File: texdeci.cpp

package info (click to toggle)
meshlab 1.3.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 21,096 kB
  • ctags: 33,630
  • sloc: cpp: 224,813; ansic: 8,170; xml: 119; makefile: 80
file content (230 lines) | stat: -rw-r--r-- 8,320 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#include <vector>
#include <limits>

#include <stdio.h>
#include <stdlib.h>

// stuff to define the mesh
#include <vcg/simplex/vertex/base.h>
#include <vcg/simplex/face/base.h>
#include <vcg/simplex/edge/base.h>
#include <vcg/complex/complex.h>

#include <vcg/math/quadric.h>
#include <vcg/complex/algorithms/clean.h>

// io
#include <wrap/io_trimesh/import.h>
#include <wrap/io_trimesh/export_ply.h>

// update
#include <vcg/complex/algorithms/update/topology.h>
#include <vcg/complex/algorithms/update/bounding.h>
#include <vcg/complex/algorithms/smooth.h>

// local optimization
#include <vcg/complex/algorithms/local_optimization.h>
#include <vcg/complex/algorithms/local_optimization/tri_edge_collapse.h>
#include <vcg/complex/algorithms/local_optimization/tri_edge_collapse_quadric_tex.h>

using namespace vcg;
using namespace tri;

// The class prototypes.
class MyVertex;
class MyEdge;
class MyFace;

struct MyUsedTypes: public UsedTypes<Use<MyVertex>::AsVertexType, Use<MyEdge>::AsEdgeType, Use<MyFace>::AsFaceType>{};

class MyVertex  : public Vertex< MyUsedTypes,
  vertex::VFAdj,
  vertex::Coord3f,
  vertex::Normal3f,
  vertex::Mark,
  vertex::BitFlags  >{
  };

class MyEdge : public Edge< MyUsedTypes> {};

typedef BasicVertexPair<MyVertex> VertexPair;

class MyFace    : public Face< MyUsedTypes,
  face::VFAdj,
  face::VertexRef,
  face::BitFlags,
  face::WedgeTexCoord2f> {};

// the main mesh class
class MyMesh    : public vcg::tri::TriMesh<std::vector<MyVertex>, std::vector<MyFace> > {};

class MyTriEdgeCollapseQTex: public TriEdgeCollapseQuadricTex< MyMesh, VertexPair, MyTriEdgeCollapseQTex, QuadricTexHelper<MyMesh> > {
            public:
            typedef  TriEdgeCollapseQuadricTex< MyMesh,  VertexPair, MyTriEdgeCollapseQTex, QuadricTexHelper<MyMesh> > TECQ;
            inline MyTriEdgeCollapseQTex(  const VertexPair &p, int i,BaseParameterClass *pp) :TECQ(p,i,pp){}
};


void TexDecimation(MyMesh &m, bool CleaningFlag,int TargetFaceNum)
{
  tri::TriEdgeCollapseQuadricTexParameter pp;

  pp.SetDefaultParams();
  if(CleaningFlag){
        int dup = tri::Clean<MyMesh>::RemoveDuplicateVertex(m);
        int unref =  tri::Clean<MyMesh>::RemoveUnreferencedVertex(m);
        printf("Removed %i duplicate and %i unreferenced vertices from mesh \n",dup,unref);
    }

    printf("reducing it to %i\n",TargetFaceNum);
    int t1=clock();

    tri::UpdateBounding<MyMesh>::Box(m);
    math::Quadric<double> QZero;
    QZero.SetZero();
    QuadricTexHelper<MyMesh>::QuadricTemp TD3(m.vert,QZero);
    QuadricTexHelper<MyMesh>::TDp3()=&TD3;

    std::vector<std::pair<vcg::TexCoord2<float>,Quadric5<double> > > qv;

    QuadricTexHelper<MyMesh>::Quadric5Temp TD(m.vert,qv);
    QuadricTexHelper<MyMesh>::TDp()=&TD;


    vcg::LocalOptimization<MyMesh> DeciSession(m, &pp);
//    cb(1,"Initializing simplification");
    DeciSession.Init<MyTriEdgeCollapseQTex>();

    DeciSession.SetTargetSimplices(TargetFaceNum);
    DeciSession.SetTimeBudget(0.1f);
  //	int startFn=m.fn;

    int faceToDel=m.fn-TargetFaceNum;
    int t2=clock();

    while( DeciSession.DoOptimization() && m.fn>TargetFaceNum )
    {
      printf("Simplifing heap size %i ops %i\n",int(DeciSession.h.size()),DeciSession.nPerfmormedOps);
    };

    DeciSession.Finalize<MyTriEdgeCollapseQTex>();

    int t3=clock();
    printf("mesh  %d %d Error %g \n",m.vn,m.fn,DeciSession.currMetric);
    printf("\nCompleted in (%i+%i) msec\n",t2-t1,t3-t2);
}

// mesh to simplify

int main(int argc, char**argv){

  int meshNum=argc-1;

//std::vector<MyMesh> meshVec(meshNum);

MyMesh meshVec[10];
int tt0=clock();
char buf[255];
int i;

for(i=0;i<meshNum;++i)
{
  int err=vcg::tri::io::Importer<MyMesh>::Open(meshVec[i],argv[i+1]);
  if(err)
  {
    printf("Unable to open mesh %s : '%s'\n",argv[i+1], vcg::tri::io::Importer<MyMesh>::ErrorMsg(err));
    exit(-1);
  }
  printf("mesh loaded %d %d \n",meshVec[i].vn,meshVec[i].fn);

 int t1=clock();
 tri::Smooth<MyMesh>::VertexCoordLaplacian(meshVec[i],5*i);

 TexDecimation(meshVec[i],true,meshVec[i].fn/2);
 int t2=clock();
 printf("%i %5.3f sec\n",i,float(t2-t1)/CLOCKS_PER_SEC);
 sprintf(buf,"out%i.ply",i);
 tri::io::ExporterPLY<MyMesh>::Save(meshVec[i],buf,false);
}

int tt1=clock();
printf("---Total %5.3f sec\n",float(tt1-tt0)/CLOCKS_PER_SEC);

for(int i=0;i<meshNum;++i)
{
 char buf[255];
 sprintf(buf,"out%i.ply",i);
 tri::io::ExporterPLY<MyMesh>::Save(meshVec[i],buf,tri::io::Mask::IOM_WEDGTEXCOORD,false);
}

//  TriEdgeCollapseQuadricParameter qparams;
//  qparams.QualityThr  =.3;
//  float TargetError=std::numeric_limits<float>::max();
//  bool CleaningFlag =false;
//     // parse command line.
//    for(int i=4; i < argc;)
//    {
//      if(argv[i][0]=='-')
//        switch(argv[i][1])
//      {
//        case 'H' : qparams.SafeHeapUpdate=true; printf("Using Safe heap option\n"); break;
//        case 'Q' : if(argv[i][2]=='y') { qparams.QualityCheck	= true;  printf("Using Quality Checking\n");	}
//                                  else { qparams.QualityCheck	= false; printf("NOT Using Quality Checking\n");	}                break;
//        case 'N' : if(argv[i][2]=='y') { qparams.NormalCheck	= true;  printf("Using Normal Deviation Checking\n");	}
//                                  else { qparams.NormalCheck	= false; printf("NOT Using Normal Deviation Checking\n");	}        break;
//        case 'O' : if(argv[i][2]=='y') { qparams.OptimalPlacement	= true;  printf("Using OptimalPlacement\n");	}
//                                  else { qparams.OptimalPlacement	= false; printf("NOT Using OptimalPlacement\n");	}        break;
//        case 'S' : if(argv[i][2]=='y') { qparams.ScaleIndependent	= true;  printf("Using ScaleIndependent\n");	}
//                                  else { qparams.ScaleIndependent	= false; printf("NOT Using ScaleIndependent\n");	}        break;
//        case 'B' : if(argv[i][2]=='y') { qparams.PreserveBoundary	= true;  printf("Preserving Boundary\n");	}
//                                  else { qparams.PreserveBoundary	= false; printf("NOT Preserving Boundary\n");	}        break;
//        case 'T' : if(argv[i][2]=='y') { qparams.PreserveTopology	= true;  printf("Preserving Topology\n");	}
//                                  else { qparams.PreserveTopology	= false; printf("NOT Preserving Topology\n");	}        break;
//        case 'q' :	qparams.QualityThr	= atof(argv[i]+2);	           printf("Setting Quality Thr to %f\n",atof(argv[i]+2)); 	 break;
//        case 'n' :	qparams.NormalThrRad = math::ToRad(atof(argv[i]+2));  printf("Setting Normal Thr to %f deg\n",atof(argv[i]+2)); break;
//        case 'b' :	qparams.BoundaryWeight  = atof(argv[i]+2);			printf("Setting Boundary Weight to %f\n",atof(argv[i]+2)); break;
//        case 'e' :	TargetError = float(atof(argv[i]+2));			printf("Setting TargetError to %g\n",atof(argv[i]+2)); break;
//        case 'P' :	CleaningFlag=true;  printf("Cleaning mesh before simplification\n"); break;

//        default  :  printf("Unknown option '%s'\n", argv[i]);
//          exit(0);
//      }
//      i++;
//    }



//  if(CleaningFlag){
//      int dup = tri::Clean<MyMesh>::RemoveDuplicateVertex(mesh);
//      int unref =  tri::Clean<MyMesh>::RemoveUnreferencedVertex(mesh);
//      printf("Removed %i duplicate and %i unreferenced vertices from mesh \n",dup,unref);
//  }


//  printf("reducing it to %i\n",FinalSize);
	
//  vcg::tri::UpdateBounding<MyMesh>::Box(mesh);
  
//  // decimator initialization
//  vcg::LocalOptimization<MyMesh> DeciSession(mesh,&qparams);
	
//  int t1=clock();
//  DeciSession.Init<MyTriEdgeCollapse>();
//  int t2=clock();
//  printf("Initial Heap Size %i\n",int(DeciSession.h.size()));

//  DeciSession.SetTargetSimplices(FinalSize);
//  DeciSession.SetTimeBudget(0.5f);
//  if(TargetError< std::numeric_limits<float>::max() ) DeciSession.SetTargetMetric(TargetError);

//  while(DeciSession.DoOptimization() && mesh.fn>FinalSize && DeciSession.currMetric < TargetError)
//    printf("Current Mesh size %7i heap sz %9i err %9g \r",mesh.fn, int(DeciSession.h.size()),DeciSession.currMetric);

//  int t3=clock();
//  printf("mesh  %d %d Error %g \n",mesh.vn,mesh.fn,DeciSession.currMetric);
//  printf("\nCompleted in (%i+%i) msec\n",t2-t1,t3-t2);
	
//  vcg::tri::io::ExporterPLY<MyMesh>::Save(mesh,argv[2]);
	return 0;

}