;
        }
      }
      return true;
    }        
    
               
    void Pivot::cluster(int v) {
      /* clean up too close points */
        std::vector<int> targets;
        std::vector<float> dists;    
        getInSphere(mesh.vert[v].P(), mindist*radius, targets, dists);
        
        for(int i = 0; i < targets.size(); i++) {
          int id = targets[i];
          if(id == v) continue;
    
          CVertex &v = mesh.vert[id];
          if(v.IsD() || v.IsV() || v.IsB()) continue;
          v.SetD();
        }
            
    }
    
    void Pivot::trovamiunnome(std::list<Hinge>::iterator e) {
      if(glue((*e).previous, e)) return;
      glue(e, (*e).next);
    }
    
    //glue toghether a and b (where a.next = b
    bool Pivot::glue(std::list<Hinge>::iterator a, std::list<Hinge>::iterator b) {
      if((*a).v0 != (*b).v1) return false; 
      
      std::list<Hinge>::iterator previous = (*a).previous;
      std::list<Hinge>::iterator next = (*b).next;
      (*previous).next = next;
      (*next).previous = previous;
      detach((*a).v1);
      detach((*a).v0); 
      front.erase(a);
      front.erase(b);  
      return true;
    }
    
    void Pivot::detach(int v) {
      assert(nb[v] > 0);
      if(--nb[v] == 0) {
        mesh.vert[v].SetV();
        mesh.vert[v].ClearB();      
      }
    }

          
    /* compute angle from p to q, using axis for orientation */
    float angle(Point3f p, Point3f q, Point3f &axis) {
      p.Normalize();
      q.Normalize();
      Point3f vec = p^q;
      float angle = acos(p*q);
      if(vec*axis < 0) angle = -angle;
      if(angle < 0) angle += 2*M_PI;
      return angle;
    }          
    /* add a new face. compute normals. */
    void addFace(int a, int b, int c) {
      CFace face;
      face.V(0) = (CVertex *)a;
      face.V(1) = (CVertex *)b;
      face.V(2) = (CVertex *)c;
      Point3f &p0 = mesh.vert[a].P();
      Point3f &p1 = mesh.vert[b].P();
      Point3f &p2 = mesh.vert[c].P();
      face.N() = ((p1 - p0)^(p2 - p0)).Normalize();
      
      mesh.face.push_back(face);
      mesh.fn++;
    }         
              
                             
    /* intersects segment [v0, v1] with the sphere of radius radius. */
    bool intersect(int v0, int v1, Point3f &center) {
      Point3f m =  mesh.vert[v1].P() -  mesh.vert[v0].P();
      float t = m*(center - mesh.vert[v0].P());
      if(t < 0) return false;
      if(t > m*m) return false;
      return true;
    }         


    float distance(int v0, int v1, Point3f &center) {
      Point3f m =  mesh.vert[v1].P() -  mesh.vert[v0].P();
      float t = m*(center - mesh.vert[v0].P())/(m*m);
      Point3f p = mesh.vert[v0].P() + m*t;
      return (p - center).Norm();
    }             


    /* return all point in a given ball, notice as i want the index
       of the vertices not the pointers... this may change in future */
    unsigned int getInSphere(vcg::Point3f &p, float distance, 
                             std::vector<int> &results,
                             std::vector<float> &dists) {
      std::vector<CVertex *> ptr;
      std::vector<Point3f> points;
      int n = vcg::tri::GetInSphereVertex(mesh, grid, p, distance, ptr, dists, points);
      for(int i = 0; i < ptr.size(); i++) 
        results.push_back(ptr[i] - &(mesh.vert[0]));
      return n;
    }                                                


    
    /* returns the sphere touching p0, p1, p2 of radius r such that
       the normal of the face points toward the center of the sphere */
    bool findSphere(Point3f &p0, Point3f &p1, Point3f &p2, Point3f &center) {
      Point3f q1 = p1 - p0;
      Point3f q2 = p2 - p0;  
    
      Point3f up = q1^q2;
      float uplen = up.Norm();
    
      //the three points are aligned
      if(uplen < 0.001*q1.Norm()*q2.Norm()) return false;
      up /= uplen;
      
    
      float a11 = q1*q1;
      float a12 = q1*q2;
      float a22 = q2*q2;
    
      float m = 4*(a11*a22 - a12*a12);
      float l1 = 2*(a11*a22 - a22*a12)/m;
      float l2 = 2*(a11*a22 - a12*a11)/m;
    
      center = q1*l1 + q2*l2;
      float circle_r = center.Norm();
      if(circle_r > radius) return false; //need too big a sphere
    
      float height = sqrt(radius*radius - circle_r*circle_r);
      center += p0 + up*height;
    
      return true;
    }         
    std::list<Hinge>::iterator touches(int v, std::list<Hinge>::iterator e) {
      //TODO what happens when it touches more than one front?
      //might still work.
    
      std::list<Hinge>::iterator touch = front.end();
      if(mesh.vert[v].IsB()) {
        //test nearby Hinges: it is faster
        std::list<Hinge>::iterator p = e;
        p = (*e).previous;
        if(v == (*p).v0) return p;
        e = (*e).next;
        if(v == (*e).v0) return e;
    
        p = (*p).previous;
        if(v == (*p).v0) return p;
        e = (*e).next;
        if(v == (*e).v0) return e;
    
        //test all. sigh.
    
        for(std::list<Hinge>::iterator k = front.begin(); k != front.end(); k++) {
          if(v == (*k).v0) { 
            touch = k;
            break;
          }
        }
        for(std::list<Hinge>::iterator k = deads.begin(); k != deads.end(); k++) {
          if(v == (*k).v0) { 
            touch = k;
            break;
          }
        }
        assert(touch != front.end());
      }
    
      return touch;
    }                              
    
    
 public:
        
 };
        

}//namespace
}//namespace
/*  CODE FOR PIVOTING IN  A TOUCH SITUATION not used now.

    //if touch we want to check the ball could really pivot around that point
    if(touch != front.end() && touch != (*Hinge.next).next && touch != Hinge.previous) {
      Point3f &hinge = mesh.vert[min].P();      
      Point3f target = (*touch).center - hinge;
      float d = (target * start_pivot)/(target.Norm()*start_pivot.Norm());
      if(d < -0.8) {
        return false;
      }
      
      

      if(d < 0.5) { //they are far enough so test .
        Point3f naxis = (target ^ start_pivot).Normalize();
        Point3f d1 = naxis^start_pivot;
        Point3f d2 = target^naxis;          
        
        for(int i = 0; i < targets.size(); i++) {
          int id = targets[i];
          if(id == Hinge.v0 || id == Hinge.v1 || id == Hinge.v2 || id == min) continue;
          if(mesh.vert[id].IsD()) {
            continue;
          }

          Point3f intruder = mesh.vert[targets[i]].P() - hinge;
          float h = intruder*naxis;
          if(fabs(h) > radius) continue;
          intruder -= naxis*h;
          assert(fabs(intruder *naxis) < 0.01);
          float off = radius - intruder.Norm(); //(distance from the center ring of the thorus
          if(h*h + off*off > radius*radius) continue; //outside of thorus
          if(d1*intruder < 0 || d2*intruder < 0) continue; //ouside of sector
          cout << "could not pivot while touching;\n";
          return false;
        }
        
      }          
    }*/


#endif