File: curvature.h

package info (click to toggle)
meshlab 1.3.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 21,096 kB
  • ctags: 33,630
  • sloc: cpp: 224,813; ansic: 8,170; xml: 119; makefile: 80
file content (688 lines) | stat: -rw-r--r-- 24,053 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004                                                \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
/****************************************************************************
  History
$Log: not supported by cvs2svn $
Revision 1.8  2008/05/14 10:03:29  ganovelli
Point3f->Coordtype

Revision 1.7  2008/04/23 16:37:15  onnis
VertexCurvature method added.

Revision 1.6  2008/04/04 10:26:12  cignoni
Cleaned up names, now Kg() gives back Gaussian Curvature (k1*k2), while Kh() gives back Mean Curvature 1/2(k1+k2)

Revision 1.5  2008/03/25 11:00:56  ganovelli
fixed  bugs sign of principal direction and mean curvature value

Revision 1.4  2008/03/17 11:29:59  ganovelli
taubin and desbrun estimates added (-> see vcg/simplex/vertex/component.h [component_ocf.h|component_occ.h ]

Revision 1.3  2006/02/27 18:02:57  ponchio
Area -> doublearea/2

added some typename

Revision 1.2  2005/10/25 09:17:41  spinelli
correct IsBorder

Revision 1.1  2005/02/22 16:40:29  ganovelli
created. This version writes the gaussian curvature on the Q() member of
the vertex

****************************************************************************/

#ifndef VCGLIB_UPDATE_CURVATURE_
#define VCGLIB_UPDATE_CURVATURE_

#include <vcg/space/index/grid_static_ptr.h>
#include <vcg/math/base.h>
#include <vcg/math/matrix.h>
#include <vcg/simplex/face/topology.h>
#include <vcg/simplex/face/pos.h>
#include <vcg/simplex/face/jumping_pos.h>
#include <vcg/container/simple_temporary_data.h>
#include <vcg/complex/algorithms/update/normal.h>
#include <vcg/complex/algorithms/point_sampling.h>
#include <vcg/complex/append.h>
#include <vcg/complex/algorithms/intersection.h>
#include <vcg/complex/algorithms/inertia.h>
#include <vcg/math/matrix33.h>


namespace vcg {
namespace tri {

/// \ingroup trimesh

/// \headerfile curvature.h vcg/complex/algorithms/update/curvature.h

/// \brief Management, updating and computation of per-vertex and per-face normals.
/**
This class is used to compute or update the normals that can be stored in the vertex or face component of a mesh.
*/

template <class MeshType>
class UpdateCurvature
{

public:
	typedef typename MeshType::FaceType FaceType;
	typedef typename MeshType::FacePointer FacePointer;
	typedef typename MeshType::FaceIterator FaceIterator;
	typedef typename MeshType::VertexIterator VertexIterator;
	typedef typename MeshType::VertContainer VertContainer;
	typedef typename MeshType::VertexType VertexType;
	typedef typename MeshType::VertexPointer VertexPointer;
	typedef vcg::face::VFIterator<FaceType> VFIteratorType;
	typedef typename MeshType::CoordType CoordType;
	typedef typename CoordType::ScalarType ScalarType;


private:
                struct AdjVertex {
			VertexType * vert;
			float doubleArea;
 			bool isBorder;
		};


public:
	/// \brief Compute principal direction and magniuto of curvature.

/*
	Compute principal direction and magniuto of curvature as describe in the paper:
	@InProceedings{bb33922,
  author =	"G. Taubin",
  title =	"Estimating the Tensor of Curvature of a Surface from a
		 Polyhedral Approximation",
  booktitle =	"International Conference on Computer Vision",
  year = 	"1995",
  pages =	"902--907",
  URL =  	"http://dx.doi.org/10.1109/ICCV.1995.466840",
  bibsource =	"http://www.visionbib.com/bibliography/describe440.html#TT32253",
	*/
		static void PrincipalDirections(MeshType &m) {

                    assert(tri::HasPerFaceVFAdjacency(m) && tri::HasPerVertexVFAdjacency(m));

			vcg::tri::UpdateNormals<MeshType>::PerVertexNormalized(m);

			VertexIterator vi;
			for (vi =m.vert.begin(); vi !=m.vert.end(); ++vi) {
				if ( ! (*vi).IsD() && (*vi).VFp() != NULL) {

					VertexType * central_vertex = &(*vi);

					std::vector<float> weights;
					std::vector<AdjVertex> vertices;

					vcg::face::JumpingPos<FaceType> pos((*vi).VFp(), central_vertex);

					// firstV is the first vertex of the 1ring neighboorhood
					VertexType* firstV = pos.VFlip();
					VertexType* tempV;
					float totalDoubleAreaSize = 0.0f;

					// compute the area of each triangle around the central vertex as well as their total area
					do
					{
						// this bring the pos to the next triangle  counterclock-wise
						pos.FlipF();
						pos.FlipE();

						// tempV takes the next vertex in the 1ring neighborhood
						tempV = pos.VFlip();
						assert(tempV!=central_vertex);
						AdjVertex v;

						v.isBorder = pos.IsBorder();
						v.vert = tempV;
						v.doubleArea = vcg::DoubleArea(*pos.F());
						totalDoubleAreaSize += v.doubleArea;

						vertices.push_back(v);
					}
					while(tempV != firstV);

					// compute the weights for the formula computing matrix M
                    for (size_t i = 0; i < vertices.size(); ++i) {
						if (vertices[i].isBorder) {
							weights.push_back(vertices[i].doubleArea / totalDoubleAreaSize);
						} else {
							weights.push_back(0.5f * (vertices[i].doubleArea + vertices[(i-1)%vertices.size()].doubleArea) / totalDoubleAreaSize);
						}
						assert(weights.back() < 1.0f);
					}

					// compute I-NN^t to be used for computing the T_i's
					Matrix33<ScalarType> Tp;
					for (int i = 0; i < 3; ++i)
						Tp[i][i] = 1.0f - powf(central_vertex->cN()[i],2);
					Tp[0][1] = Tp[1][0] = -1.0f * (central_vertex->N()[0] * central_vertex->cN()[1]);
					Tp[1][2] = Tp[2][1] = -1.0f * (central_vertex->cN()[1] * central_vertex->cN()[2]);
					Tp[0][2] = Tp[2][0] = -1.0f * (central_vertex->cN()[0] * central_vertex->cN()[2]);

					// for all neighbors vi compute the directional curvatures k_i and the T_i
					// compute M by summing all w_i k_i T_i T_i^t
					Matrix33<ScalarType> tempMatrix;
					Matrix33<ScalarType> M;
					M.SetZero();
                    for (size_t i = 0; i < vertices.size(); ++i) {
						CoordType edge = (central_vertex->cP() - vertices[i].vert->cP());
						float curvature = (2.0f * (central_vertex->cN().dot(edge)) ) / edge.SquaredNorm();
						CoordType T = (Tp*edge).normalized();
						tempMatrix.ExternalProduct(T,T);
						M += tempMatrix * weights[i] * curvature ;
					}

					// compute vector W for the Householder matrix
					CoordType W;
					CoordType e1(1.0f,0.0f,0.0f);
					if ((e1 - central_vertex->cN()).SquaredNorm() > (e1 + central_vertex->cN()).SquaredNorm())
						W = e1 - central_vertex->cN();
					else
						W = e1 + central_vertex->cN();
					W.Normalize();

					// compute the Householder matrix I - 2WW^t
					Matrix33<ScalarType> Q;
					Q.SetIdentity();
					tempMatrix.ExternalProduct(W,W);
					Q -= tempMatrix * 2.0f;

					// compute matrix Q^t M Q
					Matrix33<ScalarType> QtMQ = (Q.transpose() * M * Q);

					CoordType bl = Q.GetColumn(0);
					CoordType T1 = Q.GetColumn(1);
					CoordType T2 = Q.GetColumn(2);

					// find sin and cos for the Givens rotation
					float s,c;
					// Gabriel Taubin hint and Valentino Fiorin impementation
                    float alpha = QtMQ[1][1]-QtMQ[2][2];
					float beta  = QtMQ[2][1];

					float h[2];
					float delta = sqrtf(4.0f*powf(alpha, 2) +16.0f*powf(beta, 2));
					h[0] = (2.0f*alpha + delta) / (2.0f*beta);
					h[1] = (2.0f*alpha - delta) / (2.0f*beta);

					float t[2];
					float best_c, best_s;
					float min_error = std::numeric_limits<ScalarType>::infinity();
					for (int i=0; i<2; i++)
					{
						delta = sqrtf(powf(h[i], 2) + 4.0f);
						t[0] = (h[i]+delta) / 2.0f;
						t[1] = (h[i]-delta) / 2.0f;

						for (int j=0; j<2; j++)
						{
							float squared_t = powf(t[j], 2);
							float denominator = 1.0f + squared_t;
							s = (2.0f*t[j])		/ denominator;
							c = (1-squared_t) / denominator;

							float approximation = c*s*alpha + (powf(c, 2) - powf(s, 2))*beta;
							float angle_similarity = fabs(acosf(c)/asinf(s));
							float error = fabs(1.0f-angle_similarity)+fabs(approximation);
							if (error<min_error)
							{
								min_error = error;
								best_c = c;
								best_s = s;
							}
						}
					}
					c = best_c;
					s = best_s;

					vcg::ndim::MatrixMNf minor2x2 (2,2);
					vcg::ndim::MatrixMNf S (2,2);


					// diagonalize M
					minor2x2[0][0] = QtMQ[1][1];
					minor2x2[0][1] = QtMQ[1][2];
					minor2x2[1][0] = QtMQ[2][1];
					minor2x2[1][1] = QtMQ[2][2];

					S[0][0] = S[1][1] = c;
					S[0][1] = s;
					S[1][0] = -1.0f * s;

					vcg::ndim::MatrixMNf StMS(S.transpose() * minor2x2 * S);

					// compute curvatures and curvature directions
					float Principal_Curvature1 = (3.0f * StMS[0][0]) - StMS[1][1];
					float Principal_Curvature2 = (3.0f * StMS[1][1]) - StMS[0][0];

					CoordType Principal_Direction1 = T1 * c - T2 * s;
					CoordType Principal_Direction2 = T1 * s + T2 * c;

					(*vi).PD1() = Principal_Direction1;
					(*vi).PD2() = Principal_Direction2;
					(*vi).K1() =  Principal_Curvature1;
	 				(*vi).K2() =  Principal_Curvature2;
				}
			}
		}




  class AreaData
  {
  public:
    float A;
  };

	/** Curvature meseaure as described in the paper:
	Robust principal curvatures on Multiple Scales, Yong-Liang Yang, Yu-Kun Lai, Shi-Min Hu Helmut Pottmann
	SGP 2004
	If pointVSfaceInt==true the covariance is computed by montecarlo sampling on the mesh (faster)
	If pointVSfaceInt==false the covariance is computed by (analytic)integration over the surface (slower)
	*/

	typedef vcg::GridStaticPtr	<FaceType, ScalarType >		MeshGridType;
	typedef vcg::GridStaticPtr	<VertexType, ScalarType >		PointsGridType;

		static void PrincipalDirectionsPCA(MeshType &m, ScalarType r, bool pointVSfaceInt = true,vcg::CallBackPos * cb = NULL) {
			std::vector<VertexType*> closests;
			std::vector<ScalarType> distances;
			std::vector<CoordType> points;
			VertexIterator vi;
			ScalarType area;
			MeshType tmpM;
			typename std::vector<CoordType>::iterator ii;
			vcg::tri::TrivialSampler<MeshType> vs;

			MeshGridType mGrid;
			PointsGridType pGrid;

			// Fill the grid used
			if(pointVSfaceInt){
					area = Stat<MeshType>::ComputeMeshArea(m);
					vcg::tri::SurfaceSampling<MeshType,vcg::tri::TrivialSampler<MeshType> >::Montecarlo(m,vs,1000 * area / (2*M_PI*r*r ));
					vi = vcg::tri::Allocator<MeshType>::AddVertices(tmpM,m.vert.size());
                    for(size_t y  = 0; y <   m.vert.size(); ++y,++vi)  (*vi).P() =  m.vert[y].P();
					pGrid.Set(tmpM.vert.begin(),tmpM.vert.end());
				}	else{	mGrid.Set(m.face.begin(),m.face.end()); }
				int jj = 0;
				for(vi  = m.vert.begin(); vi != m.vert.end(); ++vi){
						vcg::Matrix33<ScalarType> A,eigenvectors;
						vcg::Point3<ScalarType> bp,eigenvalues;
						int nrot;

						// sample the neighborhood
						if(pointVSfaceInt)
						{
							vcg::tri::GetInSphereVertex<
								MeshType,
								PointsGridType,std::vector<VertexType*>,
								std::vector<ScalarType>,
								std::vector<CoordType> >(tmpM,pGrid,  (*vi).cP(),r ,closests,distances,points);

							A.Covariance(points,bp);
							A*=area*area/1000;
						}
					else{
						IntersectionBallMesh<MeshType,ScalarType>( m ,vcg::Sphere3<ScalarType>((*vi).cP(),r),tmpM );
						vcg::Point3<ScalarType> _bary;
						vcg::tri::Inertia<MeshType>::Covariance(tmpM,_bary,A);
					}

					Jacobi(A,  eigenvalues , eigenvectors, nrot);

					// get the estimate of curvatures from eigenvalues and eigenvectors
					// find the 2 most tangent eigenvectors (by finding the one closest to the normal)
					int best = 0; ScalarType bestv = fabs( (*vi).cN().dot(eigenvectors.GetColumn(0).normalized()) );
					for(int i  = 1 ; i < 3; ++i){
						ScalarType prod = fabs((*vi).cN().dot(eigenvectors.GetColumn(i).normalized()));
						if( prod > bestv){bestv = prod; best = i;}
					}

					(*vi).PD1()  = eigenvectors.GetColumn( (best+1)%3).normalized();
					(*vi).PD2()  = eigenvectors.GetColumn( (best+2)%3).normalized();

					// project them to the plane identified by the normal
					vcg::Matrix33<ScalarType> rot;
					ScalarType angle = acos((*vi).PD1().dot((*vi).N()));
					rot.SetRotateRad(  - (M_PI*0.5 - angle),(*vi).PD1()^(*vi).N());
					(*vi).PD1() = rot*(*vi).PD1();
					angle = acos((*vi).PD2().dot((*vi).N()));
					rot.SetRotateRad(  - (M_PI*0.5 - angle),(*vi).PD2()^(*vi).N());
					(*vi).PD2() = rot*(*vi).PD2();


					// copmutes the curvature values
					const ScalarType r5 = r*r*r*r*r;
					const ScalarType r6 = r*r5;
					(*vi).K1() = (2.0/5.0) * (4.0*M_PI*r5 + 15*eigenvalues[(best+2)%3]-45.0*eigenvalues[(best+1)%3])/(M_PI*r6);
					(*vi).K2() = (2.0/5.0) * (4.0*M_PI*r5 + 15*eigenvalues[(best+1)%3]-45.0*eigenvalues[(best+2)%3])/(M_PI*r6);
					if((*vi).K1() < (*vi).K2())	{	std::swap((*vi).K1(),(*vi).K2());
																				std::swap((*vi).PD1(),(*vi).PD2());
					if (cb) 
					{
						(*cb)(int(100.0f * (float)jj / (float)m.vn),"Vertices Analysis");	
						++jj;
					}													}
			}


		}
 /// \brief Computes the discrete gaussian curvature.

/** For further details, please, refer to: \n

- <em> Discrete Differential-Geometry Operators for Triangulated 2-Manifolds Mark Meyer,
 Mathieu Desbrun, Peter Schroder, Alan H. Barr VisMath '02, Berlin </em>
*/
	static void MeanAndGaussian(MeshType & m)
    {
			assert(HasFFAdjacency(m));
      float area0, area1, area2, angle0, angle1, angle2;
			FaceIterator fi;
      VertexIterator vi;
			typename MeshType::CoordType  e01v ,e12v ,e20v;

			SimpleTempData<VertContainer, AreaData> TDAreaPtr(m.vert);
			SimpleTempData<VertContainer, typename MeshType::CoordType> TDContr(m.vert);

 			vcg::tri::UpdateNormals<MeshType>::PerVertexNormalized(m);
     //Compute AreaMix in H (vale anche per K)
      for(vi=m.vert.begin(); vi!=m.vert.end(); ++vi) if(!(*vi).IsD())
      {
        (TDAreaPtr)[*vi].A = 0.0;
				(TDContr)[*vi]  =typename MeshType::CoordType(0.0,0.0,0.0);
				(*vi).Kh() = 0.0;
        (*vi).Kg() = (float)(2.0 * M_PI);
      }

      for(fi=m.face.begin();fi!=m.face.end();++fi) if( !(*fi).IsD())
      {
        // angles
        angle0 = math::Abs(Angle(	(*fi).P(1)-(*fi).P(0),(*fi).P(2)-(*fi).P(0) ));
        angle1 = math::Abs(Angle(	(*fi).P(0)-(*fi).P(1),(*fi).P(2)-(*fi).P(1) ));
        angle2 = M_PI-(angle0+angle1);

        if((angle0 < M_PI/2) && (angle1 < M_PI/2) && (angle2 < M_PI/2))  // triangolo non ottuso
        {
	        float e01 = SquaredDistance( (*fi).V(1)->cP() , (*fi).V(0)->cP() );
	        float e12 = SquaredDistance( (*fi).V(2)->cP() , (*fi).V(1)->cP() );
	        float e20 = SquaredDistance( (*fi).V(0)->cP() , (*fi).V(2)->cP() );

          area0 = ( e20*(1.0/tan(angle1)) + e01*(1.0/tan(angle2)) ) / 8.0;
	        area1 = ( e01*(1.0/tan(angle2)) + e12*(1.0/tan(angle0)) ) / 8.0;
	        area2 = ( e12*(1.0/tan(angle0)) + e20*(1.0/tan(angle1)) ) / 8.0;

	        (TDAreaPtr)[(*fi).V(0)].A  += area0;
	        (TDAreaPtr)[(*fi).V(1)].A  += area1;
	        (TDAreaPtr)[(*fi).V(2)].A  += area2;

	      }
        else // obtuse
		{
		if(angle0 >= M_PI/2) 
			{ 
			(TDAreaPtr)[(*fi).V(0)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 4.0; 
			(TDAreaPtr)[(*fi).V(1)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 8.0; 
			(TDAreaPtr)[(*fi).V(2)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 8.0; 
			} 
			else if(angle1 >= M_PI/2) 
			{ 
			(TDAreaPtr)[(*fi).V(0)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 8.0; 
			(TDAreaPtr)[(*fi).V(1)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 4.0; 
			(TDAreaPtr)[(*fi).V(2)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 8.0; 
			} 
			else 
			{ 
			(TDAreaPtr)[(*fi).V(0)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 8.0; 
			(TDAreaPtr)[(*fi).V(1)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 8.0; 
			(TDAreaPtr)[(*fi).V(2)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 4.0; 
			}
			}
		}


      for(fi=m.face.begin();fi!=m.face.end();++fi) if( !(*fi).IsD() )
      {
        angle0 = math::Abs(Angle(	(*fi).P(1)-(*fi).P(0),(*fi).P(2)-(*fi).P(0) ));
        angle1 = math::Abs(Angle(	(*fi).P(0)-(*fi).P(1),(*fi).P(2)-(*fi).P(1) ));
        angle2 = M_PI-(angle0+angle1);
				
				// Skip degenerate triangles.
				if(angle0==0 || angle1==0 || angle1==0) continue; 

        e01v = ( (*fi).V(1)->cP() - (*fi).V(0)->cP() ) ;
        e12v = ( (*fi).V(2)->cP() - (*fi).V(1)->cP() ) ;
        e20v = ( (*fi).V(0)->cP() - (*fi).V(2)->cP() ) ;

        TDContr[(*fi).V(0)] += ( e20v * (1.0/tan(angle1)) - e01v * (1.0/tan(angle2)) ) / 4.0;
	      TDContr[(*fi).V(1)] += ( e01v * (1.0/tan(angle2)) - e12v * (1.0/tan(angle0)) ) / 4.0;
	      TDContr[(*fi).V(2)] += ( e12v * (1.0/tan(angle0)) - e20v * (1.0/tan(angle1)) ) / 4.0;

        (*fi).V(0)->Kg() -= angle0;
        (*fi).V(1)->Kg() -= angle1;
        (*fi).V(2)->Kg() -= angle2;


        for(int i=0;i<3;i++)
		    {
			    if(vcg::face::IsBorder((*fi), i))
			    {
				    CoordType e1,e2;
				    vcg::face::Pos<FaceType> hp(&*fi, i, (*fi).V(i));
				    vcg::face::Pos<FaceType> hp1=hp;

            hp1.FlipV();
    	      e1=hp1.v->cP() - hp.v->cP();
				    hp1.FlipV();
				    hp1.NextB();
				    e2=hp1.v->cP() - hp.v->cP();
            (*fi).V(i)->Kg() -= math::Abs(Angle(e1,e2));
			    }
	      }
      }

      for(vi=m.vert.begin(); vi!=m.vert.end(); ++vi) if(!(*vi).IsD() /*&& !(*vi).IsB()*/)
      {
        if((TDAreaPtr)[*vi].A<=std::numeric_limits<ScalarType>::epsilon())
        {
          (*vi).Kh() = 0;
          (*vi).Kg() = 0;
        }
        else
        {
					(*vi).Kh()  = (((TDContr)[*vi].dot((*vi).cN())>0)?1.0:-1.0)*((TDContr)[*vi] / (TDAreaPtr) [*vi].A).Norm();
          (*vi).Kg() /= (TDAreaPtr)[*vi].A;
        }
			}
    }


	/// \brief Update the mean and the gaussian curvature of a vertex.

	/**
	The function uses the VF adiacency to walk around the vertex.
	\return It will return the voronoi area around the vertex.  If (norm == true) the mean and the gaussian curvature are normalized.
	 Based on the paper  <a href="http://www2.in.tu-clausthal.de/~hormann/papers/Dyn.2001.OTU.pdf">  <em> "Optimizing 3d triangulations using discrete curvature analysis" </em> </a>
	  */

	static float VertexCurvature(VertexPointer v, bool norm = true)
	{
		// VFAdjacency required!
		assert(FaceType::HasVFAdjacency());
		assert(VertexType::HasVFAdjacency());

		VFIteratorType vfi(v);
		float A = 0;

		v->Kh() = 0;
		v->Kg() = 2 * M_PI;

		while (!vfi.End()) {
			if (!vfi.F()->IsD()) {
				FacePointer f = vfi.F();
				int i = vfi.I();
				VertexPointer v0 = f->V0(i), v1 = f->V1(i), v2 = f->V2(i);

				float ang0 = math::Abs(Angle(v1->P() - v0->P(), v2->P() - v0->P() ));
				float ang1 = math::Abs(Angle(v0->P() - v1->P(), v2->P() - v1->P() ));
				float ang2 = M_PI - ang0 - ang1;

				float s01 = SquaredDistance(v1->P(), v0->P());
				float s02 = SquaredDistance(v2->P(), v0->P());

				// voronoi cell of current vertex
				if (ang0 >= M_PI/2)
					A += (0.5f * DoubleArea(*f) - (s01 * tan(ang1) + s02 * tan(ang2)) / 8.0 );
				else if (ang1 >= M_PI/2)
					A += (s01 * tan(ang0)) / 8.0;
				else if (ang2 >= M_PI/2)
					A += (s02 * tan(ang0)) / 8.0;
				else  // non obctuse triangle
					A += ((s02 / tan(ang1)) + (s01 / tan(ang2))) / 8.0;

				// gaussian curvature update
				v->Kg() -= ang0;

				// mean curvature update
				ang1 = math::Abs(Angle(f->N(), v1->N()));
				ang2 = math::Abs(Angle(f->N(), v2->N()));
				v->Kh() += ( (math::Sqrt(s01) / 2.0) * ang1 +
				             (math::Sqrt(s02) / 2.0) * ang2 );
			}

			++vfi;
		}

		v->Kh() /= 4.0f;

		if(norm) {
			if(A <= std::numeric_limits<float>::epsilon()) {
				v->Kh() = 0;
				v->Kg() = 0;
			}
			else {
				v->Kh() /= A;
				v->Kg() /= A;
			}
		}

		return A;
	}

	static void VertexCurvature(MeshType & m){

		for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
			VertexCurvature(&*vi,false);
	}



/*
	Compute principal curvature directions and value with normal cycle:
	@inproceedings{CohMor03,
	author = {Cohen-Steiner, David   and Morvan, Jean-Marie  },
	booktitle = {SCG '03: Proceedings of the nineteenth annual symposium on Computational geometry},
	title - {Restricted delaunay triangulations and normal cycle}
	year = {2003}
}
	*/

	static void PrincipalDirectionsNormalCycles(MeshType & m){
		assert(VertexType::HasVFAdjacency());
		assert(FaceType::HasFFAdjacency());
		assert(FaceType::HasFaceNormal());


		typename MeshType::VertexIterator vi;

		for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
		if(!((*vi).IsD())){
			vcg::Matrix33<ScalarType> m33;m33.SetZero();
			face::JumpingPos<typename MeshType::FaceType> p((*vi).VFp(),&(*vi));
			p.FlipE();
			typename MeshType::VertexType * firstv = p.VFlip();
			assert(p.F()->V(p.VInd())==&(*vi));


			do{
				if( p.F() != p.FFlip()){
					Point3<ScalarType> normalized_edge = p.F()->V(p.F()->Next(p.VInd()))->cP() - (*vi).P();
					ScalarType edge_length = normalized_edge.Norm();
					normalized_edge/=edge_length;
					Point3<ScalarType> n1 = p.F()->cN();n1.Normalize();
					Point3<ScalarType> n2 = p.FFlip()->cN();n2.Normalize();
					ScalarType n1n2 = (n1 ^ n2).dot(normalized_edge);
          n1n2 = std::max(std::min( ScalarType(1.0),n1n2),ScalarType(-1.0));
					ScalarType beta = math::Asin(n1n2);
					m33[0][0] += beta*edge_length*normalized_edge[0]*normalized_edge[0];
					m33[0][1] += beta*edge_length*normalized_edge[1]*normalized_edge[0];
					m33[1][1] += beta*edge_length*normalized_edge[1]*normalized_edge[1];
					m33[0][2] += beta*edge_length*normalized_edge[2]*normalized_edge[0];
					m33[1][2] += beta*edge_length*normalized_edge[2]*normalized_edge[1];
					m33[2][2] += beta*edge_length*normalized_edge[2]*normalized_edge[2];
				}
				p.NextFE();
			}while(firstv != p.VFlip());

			if(m33.Determinant()==0.0){ // degenerate case
				(*vi).K1() = (*vi).K2() = 0.0; continue;}

			m33[1][0] = m33[0][1];
			m33[2][0] = m33[0][2];
			m33[2][1] = m33[1][2];

			Point3<ScalarType> lambda;
			Matrix33<ScalarType> vect;
			int n_rot;
			Jacobi(m33,lambda, vect,n_rot);

			vect.transposeInPlace();
			ScalarType normal = std::numeric_limits<ScalarType>::min();
			int normI = 0;
			for(int i = 0; i < 3; ++i)
				if( fabs((*vi).N().Normalize().dot(vect.GetRow(i))) > normal )
				{
					normal= fabs((*vi).N().Normalize().dot(vect.GetRow(i)));
					normI = i;
				}
			int maxI = (normI+2)%3;
			int minI = (normI+1)%3;
			if(fabs(lambda[maxI]) < fabs(lambda[minI])) std::swap(maxI,minI);

			(*vi).PD1() = *(Point3<ScalarType>*)(& vect[maxI][0]);
			(*vi).PD2() = *(Point3<ScalarType>*)(& vect[minI][0]);
			(*vi).K1() = lambda[maxI];
			(*vi).K2() = lambda[minI];
		}
	}
};

}
}
#endif