File: autoalign_4pcs.h

package info (click to toggle)
meshlab 1.3.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 21,096 kB
  • ctags: 33,630
  • sloc: cpp: 224,813; ansic: 8,170; xml: 119; makefile: 80
file content (677 lines) | stat: -rw-r--r-- 21,403 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
#ifndef _4PCS_
#define _4PCS_
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004                                                \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *   
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
/**
implementation of the 4PCS method from the paper:
"4-Points Congruent Sets for Robust Pairwise Surface Registration" 
D.Aiger, N.Mitra D.Cohen-Or, SIGGRAPH 2008
ps: the name of the variables are out of vcg standard but like the one
used in the paper pseudocode.
*/
#include <vcg/space/point3.h>
#include <vcg/space/point4.h>
#include <vcg/space/line3.h>
#include <vcg/space/plane3.h>
#include <vcg/math/base.h>
#include <vcg/math/point_matching.h>
#include <vcg/math/matrix44.h>

#include <vcg/space/index/grid_static_ptr.h>
#include <vcg/complex/algorithms/closest.h>
#include <vcg/complex/algorithms/update/bounding.h>

#include <vcg/simplex/vertex/base.h>
#include <vcg/simplex/face/base.h>
#include <vcg/complex/complex.h>
#include <vcg/complex/algorithms/stat.h>
#include <wrap/io_trimesh/export_ply.h>



// note: temporary (callback.h should be moved inside vcg)
typedef bool AACb( const int pos,const char * str );

namespace vcg{
	namespace tri{
template <class MeshType>
class FourPCS {
public:
	/* mesh only for using spatial indexing functions (to remove) */
  class PVertex;    // dummy prototype never used
  class PFace;

  class PUsedTypes: public vcg::UsedTypes < vcg::Use<PVertex>::template AsVertexType,
                                            vcg::Use<PFace  >::template AsFaceType >{};


  class PVertex : public vcg::Vertex< PUsedTypes,vcg::vertex::BitFlags,vcg::vertex::Coord3f ,vcg::vertex::Mark>{};
	/*same as for the vertes */ 
  class PFace   : public vcg::Face<   PUsedTypes> {};
	/*the mesh is a container of vertices and a container of faces */ 
	class PMesh   : public vcg::tri::TriMesh< std::vector<PVertex>, std::vector<PFace> > {};

	typedef typename MeshType::ScalarType ScalarType;
	typedef typename MeshType::CoordType CoordType;
	typedef typename MeshType::VertexIterator VertexIterator;
	typedef typename MeshType::VertexType VertexType;
	typedef vcg::Point4< vcg::Point3<ScalarType> > FourPoints;
	typedef vcg::GridStaticPtr<typename PMesh::VertexType, ScalarType > GridType; 

	/* class for Parameters */
	struct Parameters{
		ScalarType delta; 
		int feetsize;			// how many points in the neighborhood of each of the 4 points
		ScalarType f;			// overlapping estimation
		int scoreFeet,		// how many of the feetsize points must match (max feetsize*4) to try an early interrupt
				scoreAln;			// how good must be the alignement	to end the process successfully
	
		void Default(){
			delta = 0.5;
			feetsize = 25;
			f = 0.5;
			scoreFeet = 50;
			scoreAln = 200;
		}
	};

	Parameters prs;	/// parameters

	public:
	void Init(MeshType &_P,MeshType &_Q);
	bool Align( int   L, vcg::Matrix44f & result, AACb * cb = NULL );		// main function


private:	
	struct Couple: public std::pair<int,int>{
		Couple(const int & i, const int & j, float d):std::pair<int,int>(i,j),dist(d){}
		Couple(float d):std::pair<int,int>(0,0),dist(d){}
		float dist;
		const bool operator < (const   Couple & o) const {return dist < o.dist;}
		int & operator[](const int &i){return (i==0)? first : second;}
	};




	/* returns the closest point between to segments x1-x2 and x3-x4.  */
	void IntersectionLineLine(const CoordType & x1,const CoordType & x2,const CoordType & x3,const CoordType & x4, CoordType&x)
	{
		CoordType a = x2-x1, b = x4-x3, c = x3-x1;
		x = x1 + a * ((c^b).dot(a^b)) / (a^b).SquaredNorm();
	}

 


	struct CandiType{
		CandiType(){};
		CandiType(FourPoints _p,vcg::Matrix44<ScalarType>_T):p(_p),T(_T){}
		FourPoints  p; 
		vcg::Matrix44<ScalarType> T;
		ScalarType err;
		int score;
		int base; // debug: for which base
		inline bool operator <(const CandiType & o) const {return score > o.score;}
	};


	MeshType	*P,											// mesh from which the coplanar base is selected
						*Q;											// mesh where to find the correspondences
	std::vector<int> mapsub;					// subset of index to the vertices in Q


	PMesh     Invr;										// invariants
	
	std::vector< CandiType > U;
	CandiType winner;	
	int iwinner;											// winner == U[iwinner]

	FourPoints B;											// coplanar base
	std::vector<FourPoints> bases;		// used bases
	ScalarType side;									// side
	std::vector<VertexType*> ExtB[4]; // selection of vertices "close" to the four point 
	std::vector<VertexType*> subsetP; // random selection on P
	ScalarType radius;

	ScalarType Bangle;
	std::vector<Couple > R1/*,R2*/;
	ScalarType r1,r2;

	// class for the point  'ei'
	struct EPoint{
		EPoint(vcg::Point3<ScalarType> _p, int _i):pos(_p),pi(_i){}
		vcg::Point3<ScalarType> pos;
		int pi;		//index to R[1|2]
		void GetBBox(vcg::Box3<ScalarType> & b){b.Add(pos);}
	};

	GridType *ugrid; // griglia
	vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType > ugridQ; 
	vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType > ugridP; 

 //FILE * f;

//private:
	bool SelectCoplanarBase();												// on P
	bool FindCongruent() ;														// of base B, on Q, with approximation delta

//private:
	void ComputeR1R2(ScalarType d1,ScalarType d2);

	bool IsTransfCongruent(FourPoints fp,vcg::Matrix44<ScalarType> & mat, float &  trerr);
	int EvaluateSample(CandiType & fp, CoordType & tp, CoordType & np, const float &  angle);
	void EvaluateAlignment(CandiType & fp);
	void TestAlignment(CandiType & fp);

	/* debug tools */
public:	
	std::vector<vcg::Matrix44f> allTr;// tutte le trasformazioni provate
	FILE * db;
	char namemesh1[255],namemesh2[255];
	int n_base;
	void InitDebug(const char * name1, const char * name2){
		db = fopen("debugPCS.txt","w");
		sprintf(&namemesh1[0],"%s",name1);
		sprintf(&namemesh2[0],"%s",name2);
		n_base = 0;
	}

	void FinishDebug(){
		fclose(db);
	}
	//void SaveALN(char * name,vcg::Matrix44f mat ){
	//	FILE * o = fopen(name,"w");
	//	fprintf(o,"2\n%s\n#\n",namemesh1);
	//	for(int  i = 0 ; i < 4; ++i)
	//		fprintf(o,"%f %f %f %f\n",mat[i][0],mat[i][1],mat[i][2],mat[i][3]);
	//	fprintf(o,"%s\n#\n",namemesh2);
	//	fprintf(o,"1.0 0.0 0.0 0.0 \n");
	//	fprintf(o,"0.0 1.0 0.0 0.0 \n");
	//	fprintf(o,"0.0 0.0 1.0 0.0 \n");
	//	fprintf(o,"0.0 0.0 0.0 1.0 \n");

	//	fclose(o);
	//}

};

template <class MeshType>
void
FourPCS<MeshType>:: Init(MeshType &_P,MeshType &_Q){ 

		P = &_P;Q=&_Q; 
		ugridQ.Set(Q->vert.begin(),Q->vert.end());
		ugridP.Set(P->vert.begin(),P->vert.end());
		int vi;
	//	float areaP = vcg::tri::Stat<MeshType>::ComputeMeshArea(*P);
	//	float areaQ = vcg::tri::Stat<MeshType>::ComputeMeshArea(*Q);

 		float ratio = 800 / (float) Q->vert.size();
		for(vi = 0; vi < Q->vert.size(); ++vi)
		if(rand()/(float) RAND_MAX < ratio)
			mapsub.push_back(vi);

		for(vi = 0; vi < P->vert.size(); ++vi)
		if(rand()/(float) RAND_MAX < ratio)
			subsetP.push_back(&P->vert[vi]);

		// estimate neigh distance
		float avD = 0.0,dist; 
		for(int i = 0 ; i < 100; ++i){
			int ri = rand()/(float) RAND_MAX * Q->vert.size() -1;
			std::vector< CoordType > samples,d_samples;
			std::vector<ScalarType > dists;
			std::vector<VertexType* > ress;
			vcg::tri::GetKClosestVertex<
					MeshType,
					vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType>,
					std::vector<VertexType*>,
					std::vector<ScalarType>,
					std::vector< CoordType > >(*Q,ugridQ,2,Q->vert[ri].cP(),Q->bbox.Diag(), ress,dists, samples);
			assert(ress.size() == 2);
			avD+=dists[1];
		}
		avD	/=100;						// average vertex-vertex distance
		avD /= sqrt(ratio);		// take into account the ratio

		prs.delta = avD * prs.delta; 
		side = P->bbox.Dim()[P->bbox.MaxDim()]*prs.f; //rough implementation

	}

template <class MeshType>
bool 
FourPCS<MeshType>::SelectCoplanarBase(){

	vcg::tri::UpdateBounding<MeshType>::Box(*P);

	// choose the inter point distance
	ScalarType dtol = side*0.1; //rough implementation

	//choose the first two points
	int i = 0,ch;
		
	// first point random
	ch = (rand()/(float)RAND_MAX)*(P->vert.size()-2);
	B[0] = P->vert[ch].P();
//printf("B[0] %d\n",ch);
	// second a point at distance d+-dtol
	for(i = 0; i < P->vert.size(); ++i){
		ScalarType dd = (P->vert[i].P() - B[0]).Norm();
		if(  ( dd < side + dtol) && (dd > side - dtol)){
			B[1] = P->vert[i].P();
//printf("B[1] %d\n",i);
			break;
		}
	}
	if(i ==  P->vert.size())
		return false;

	// third point at distance d from B[1] and forming a right angle
	int best = -1; ScalarType bestv=std::numeric_limits<float>::max();
	for(i = 0; i < P->vert.size(); ++i){
		int id = rand()/(float)RAND_MAX *  (P->vert.size()-1);
		ScalarType dd = (P->vert[id].P() - B[1]).Norm();
		if(  ( dd < side + dtol) && (dd > side - dtol)){
			ScalarType angle =  fabs( ( P->vert[id].P()-B[1]).normalized().dot((B[1]-B[0]).normalized()));
			if( angle < bestv){
				bestv = angle;
				best = id;
			}			 
		}
	}
	if(best == -1)
		return false;
	B[2] = P->vert[best].P();
//printf("B[2] %d\n",best);

	CoordType n = ((B[0]-B[1]).normalized() ^ (B[2]-B[1]).normalized()).normalized();
	CoordType B4 = B[1] +  (B[0]-B[1]) + (B[2]-B[1]);
	VertexType * v =0; 
	ScalarType radius = dtol*4.0;

		std::vector<typename MeshType::VertexType*> closests;
		std::vector<ScalarType> distances;
		std::vector<CoordType> points;

		 vcg::tri::GetInSphereVertex<
					MeshType,
					vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType >,
					std::vector<typename MeshType::VertexType*>,
					std::vector<ScalarType>,
					std::vector<CoordType>
				>(*P,ugridP,B4,radius,closests,distances,points);

		if(closests.empty())
			return false;
	 best = -1;  bestv=std::numeric_limits<float>::max();
		for(i = 0; i <closests.size(); ++i){
		 ScalarType angle = fabs((closests[i]->P() - B[1]).normalized().dot(n));
			if( angle < bestv){
				bestv = angle;
				best = i;
			}			 
		}
		B[3] =  closests[best]->P();

//printf("B[3] %d\n", (typename MeshType::VertexType*)closests[best] - &(*P->vert.begin()));

		// compute r1 and r2
		CoordType x;
		std::swap(B[1],B[2]);
 		IntersectionLineLine(B[0],B[1],B[2],B[3],x);

		r1 = (x - B[0]).dot(B[1]-B[0]) / (B[1]-B[0]).SquaredNorm();
		r2 = (x - B[2]).dot(B[3]-B[2]) / (B[3]-B[2]).SquaredNorm();

		if( ((B[0]+(B[1]-B[0])*r1)-(B[2]+(B[3]-B[2])*r2)).Norm() > prs.delta )
			return false;

		radius  =side*0.5;
		std::vector< CoordType > samples,d_samples;
		std::vector<ScalarType > dists;

		for(int i  = 0 ; i< 4; ++i){
			vcg::tri::GetKClosestVertex<
				MeshType,
				vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType >,
				std::vector<VertexType*>,
				std::vector<ScalarType>,
				std::vector< CoordType > >(*P,ugridP, prs.feetsize ,B[i],radius, ExtB[i],dists, samples);
		}

	//for(int i  = 0 ; i< 4; ++i) 
 //		printf("%d ",ExtB[i].size());
	//	printf("\n");
return true;

}


template <class MeshType>
bool
FourPCS<MeshType>::IsTransfCongruent(FourPoints fp,vcg::Matrix44<ScalarType> & mat, float &  trerr){
		 
		std::vector<vcg::Point3<ScalarType> > fix;
		std::vector<vcg::Point3<ScalarType> > mov;
		for(int i = 0 ; i < 4; ++i) mov.push_back(B[i]);
		for(int i = 0 ; i < 4; ++i) fix.push_back(fp[i]);

		vcg::Point3<ScalarType> n,p;
		n = (( B[1]-B[0]).normalized() ^ ( B[2]- B[0]).normalized())*( B[1]- B[0]).Norm();
		p =  B[0] + n;
		mov.push_back(p);
		n = (( fp[1]-fp[0]).normalized() ^ (fp[2]- fp[0]).normalized())*( fp[1]- fp[0]).Norm();
		p =  fp[0] + n;
		fix.push_back(p);

		vcg::PointMatching<ScalarType>::ComputeRigidMatchMatrix(mat,fix,mov);
		
		ScalarType err = 0.0;
		for(int i = 0; i < 4; ++i) err+= (mat * mov[i] - fix[i]).SquaredNorm();
		
		trerr = vcg::math::Sqrt(err);
		return  err  < prs.delta* prs.delta*4.0;
	}

template <class MeshType>
void 
FourPCS<MeshType>::ComputeR1R2(ScalarType d1,ScalarType d2){
	int vi,vj;
	R1.clear();
	//R2.clear();
	int start = clock();
	for(vi = 0; vi  < mapsub.size(); ++vi) for(vj = vi; vj < mapsub.size(); ++vj){
			ScalarType d = ((Q->vert[mapsub[vi]]).P()-(Q->vert[mapsub[vj]]).P()).Norm();
		 	if( (d < d1+ side*0.5) && (d > d1-side*0.5))
			{
				R1.push_back(Couple(mapsub[vi],mapsub[vj],d ));
				R1.push_back(Couple(mapsub[vj],mapsub[vi],d));
			}
	}
	//for( vi  = 0;  vi   < mapsub.size(); ++ vi ) for( vj  =  vi ;  vj  < mapsub.size(); ++ vj ){
	//		ScalarType d = ((Q->vert[mapsub[vi]]).P()-(Q->vert[mapsub[vj]]).P()).Norm();
	//	 	if( (d < d2+side*0.5) && (d > d2-side*0.5)) 
	//		{
	//			R2.push_back(Couple(mapsub[vi],mapsub[vj],d));
	//			R2.push_back(Couple(mapsub[vj],mapsub[vi],d));
	//		}
	//}	

 	std::sort(R1.begin(),R1.end());
//	std::sort(R2.begin(),R2.end());
}

template <class MeshType>
bool 
FourPCS<MeshType>::FindCongruent() { // of base B, on Q, with approximation delta
	bool done = false;
	std::vector<EPoint> R2inv;
	int n_closests = 0, n_congr = 0;
	int ac =0 ,acf = 0,tr = 0,trf =0;
	ScalarType d1,d2;
	d1 = (B[1]-B[0]).Norm();
	d2 = (B[3]-B[2]).Norm();

	int start = clock();
	//int vi,vj;

	typename PMesh::VertexIterator vii;
	typename std::vector<Couple>::iterator bR1,eR1,bR2,eR2,ite,cite;
	bR1 = std::lower_bound<typename std::vector<Couple>::iterator,Couple>(R1.begin(),R1.end(),Couple(d1-prs.delta*2.0));
	eR1 = std::lower_bound<typename std::vector<Couple>::iterator,Couple>(R1.begin(),R1.end(),Couple(d1+prs.delta*2.0));
	bR2 = std::lower_bound<typename std::vector<Couple>::iterator,Couple>(R1.begin(),R1.end(),Couple(d2-prs.delta*2.0));
	eR2 = std::lower_bound<typename std::vector<Couple>::iterator,Couple>(R1.begin(),R1.end(),Couple(d2+prs.delta*2.0));
	
	// in  [bR1,eR1) there are all the pairs ad a distance d1 +- prs.delta
	// in  [bR1,eR1) there are all the pairs ad a distance d2 +- prs.delta

	if(bR1 == R1.end()) return false;// if there are no such pairs return
	if(bR2 == R1.end()) return false; // if there are no such pairs return

	// put [bR1,eR1) in a mesh to have the search operator for free (lazy me)
	Invr.Clear();
	int i = &(*bR1)-&(*R1.begin());
	for(ite = bR1; ite != eR1;++ite){
		vii = vcg::tri::Allocator<PMesh>::AddVertices(Invr,1);
		(*vii).P() = Q->vert[R1[i][0]].P() + (Q->vert[R1[i][1]].P()-Q->vert[R1[i][0]].P()) * r1;
		++i;
	}
	if(Invr.vert.empty() ) return false;

	// index remaps a vertex of Invr to its corresponding point in R1
 	typename PMesh::template PerVertexAttributeHandle<int> id = vcg::tri::Allocator<PMesh>::template AddPerVertexAttribute<int>(Invr,std::string("index"));
	i = &(*bR1)-&(*R1.begin());
	for(vii = Invr.vert.begin(); vii != Invr.vert.end();++vii,++i)  id[vii] = i;

	vcg::tri::UpdateBounding<PMesh>::Box(Invr);
	//	printf("Invr size %d\n",Invr.vn);

	ugrid = new GridType();
	ugrid->Set(Invr.vert.begin(),Invr.vert.end());

	i = &(*bR2)-&(*R1.begin());
	// R2inv contains all the points generated by the couples in R2 (with the reference to remap into R2)
	for(ite = bR2; ite != eR2;++ite){
		R2inv.push_back( EPoint( Q->vert[R1[i][0]].P() + (Q->vert[R1[i][1]].P()-Q->vert[R1[i][0]].P()) * r2,i));
		++i;
	}

	n_closests = 0; n_congr = 0; ac =0 ; acf = 0; tr = 0; trf = 0;
	//	fprintf(db,"R2Inv.size  = %d \n",R2inv.size());
   for(uint i = 0 ; i < R2inv.size() ; ++i){
		
		std::vector<typename PMesh::VertexType*> closests;
		std::vector<ScalarType> distances;
		std::vector<CoordType> points;

		// for each point in R2inv get all the points in R1 closer than prs.delta
		vcg::Matrix44<ScalarType> mat;
		vcg::Box3f bb;
		bb.Add(R2inv[i].pos+vcg::Point3f(prs.delta * 0.1,prs.delta * 0.1 , prs.delta * 0.1 ));
		bb.Add(R2inv[i].pos-vcg::Point3f(prs.delta * 0.1,prs.delta* 0.1  , prs.delta* 0.1));

		vcg::tri::GetInBoxVertex<PMesh,GridType,std::vector<typename PMesh::VertexType*> >
			 (Invr,*ugrid,bb,closests);
 
		 n_closests+=closests.size();
		 for(uint ip = 0; ip < closests.size(); ++ip){
				FourPoints p;
				p[0] = Q->vert[R1[id[closests[ip]]][0]].P();
				p[1] = Q->vert[R1[id[closests[ip]]][1]].P();
				p[2] = Q->vert[R1[ R2inv[i].pi][0]].P();
				p[3] = Q->vert[R1[ R2inv[i].pi][1]].P();

				float trerr;
			  n_base++;
					if(!IsTransfCongruent(p,mat,trerr)) {
						trf++;
						//char name[255];
						//sprintf(name,"faileTR_%d_%f.aln",n_base,trerr);
						//fprintf(db,"TransCongruent %s\n", name);
						//SaveALN(name, mat); 
					}
					else{
						tr++;
		 		   	n_congr++;
						U.push_back(CandiType(p,mat));
						EvaluateAlignment(U.back());
						U.back().base = bases.size()-1;

						if( U.back().score > prs.scoreFeet){
							TestAlignment(U.back());
							if(U.back().score > prs.scoreAln)
								{
									done = true; break;
								}
							}
						//char name[255];
						//sprintf(name,"passed_score_%5d_%d.aln",U.back().score,n_base);
						//fprintf(db,"OK TransCongruent %s, score: %d \n", name,U.back().score);
						//SaveALN(name, mat); 
					}
				}					 		 
	 }

	 delete ugrid;
	 vcg::tri::Allocator<PMesh>::DeletePerVertexAttribute(Invr,id);
	 printf("n_closests %5d = (An %5d ) + ( Tr %5d ) + (OK) %5d\n",n_closests,acf,trf,n_congr); 
	 
	 return done;
//	 printf("done n_closests %d congr %d in %f s\n ",n_closests,n_congr,(clock()-start)/(float)CLOCKS_PER_SEC);
//	 printf("angle:%d %d, trasf %d %d\n",ac,acf,tr,trf);
}



template <class MeshType>
int FourPCS<MeshType>::EvaluateSample(CandiType & fp, CoordType & tp, CoordType & np, const float &  angle){
			VertexType*   v;
		ScalarType   dist ;
		radius = prs.delta;
		tp = fp.T * tp;

 				vcg::Point4<ScalarType> np4;
				np4 = fp.T * vcg::Point4<ScalarType>(np[0],np[1],np[2],0.0);
				np[0] = np4[0]; np[1] = np4[1]; 	np[2] = np4[2];
 
      v = 0;
			//v = vcg::tri::GetClosestVertex<
			//	MeshType,
			//	vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType >
			//  >(*Q,ugridQ,tp,radius,  dist  );
			typename MeshType::VertexType vq;
			vq.P() = tp;
			vq.N() = np;
			v = vcg::tri::GetClosestVertexNormal<
				MeshType,
				vcg::GridStaticPtr<typename MeshType::VertexType, ScalarType >
			  >(*Q,ugridQ,vq,radius,  dist  );
		 
			if(v!=0) 
				if( v->N().dot(np) -angle >0)  return 1; else return -1;
	
}


template <class MeshType>
void
FourPCS<MeshType>::EvaluateAlignment(CandiType  & fp){
 		int n_delta_close = 0;
		for(int i  = 0 ; i< 4; ++i) {
			for(uint j = 0; j < ExtB[i].size();++j){
				CoordType np = ExtB[i][j]->cN();;
				CoordType tp  = ExtB[i][j]->P();
				n_delta_close+=EvaluateSample(fp,tp,np,0.9);
			}		
		}
		fp.score = n_delta_close;
}

template <class MeshType>
void
FourPCS<MeshType>::TestAlignment(CandiType  & fp){
		radius = prs.delta;
		int n_delta_close = 0;
		for(uint j = 0; j < subsetP.size();++j){
				CoordType np = subsetP[j]->N();
				CoordType tp  = subsetP[j]->P();
				n_delta_close+=EvaluateSample(fp,tp,np,0.6);
			 }
		fp.score =  n_delta_close;
}


template <class MeshType>
bool 
FourPCS<MeshType>::	 Align(  int L, vcg::Matrix44f & result, AACb * cb ){ // main loop
	
	int bestv = 0;
	bool found;
	int n_tries = 0;
	U.clear();

	if(L==0)
	{
		L = (log(1.0-0.9999) / log(1.0-pow((float)prs.f,3.f)))+1;
		printf("using %d bases\n",L);
	}

	ComputeR1R2(side*1.4,side*1.4);

	for(int t  = 0; t  < L; ++t ){
		do{
			n_tries = 0;
			do{
				n_tries++;
				found = SelectCoplanarBase();
				}
				while(!found && (n_tries <50));
				if(!found) {
					prs.f*=0.98;
					side = P->bbox.Dim()[P->bbox.MaxDim()]*prs.f; //rough implementation
					ComputeR1R2(side*1.4,side*1.4);
				}
		} while (!found && (prs.f >0.1));

		if(prs.f <0.1) {
			printf("FAILED");
			return false;
			}
		bases.push_back(B);
		if(cb) cb(t*100/L,"trying bases");
		if(FindCongruent()) 
			break;
	}

	if(U.empty()) return false;

	std::sort(U.begin(),U.end());

	bestv  = -std::numeric_limits<float>::max();
	iwinner = 0;

	for(int i = 0 ; i <  U.size() ;++i)
 	 {
		TestAlignment(U[i]);
		if(U[i].score > bestv){
	 		bestv = U[i].score;
			iwinner = i;
			}
	}
	
	printf("Best score: %d \n", bestv);

	winner =  U[iwinner];
	result = winner.T;

	// deallocations
	Invr.Clear();
	
	return true;
}

	} // namespace tri
} // namespace vcg
#endif