1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.8 2008/05/14 10:03:29 ganovelli
Point3f->Coordtype
Revision 1.7 2008/04/23 16:37:15 onnis
VertexCurvature method added.
Revision 1.6 2008/04/04 10:26:12 cignoni
Cleaned up names, now Kg() gives back Gaussian Curvature (k1*k2), while Kh() gives back Mean Curvature 1/2(k1+k2)
Revision 1.5 2008/03/25 11:00:56 ganovelli
fixed bugs sign of principal direction and mean curvature value
Revision 1.4 2008/03/17 11:29:59 ganovelli
taubin and desbrun estimates added (-> see vcg/simplex/vertex/component.h [component_ocf.h|component_occ.h ]
Revision 1.3 2006/02/27 18:02:57 ponchio
Area -> doublearea/2
added some typename
Revision 1.2 2005/10/25 09:17:41 spinelli
correct IsBorder
Revision 1.1 2005/02/22 16:40:29 ganovelli
created. This version writes the gaussian curvature on the Q() member of
the vertex
****************************************************************************/
#ifndef VCGLIB_UPDATE_CURVATURE_
#define VCGLIB_UPDATE_CURVATURE_
#include <vcg/space/index/grid_static_ptr.h>
#include <vcg/math/base.h>
#include <vcg/math/matrix.h>
#include <vcg/simplex/face/topology.h>
#include <vcg/simplex/face/pos.h>
#include <vcg/simplex/face/jumping_pos.h>
#include <vcg/container/simple_temporary_data.h>
#include <vcg/complex/algorithms/update/normal.h>
#include <vcg/complex/algorithms/point_sampling.h>
#include <vcg/complex/append.h>
#include <vcg/complex/algorithms/intersection.h>
#include <vcg/complex/algorithms/inertia.h>
#include <vcg/math/matrix33.h>
namespace vcg {
namespace tri {
/// \ingroup trimesh
/// \headerfile curvature.h vcg/complex/algorithms/update/curvature.h
/// \brief Management, updating and computation of per-vertex and per-face normals.
/**
This class is used to compute or update the normals that can be stored in the vertex or face component of a mesh.
*/
template <class MeshType>
class UpdateCurvature
{
public:
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::VertContainer VertContainer;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef vcg::face::VFIterator<FaceType> VFIteratorType;
typedef typename MeshType::CoordType CoordType;
typedef typename CoordType::ScalarType ScalarType;
private:
struct AdjVertex {
VertexType * vert;
float doubleArea;
bool isBorder;
};
public:
/// \brief Compute principal direction and magniuto of curvature.
/*
Compute principal direction and magniuto of curvature as describe in the paper:
@InProceedings{bb33922,
author = "G. Taubin",
title = "Estimating the Tensor of Curvature of a Surface from a
Polyhedral Approximation",
booktitle = "International Conference on Computer Vision",
year = "1995",
pages = "902--907",
URL = "http://dx.doi.org/10.1109/ICCV.1995.466840",
bibsource = "http://www.visionbib.com/bibliography/describe440.html#TT32253",
*/
static void PrincipalDirections(MeshType &m) {
assert(tri::HasPerFaceVFAdjacency(m) && tri::HasPerVertexVFAdjacency(m));
vcg::tri::UpdateNormals<MeshType>::PerVertexNormalized(m);
VertexIterator vi;
for (vi =m.vert.begin(); vi !=m.vert.end(); ++vi) {
if ( ! (*vi).IsD() && (*vi).VFp() != NULL) {
VertexType * central_vertex = &(*vi);
std::vector<float> weights;
std::vector<AdjVertex> vertices;
vcg::face::JumpingPos<FaceType> pos((*vi).VFp(), central_vertex);
// firstV is the first vertex of the 1ring neighboorhood
VertexType* firstV = pos.VFlip();
VertexType* tempV;
float totalDoubleAreaSize = 0.0f;
// compute the area of each triangle around the central vertex as well as their total area
do
{
// this bring the pos to the next triangle counterclock-wise
pos.FlipF();
pos.FlipE();
// tempV takes the next vertex in the 1ring neighborhood
tempV = pos.VFlip();
assert(tempV!=central_vertex);
AdjVertex v;
v.isBorder = pos.IsBorder();
v.vert = tempV;
v.doubleArea = vcg::DoubleArea(*pos.F());
totalDoubleAreaSize += v.doubleArea;
vertices.push_back(v);
}
while(tempV != firstV);
// compute the weights for the formula computing matrix M
for (size_t i = 0; i < vertices.size(); ++i) {
if (vertices[i].isBorder) {
weights.push_back(vertices[i].doubleArea / totalDoubleAreaSize);
} else {
weights.push_back(0.5f * (vertices[i].doubleArea + vertices[(i-1)%vertices.size()].doubleArea) / totalDoubleAreaSize);
}
assert(weights.back() < 1.0f);
}
// compute I-NN^t to be used for computing the T_i's
Matrix33<ScalarType> Tp;
for (int i = 0; i < 3; ++i)
Tp[i][i] = 1.0f - powf(central_vertex->cN()[i],2);
Tp[0][1] = Tp[1][0] = -1.0f * (central_vertex->N()[0] * central_vertex->cN()[1]);
Tp[1][2] = Tp[2][1] = -1.0f * (central_vertex->cN()[1] * central_vertex->cN()[2]);
Tp[0][2] = Tp[2][0] = -1.0f * (central_vertex->cN()[0] * central_vertex->cN()[2]);
// for all neighbors vi compute the directional curvatures k_i and the T_i
// compute M by summing all w_i k_i T_i T_i^t
Matrix33<ScalarType> tempMatrix;
Matrix33<ScalarType> M;
M.SetZero();
for (size_t i = 0; i < vertices.size(); ++i) {
CoordType edge = (central_vertex->cP() - vertices[i].vert->cP());
float curvature = (2.0f * (central_vertex->cN().dot(edge)) ) / edge.SquaredNorm();
CoordType T = (Tp*edge).normalized();
tempMatrix.ExternalProduct(T,T);
M += tempMatrix * weights[i] * curvature ;
}
// compute vector W for the Householder matrix
CoordType W;
CoordType e1(1.0f,0.0f,0.0f);
if ((e1 - central_vertex->cN()).SquaredNorm() > (e1 + central_vertex->cN()).SquaredNorm())
W = e1 - central_vertex->cN();
else
W = e1 + central_vertex->cN();
W.Normalize();
// compute the Householder matrix I - 2WW^t
Matrix33<ScalarType> Q;
Q.SetIdentity();
tempMatrix.ExternalProduct(W,W);
Q -= tempMatrix * 2.0f;
// compute matrix Q^t M Q
Matrix33<ScalarType> QtMQ = (Q.transpose() * M * Q);
CoordType bl = Q.GetColumn(0);
CoordType T1 = Q.GetColumn(1);
CoordType T2 = Q.GetColumn(2);
// find sin and cos for the Givens rotation
float s,c;
// Gabriel Taubin hint and Valentino Fiorin impementation
float alpha = QtMQ[1][1]-QtMQ[2][2];
float beta = QtMQ[2][1];
float h[2];
float delta = sqrtf(4.0f*powf(alpha, 2) +16.0f*powf(beta, 2));
h[0] = (2.0f*alpha + delta) / (2.0f*beta);
h[1] = (2.0f*alpha - delta) / (2.0f*beta);
float t[2];
float best_c, best_s;
float min_error = std::numeric_limits<ScalarType>::infinity();
for (int i=0; i<2; i++)
{
delta = sqrtf(powf(h[i], 2) + 4.0f);
t[0] = (h[i]+delta) / 2.0f;
t[1] = (h[i]-delta) / 2.0f;
for (int j=0; j<2; j++)
{
float squared_t = powf(t[j], 2);
float denominator = 1.0f + squared_t;
s = (2.0f*t[j]) / denominator;
c = (1-squared_t) / denominator;
float approximation = c*s*alpha + (powf(c, 2) - powf(s, 2))*beta;
float angle_similarity = fabs(acosf(c)/asinf(s));
float error = fabs(1.0f-angle_similarity)+fabs(approximation);
if (error<min_error)
{
min_error = error;
best_c = c;
best_s = s;
}
}
}
c = best_c;
s = best_s;
vcg::ndim::MatrixMNf minor2x2 (2,2);
vcg::ndim::MatrixMNf S (2,2);
// diagonalize M
minor2x2[0][0] = QtMQ[1][1];
minor2x2[0][1] = QtMQ[1][2];
minor2x2[1][0] = QtMQ[2][1];
minor2x2[1][1] = QtMQ[2][2];
S[0][0] = S[1][1] = c;
S[0][1] = s;
S[1][0] = -1.0f * s;
vcg::ndim::MatrixMNf StMS(S.transpose() * minor2x2 * S);
// compute curvatures and curvature directions
float Principal_Curvature1 = (3.0f * StMS[0][0]) - StMS[1][1];
float Principal_Curvature2 = (3.0f * StMS[1][1]) - StMS[0][0];
CoordType Principal_Direction1 = T1 * c - T2 * s;
CoordType Principal_Direction2 = T1 * s + T2 * c;
(*vi).PD1() = Principal_Direction1;
(*vi).PD2() = Principal_Direction2;
(*vi).K1() = Principal_Curvature1;
(*vi).K2() = Principal_Curvature2;
}
}
}
class AreaData
{
public:
float A;
};
/** Curvature meseaure as described in the paper:
Robust principal curvatures on Multiple Scales, Yong-Liang Yang, Yu-Kun Lai, Shi-Min Hu Helmut Pottmann
SGP 2004
If pointVSfaceInt==true the covariance is computed by montecarlo sampling on the mesh (faster)
If pointVSfaceInt==false the covariance is computed by (analytic)integration over the surface (slower)
*/
typedef vcg::GridStaticPtr <FaceType, ScalarType > MeshGridType;
typedef vcg::GridStaticPtr <VertexType, ScalarType > PointsGridType;
static void PrincipalDirectionsPCA(MeshType &m, ScalarType r, bool pointVSfaceInt = true,vcg::CallBackPos * cb = NULL) {
std::vector<VertexType*> closests;
std::vector<ScalarType> distances;
std::vector<CoordType> points;
VertexIterator vi;
ScalarType area;
MeshType tmpM;
typename std::vector<CoordType>::iterator ii;
vcg::tri::TrivialSampler<MeshType> vs;
MeshGridType mGrid;
PointsGridType pGrid;
// Fill the grid used
if(pointVSfaceInt){
area = Stat<MeshType>::ComputeMeshArea(m);
vcg::tri::SurfaceSampling<MeshType,vcg::tri::TrivialSampler<MeshType> >::Montecarlo(m,vs,1000 * area / (2*M_PI*r*r ));
vi = vcg::tri::Allocator<MeshType>::AddVertices(tmpM,m.vert.size());
for(size_t y = 0; y < m.vert.size(); ++y,++vi) (*vi).P() = m.vert[y].P();
pGrid.Set(tmpM.vert.begin(),tmpM.vert.end());
} else{ mGrid.Set(m.face.begin(),m.face.end()); }
int jj = 0;
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi){
vcg::Matrix33<ScalarType> A,eigenvectors;
vcg::Point3<ScalarType> bp,eigenvalues;
int nrot;
// sample the neighborhood
if(pointVSfaceInt)
{
vcg::tri::GetInSphereVertex<
MeshType,
PointsGridType,std::vector<VertexType*>,
std::vector<ScalarType>,
std::vector<CoordType> >(tmpM,pGrid, (*vi).cP(),r ,closests,distances,points);
A.Covariance(points,bp);
A*=area*area/1000;
}
else{
IntersectionBallMesh<MeshType,ScalarType>( m ,vcg::Sphere3<ScalarType>((*vi).cP(),r),tmpM );
vcg::Point3<ScalarType> _bary;
vcg::tri::Inertia<MeshType>::Covariance(tmpM,_bary,A);
}
Jacobi(A, eigenvalues , eigenvectors, nrot);
// get the estimate of curvatures from eigenvalues and eigenvectors
// find the 2 most tangent eigenvectors (by finding the one closest to the normal)
int best = 0; ScalarType bestv = fabs( (*vi).cN().dot(eigenvectors.GetColumn(0).normalized()) );
for(int i = 1 ; i < 3; ++i){
ScalarType prod = fabs((*vi).cN().dot(eigenvectors.GetColumn(i).normalized()));
if( prod > bestv){bestv = prod; best = i;}
}
(*vi).PD1() = eigenvectors.GetColumn( (best+1)%3).normalized();
(*vi).PD2() = eigenvectors.GetColumn( (best+2)%3).normalized();
// project them to the plane identified by the normal
vcg::Matrix33<ScalarType> rot;
ScalarType angle = acos((*vi).PD1().dot((*vi).N()));
rot.SetRotateRad( - (M_PI*0.5 - angle),(*vi).PD1()^(*vi).N());
(*vi).PD1() = rot*(*vi).PD1();
angle = acos((*vi).PD2().dot((*vi).N()));
rot.SetRotateRad( - (M_PI*0.5 - angle),(*vi).PD2()^(*vi).N());
(*vi).PD2() = rot*(*vi).PD2();
// copmutes the curvature values
const ScalarType r5 = r*r*r*r*r;
const ScalarType r6 = r*r5;
(*vi).K1() = (2.0/5.0) * (4.0*M_PI*r5 + 15*eigenvalues[(best+2)%3]-45.0*eigenvalues[(best+1)%3])/(M_PI*r6);
(*vi).K2() = (2.0/5.0) * (4.0*M_PI*r5 + 15*eigenvalues[(best+1)%3]-45.0*eigenvalues[(best+2)%3])/(M_PI*r6);
if((*vi).K1() < (*vi).K2()) { std::swap((*vi).K1(),(*vi).K2());
std::swap((*vi).PD1(),(*vi).PD2());
if (cb)
{
(*cb)(int(100.0f * (float)jj / (float)m.vn),"Vertices Analysis");
++jj;
} }
}
}
/// \brief Computes the discrete gaussian curvature.
/** For further details, please, refer to: \n
- <em> Discrete Differential-Geometry Operators for Triangulated 2-Manifolds Mark Meyer,
Mathieu Desbrun, Peter Schroder, Alan H. Barr VisMath '02, Berlin </em>
*/
static void MeanAndGaussian(MeshType & m)
{
assert(HasFFAdjacency(m));
float area0, area1, area2, angle0, angle1, angle2;
FaceIterator fi;
VertexIterator vi;
typename MeshType::CoordType e01v ,e12v ,e20v;
SimpleTempData<VertContainer, AreaData> TDAreaPtr(m.vert);
SimpleTempData<VertContainer, typename MeshType::CoordType> TDContr(m.vert);
vcg::tri::UpdateNormals<MeshType>::PerVertexNormalized(m);
//Compute AreaMix in H (vale anche per K)
for(vi=m.vert.begin(); vi!=m.vert.end(); ++vi) if(!(*vi).IsD())
{
(TDAreaPtr)[*vi].A = 0.0;
(TDContr)[*vi] =typename MeshType::CoordType(0.0,0.0,0.0);
(*vi).Kh() = 0.0;
(*vi).Kg() = (float)(2.0 * M_PI);
}
for(fi=m.face.begin();fi!=m.face.end();++fi) if( !(*fi).IsD())
{
// angles
angle0 = math::Abs(Angle( (*fi).P(1)-(*fi).P(0),(*fi).P(2)-(*fi).P(0) ));
angle1 = math::Abs(Angle( (*fi).P(0)-(*fi).P(1),(*fi).P(2)-(*fi).P(1) ));
angle2 = M_PI-(angle0+angle1);
if((angle0 < M_PI/2) && (angle1 < M_PI/2) && (angle2 < M_PI/2)) // triangolo non ottuso
{
float e01 = SquaredDistance( (*fi).V(1)->cP() , (*fi).V(0)->cP() );
float e12 = SquaredDistance( (*fi).V(2)->cP() , (*fi).V(1)->cP() );
float e20 = SquaredDistance( (*fi).V(0)->cP() , (*fi).V(2)->cP() );
area0 = ( e20*(1.0/tan(angle1)) + e01*(1.0/tan(angle2)) ) / 8.0;
area1 = ( e01*(1.0/tan(angle2)) + e12*(1.0/tan(angle0)) ) / 8.0;
area2 = ( e12*(1.0/tan(angle0)) + e20*(1.0/tan(angle1)) ) / 8.0;
(TDAreaPtr)[(*fi).V(0)].A += area0;
(TDAreaPtr)[(*fi).V(1)].A += area1;
(TDAreaPtr)[(*fi).V(2)].A += area2;
}
else // obtuse
{
if(angle0 >= M_PI/2)
{
(TDAreaPtr)[(*fi).V(0)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 4.0;
(TDAreaPtr)[(*fi).V(1)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 8.0;
(TDAreaPtr)[(*fi).V(2)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 8.0;
}
else if(angle1 >= M_PI/2)
{
(TDAreaPtr)[(*fi).V(0)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 8.0;
(TDAreaPtr)[(*fi).V(1)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 4.0;
(TDAreaPtr)[(*fi).V(2)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 8.0;
}
else
{
(TDAreaPtr)[(*fi).V(0)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 8.0;
(TDAreaPtr)[(*fi).V(1)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 8.0;
(TDAreaPtr)[(*fi).V(2)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 4.0;
}
}
}
for(fi=m.face.begin();fi!=m.face.end();++fi) if( !(*fi).IsD() )
{
angle0 = math::Abs(Angle( (*fi).P(1)-(*fi).P(0),(*fi).P(2)-(*fi).P(0) ));
angle1 = math::Abs(Angle( (*fi).P(0)-(*fi).P(1),(*fi).P(2)-(*fi).P(1) ));
angle2 = M_PI-(angle0+angle1);
// Skip degenerate triangles.
if(angle0==0 || angle1==0 || angle1==0) continue;
e01v = ( (*fi).V(1)->cP() - (*fi).V(0)->cP() ) ;
e12v = ( (*fi).V(2)->cP() - (*fi).V(1)->cP() ) ;
e20v = ( (*fi).V(0)->cP() - (*fi).V(2)->cP() ) ;
TDContr[(*fi).V(0)] += ( e20v * (1.0/tan(angle1)) - e01v * (1.0/tan(angle2)) ) / 4.0;
TDContr[(*fi).V(1)] += ( e01v * (1.0/tan(angle2)) - e12v * (1.0/tan(angle0)) ) / 4.0;
TDContr[(*fi).V(2)] += ( e12v * (1.0/tan(angle0)) - e20v * (1.0/tan(angle1)) ) / 4.0;
(*fi).V(0)->Kg() -= angle0;
(*fi).V(1)->Kg() -= angle1;
(*fi).V(2)->Kg() -= angle2;
for(int i=0;i<3;i++)
{
if(vcg::face::IsBorder((*fi), i))
{
CoordType e1,e2;
vcg::face::Pos<FaceType> hp(&*fi, i, (*fi).V(i));
vcg::face::Pos<FaceType> hp1=hp;
hp1.FlipV();
e1=hp1.v->cP() - hp.v->cP();
hp1.FlipV();
hp1.NextB();
e2=hp1.v->cP() - hp.v->cP();
(*fi).V(i)->Kg() -= math::Abs(Angle(e1,e2));
}
}
}
for(vi=m.vert.begin(); vi!=m.vert.end(); ++vi) if(!(*vi).IsD() /*&& !(*vi).IsB()*/)
{
if((TDAreaPtr)[*vi].A<=std::numeric_limits<ScalarType>::epsilon())
{
(*vi).Kh() = 0;
(*vi).Kg() = 0;
}
else
{
(*vi).Kh() = (((TDContr)[*vi].dot((*vi).cN())>0)?1.0:-1.0)*((TDContr)[*vi] / (TDAreaPtr) [*vi].A).Norm();
(*vi).Kg() /= (TDAreaPtr)[*vi].A;
}
}
}
/// \brief Update the mean and the gaussian curvature of a vertex.
/**
The function uses the VF adiacency to walk around the vertex.
\return It will return the voronoi area around the vertex. If (norm == true) the mean and the gaussian curvature are normalized.
Based on the paper <a href="http://www2.in.tu-clausthal.de/~hormann/papers/Dyn.2001.OTU.pdf"> <em> "Optimizing 3d triangulations using discrete curvature analysis" </em> </a>
*/
static float VertexCurvature(VertexPointer v, bool norm = true)
{
// VFAdjacency required!
assert(FaceType::HasVFAdjacency());
assert(VertexType::HasVFAdjacency());
VFIteratorType vfi(v);
float A = 0;
v->Kh() = 0;
v->Kg() = 2 * M_PI;
while (!vfi.End()) {
if (!vfi.F()->IsD()) {
FacePointer f = vfi.F();
int i = vfi.I();
VertexPointer v0 = f->V0(i), v1 = f->V1(i), v2 = f->V2(i);
float ang0 = math::Abs(Angle(v1->P() - v0->P(), v2->P() - v0->P() ));
float ang1 = math::Abs(Angle(v0->P() - v1->P(), v2->P() - v1->P() ));
float ang2 = M_PI - ang0 - ang1;
float s01 = SquaredDistance(v1->P(), v0->P());
float s02 = SquaredDistance(v2->P(), v0->P());
// voronoi cell of current vertex
if (ang0 >= M_PI/2)
A += (0.5f * DoubleArea(*f) - (s01 * tan(ang1) + s02 * tan(ang2)) / 8.0 );
else if (ang1 >= M_PI/2)
A += (s01 * tan(ang0)) / 8.0;
else if (ang2 >= M_PI/2)
A += (s02 * tan(ang0)) / 8.0;
else // non obctuse triangle
A += ((s02 / tan(ang1)) + (s01 / tan(ang2))) / 8.0;
// gaussian curvature update
v->Kg() -= ang0;
// mean curvature update
ang1 = math::Abs(Angle(f->N(), v1->N()));
ang2 = math::Abs(Angle(f->N(), v2->N()));
v->Kh() += ( (math::Sqrt(s01) / 2.0) * ang1 +
(math::Sqrt(s02) / 2.0) * ang2 );
}
++vfi;
}
v->Kh() /= 4.0f;
if(norm) {
if(A <= std::numeric_limits<float>::epsilon()) {
v->Kh() = 0;
v->Kg() = 0;
}
else {
v->Kh() /= A;
v->Kg() /= A;
}
}
return A;
}
static void VertexCurvature(MeshType & m){
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
VertexCurvature(&*vi,false);
}
/*
Compute principal curvature directions and value with normal cycle:
@inproceedings{CohMor03,
author = {Cohen-Steiner, David and Morvan, Jean-Marie },
booktitle = {SCG '03: Proceedings of the nineteenth annual symposium on Computational geometry},
title - {Restricted delaunay triangulations and normal cycle}
year = {2003}
}
*/
static void PrincipalDirectionsNormalCycles(MeshType & m){
assert(VertexType::HasVFAdjacency());
assert(FaceType::HasFFAdjacency());
assert(FaceType::HasFaceNormal());
typename MeshType::VertexIterator vi;
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if(!((*vi).IsD())){
vcg::Matrix33<ScalarType> m33;m33.SetZero();
face::JumpingPos<typename MeshType::FaceType> p((*vi).VFp(),&(*vi));
p.FlipE();
typename MeshType::VertexType * firstv = p.VFlip();
assert(p.F()->V(p.VInd())==&(*vi));
do{
if( p.F() != p.FFlip()){
Point3<ScalarType> normalized_edge = p.F()->V(p.F()->Next(p.VInd()))->cP() - (*vi).P();
ScalarType edge_length = normalized_edge.Norm();
normalized_edge/=edge_length;
Point3<ScalarType> n1 = p.F()->cN();n1.Normalize();
Point3<ScalarType> n2 = p.FFlip()->cN();n2.Normalize();
ScalarType n1n2 = (n1 ^ n2).dot(normalized_edge);
n1n2 = std::max(std::min( ScalarType(1.0),n1n2),ScalarType(-1.0));
ScalarType beta = math::Asin(n1n2);
m33[0][0] += beta*edge_length*normalized_edge[0]*normalized_edge[0];
m33[0][1] += beta*edge_length*normalized_edge[1]*normalized_edge[0];
m33[1][1] += beta*edge_length*normalized_edge[1]*normalized_edge[1];
m33[0][2] += beta*edge_length*normalized_edge[2]*normalized_edge[0];
m33[1][2] += beta*edge_length*normalized_edge[2]*normalized_edge[1];
m33[2][2] += beta*edge_length*normalized_edge[2]*normalized_edge[2];
}
p.NextFE();
}while(firstv != p.VFlip());
if(m33.Determinant()==0.0){ // degenerate case
(*vi).K1() = (*vi).K2() = 0.0; continue;}
m33[1][0] = m33[0][1];
m33[2][0] = m33[0][2];
m33[2][1] = m33[1][2];
Point3<ScalarType> lambda;
Matrix33<ScalarType> vect;
int n_rot;
Jacobi(m33,lambda, vect,n_rot);
vect.transposeInPlace();
ScalarType normal = std::numeric_limits<ScalarType>::min();
int normI = 0;
for(int i = 0; i < 3; ++i)
if( fabs((*vi).N().Normalize().dot(vect.GetRow(i))) > normal )
{
normal= fabs((*vi).N().Normalize().dot(vect.GetRow(i)));
normI = i;
}
int maxI = (normI+2)%3;
int minI = (normI+1)%3;
if(fabs(lambda[maxI]) < fabs(lambda[minI])) std::swap(maxI,minI);
(*vi).PD1() = *(Point3<ScalarType>*)(& vect[maxI][0]);
(*vi).PD2() = *(Point3<ScalarType>*)(& vect[minI][0]);
(*vi).K1() = lambda[maxI];
(*vi).K2() = lambda[minI];
}
}
};
}
}
#endif
|