1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
/****************************************************************************
* MeshLab o o *
* A versatile mesh processing toolbox o o *
* _ O _ *
* Copyright(C) 2005 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef VORONOI_PROCESSING_H
#define VORONOI_PROCESSING_H
//#include <vcg/simplex/face/topology.h>
#include <vcg/complex/algorithms/geodesic.h>
#include <vcg/complex/algorithms/update/color.h>
namespace vcg
{
namespace tri
{
template <class MeshType>
class ClusteringSampler
{
public:
typedef typename MeshType::VertexType VertexType;
ClusteringSampler()
{
sampleVec=0;
}
ClusteringSampler(std::vector<VertexType *> *_vec)
{
sampleVec = _vec;
}
std::vector<VertexType *> *sampleVec;
void AddVert(const VertexType &p)
{
sampleVec->push_back((VertexType *)(&p));
}
}; // end class ClusteringSampler
template <class MeshType >
class VoronoiProcessing
{
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FaceContainer FaceContainer;
public:
// Given a vector of point3f it finds the closest vertices on the mesh.
static void SeedToVertexConversion(MeshType &m,std::vector<CoordType> &seedPVec,std::vector<VertexType *> &seedVVec)
{
typedef typename vcg::SpatialHashTable<VertexType, ScalarType> HashVertexGrid;
seedVVec.clear();
HashVertexGrid HG;
HG.Set(m.vert.begin(),m.vert.end());
const float dist_upper_bound=m.bbox.Diag()/10.0;
typename std::vector<CoordType>::iterator pi;
for(pi=seedPVec.begin();pi!=seedPVec.end();++pi)
{
float dist;
VertexPointer vp;
vp=tri::GetClosestVertex<MeshType,HashVertexGrid>(m, HG, *pi, dist_upper_bound, dist);
if(vp)
{
seedVVec.push_back(vp);
}
}
}
typedef typename MeshType::template PerVertexAttributeHandle<VertexPointer> PerVertexPointerHandle;
typedef typename MeshType::template PerFaceAttributeHandle<VertexPointer> PerFacePointerHandle;
static void ComputePerVertexSources(MeshType &m, std::vector<VertexType *> &seedVec)
{
tri::Geo<MeshType> g;
VertexPointer farthest;
tri::Allocator<MeshType>::DeletePerVertexAttribute(m,"sources"); // delete any conflicting handle regardless of the type...
PerVertexPointerHandle vertexSources = tri::Allocator<MeshType>:: template AddPerVertexAttribute<VertexPointer> (m,"sources");
tri::Allocator<MeshType>::DeletePerFaceAttribute(m,"sources"); // delete any conflicting handle regardless of the type...
PerFacePointerHandle faceSources = tri::Allocator<MeshType>:: template AddPerFaceAttribute<VertexPointer> (m,"sources");
assert(tri::Allocator<MeshType>::IsValidHandle(m,vertexSources));
g.FarthestVertex(m,seedVec,farthest,std::numeric_limits<ScalarType>::max(),&vertexSources);
}
static void VoronoiColoring(MeshType &m, std::vector<VertexType *> &seedVec, bool frontierFlag=true)
{
PerVertexPointerHandle sources = tri::Allocator<MeshType>:: template GetPerVertexAttribute<VertexPointer> (m,"sources");
assert(tri::Allocator<MeshType>::IsValidHandle(m,sources));
tri::Geo<MeshType> g;
VertexPointer farthest;
if(frontierFlag)
{
std::pair<float,VertexPointer> zz(0,0);
std::vector< std::pair<float,VertexPointer> > regionArea(m.vert.size(),zz);
std::vector<VertexPointer> borderVec;
GetAreaAndFrontier(m, sources, regionArea, borderVec);
g.FarthestVertex(m,borderVec,farthest);
}
tri::UpdateColor<MeshType>::VertexQualityRamp(m);
}
// It associates the faces with a given vertex according to the vertex associations
//
// It READS the PerVertex attribute 'sources'
// It WRITES the PerFace attribute 'sources'
static void FaceAssociateRegion(MeshType &m)
{
PerFacePointerHandle faceSources = tri::Allocator<MeshType>:: template GetPerFaceAttribute<VertexPointer> (m,"sources");
PerVertexPointerHandle vertexSources = tri::Allocator<MeshType>:: template GetPerVertexAttribute<VertexPointer> (m,"sources");
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{
faceSources[fi]=0;
std::vector<VertexPointer> vp(3);
for(int i=0;i<3;++i) vp[i]=vertexSources[fi->V(i)];
for(int i=0;i<3;++i) // First try to associate to the most reached vertex
{
if(vp[0]==vp[1] && vp[0]==vp[2]) faceSources[fi] = vp[0];
else
{
if(vp[0]==vp[1] && vp[0]->Q()< vp[2]->Q()) faceSources[fi] = vp[0];
if(vp[0]==vp[2] && vp[0]->Q()< vp[1]->Q()) faceSources[fi] = vp[0];
if(vp[1]==vp[2] && vp[1]->Q()< vp[0]->Q()) faceSources[fi] = vp[1];
}
}
}
tri::UpdateTopology<MeshType>::FaceFace(m);
int unassCnt=0;
do
{
unassCnt=0;
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{
if(faceSources[fi]==0)
{
std::vector<VertexPointer> vp(3);
for(int i=0;i<3;++i)
vp[i]=faceSources[fi->FFp(i)];
if(vp[0]!=0 && (vp[0]==vp[1] || vp[0]==vp[2]))
faceSources[fi] = vp[0];
else if(vp[1]!=0 && (vp[1]==vp[2]))
faceSources[fi] = vp[1];
else
faceSources[fi] = std::max(vp[0],std::max(vp[1],vp[2]));
if(faceSources[fi]==0) unassCnt++;
}
}
}
while(unassCnt>0);
}
// Select all the faces with a given source vertex <vp>
// It reads the PerFace attribute 'sources'
static int FaceSelectAssociateRegion(MeshType &m, VertexPointer vp)
{
PerFacePointerHandle sources = tri::Allocator<MeshType>:: template GetPerFaceAttribute<VertexPointer> (m,"sources");
assert(tri::Allocator<MeshType>::IsValidHandle(m,sources));
tri::UpdateSelection<MeshType>::Clear(m);
int selCnt=0;
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{
if(sources[fi]==vp)
{
fi->SetS();
++selCnt;
}
}
return selCnt;
}
// Given a seed <vp>, it selects all the faces that have the minimal distance vertex sourced by the given <vp>.
// <vp> can be null (it search for unreached faces...)
// returns the number of selected faces;
//
// It reads the PerVertex attribute 'sources'
static int FaceSelectRegion(MeshType &m, VertexPointer vp)
{
PerVertexPointerHandle sources = tri::Allocator<MeshType>:: template GetPerVertexAttribute<VertexPointer> (m,"sources");
assert(tri::Allocator<MeshType>::IsValidHandle(m,sources));
tri::UpdateSelection<MeshType>::Clear(m);
int selCnt=0;
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{
int minInd = 0; float minVal=std::numeric_limits<float>::max();
for(int i=0;i<3;++i)
{
if((*fi).V(i)->Q()<minVal)
{
minInd=i;
minVal=(*fi).V(i)->Q();
}
}
if( sources[(*fi).V(minInd)] == vp)
{
fi->SetS();
selCnt++;
}
}
return selCnt;
}
// find the vertexes of frontier faces
// and compute Area of all the regions
static void GetAreaAndFrontier(MeshType &m, PerVertexPointerHandle &sources,
std::vector< std::pair<float,VertexPointer> > ®ionArea,
std::vector<VertexPointer> &borderVec)
{
tri::UpdateFlags<MeshType>::VertexClearV(m);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{
if( sources[(*fi).V(0)] != sources[(*fi).V(1)] ||
sources[(*fi).V(0)] != sources[(*fi).V(2)] )
{
for(int i=0;i<3;++i)
{
(*fi).V(i)->SetV();
(*fi).V(i)->C() = Color4b::Black;
}
}
else // the face belongs to a single region; accumulate area;
{
if(sources[(*fi).V(0)] != 0)
{
int seedIndex = sources[(*fi).V(0)] - &*m.vert.begin();
regionArea[seedIndex].first+=DoubleArea(*fi);
regionArea[seedIndex].second=sources[(*fi).V(0)];
}
}
}
// Collect the frontier vertexes
borderVec.clear();
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
if((*vi).IsV()) borderVec.push_back(&*vi);
}
static void VoronoiRelaxing(MeshType &m, std::vector<VertexType *> &seedVec, int relaxIter, int /*percentileClamping*/, vcg::CallBackPos *cb=0)
{
for(int iter=0;iter<relaxIter;++iter)
{
if(cb) cb(iter*100/relaxIter,"Voronoi Lloyd Relaxation: First Partitioning");
tri::Geo<MeshType> g;
VertexPointer farthest;
// first run: find for each point what is the closest to one of the seeds.
typename MeshType::template PerVertexAttributeHandle<VertexPointer> sources;
sources = tri::Allocator<MeshType>:: template AddPerVertexAttribute<VertexPointer> (m,"sources");
g.FarthestVertex(m,seedVec,farthest,std::numeric_limits<ScalarType>::max(),&sources);
std::pair<float,VertexPointer> zz(0,0);
std::vector< std::pair<float,VertexPointer> > regionArea(m.vert.size(),zz);
std::vector<VertexPointer> borderVec;
GetAreaAndFrontier(m, sources, regionArea, borderVec);
// Smaller area region are discarded
Distribution<float> H;
for(size_t i=0;i<regionArea.size();++i)
if(regionArea[i].second) H.Add(regionArea[i].first);
float areaThreshold;
if(iter==0) areaThreshold = H.Percentile(.1f);
else areaThreshold = H.Percentile(.001f);
//qDebug("We have found %i regions range (%f %f), avg area is %f, Variance is %f 10perc is %f",(int)seedVec.size(),H.Min(),H.Max(),H.Avg(),H.StandardDeviation(),areaThreshold);
if(cb) cb(iter*100/relaxIter,"Voronoi Lloyd Relaxation: Searching New Seeds");
g.FarthestVertex(m,borderVec,farthest);
tri::UpdateColor<MeshType>::VertexQualityRamp(m);
// Search the local maxima for each region and use them as new seeds
std::vector< std::pair<float,VertexPointer> > seedMaxima(m.vert.size(),zz);
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
{
int seedIndex = sources[vi] - &*m.vert.begin();
if(seedMaxima[seedIndex].first < (*vi).Q())
{
seedMaxima[seedIndex].first=(*vi).Q();
seedMaxima[seedIndex].second=&*vi;
}
}
std::vector<VertexPointer> newSeeds;
for(size_t i=0;i<seedMaxima.size();++i)
if(seedMaxima[i].second)
{
seedMaxima[i].second->C() = Color4b::Gray;
if(regionArea[i].first >= areaThreshold)
newSeeds.push_back(seedMaxima[i].second);
}
tri::UpdateColor<MeshType>::VertexQualityRamp(m);
for(size_t i=0;i<seedVec.size();++i)
seedVec[i]->C() = Color4b::Black;
for(size_t i=0;i<borderVec.size();++i)
borderVec[i]->C() = Color4b::Gray;
swap(newSeeds,seedVec);
for(size_t i=0;i<seedVec.size();++i)
seedVec[i]->C() = Color4b::White;
tri::Allocator<MeshType>::DeletePerVertexAttribute (m,"sources");
}
}
// Base vertex voronoi coloring algorithm.
// it assumes VF adjacency. No attempt of computing real geodesic distnace is done. Just a BFS visit starting from the seeds.
static void TopologicalVertexColoring(MeshType &m, std::vector<VertexType *> &seedVec)
{
std::queue<VertexPointer> VQ;
tri::UpdateQuality<MeshType>::VertexConstant(m,0);
for(size_t i=0;i<seedVec.size();++i)
{
VQ.push(seedVec[i]);
seedVec[i]->Q()=i+1;
}
while(!VQ.empty())
{
VertexPointer vp = VQ.front();
VQ.pop();
std::vector<VertexPointer> vertStar;
vcg::face::VVStarVF<FaceType>(vp,vertStar);
for(typename std::vector<VertexPointer>::iterator vv = vertStar.begin();vv!=vertStar.end();++vv)
{
if((*vv)->Q()==0)
{
(*vv)->Q()=vp->Q();
VQ.push(*vv);
}
}
} // end while(!VQ.empty())
}
// Drastic Simplification algorithm.
// Similar in philosopy to the classic grid clustering but using a voronoi partition instead of the regular grid.
//
// This function assumes that in the mOld mesh, for each vertex you have a quality that denotes the index of the cluster
// mNew is created by collasping onto a single vertex all the vertices that lies in the same cluster.
// Non degenerate triangles are preserved.
static void VoronoiClustering(MeshType &mOld, MeshType &mNew, std::vector<VertexType *> &seedVec)
{
std::set<Point3i> clusteredFace;
FaceIterator fi;
for(fi=mOld.face.begin();fi!=mOld.face.end();++fi)
{
if( (fi->V(0)->Q() != fi->V(1)->Q() ) &&
(fi->V(0)->Q() != fi->V(2)->Q() ) &&
(fi->V(1)->Q() != fi->V(2)->Q() ) )
clusteredFace.insert( Point3i(int(fi->V(0)->Q()), int(fi->V(1)->Q()), int(fi->V(2)->Q())));
}
tri::Allocator<MeshType>::AddVertices(mNew,seedVec.size());
for(size_t i=0;i< seedVec.size();++i)
mNew.vert[i].ImportLocal(*(seedVec[i]));
tri::Allocator<MeshType>::AddFaces(mNew,clusteredFace.size());
std::set<Point3i>::iterator fsi; ;
for(fi=mNew.face.begin(),fsi=clusteredFace.begin(); fsi!=clusteredFace.end();++fsi,++fi)
{
(*fi).V(0) = & mNew.vert[(int)(fsi->V(0)-1)];
(*fi).V(1) = & mNew.vert[(int)(fsi->V(1)-1)];
(*fi).V(2) = & mNew.vert[(int)(fsi->V(2)-1)];
}
}
}; // end class VoronoiProcessing
} // end namespace tri
} // end namespace vcg
#endif
|