1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifdef __GNUC__
#warning You are including deprecated math stuff
#endif
enum {Dimension = SizeAtCompileTime};
typedef typename ei_to_vcgtype<Matrix>::type EquivVcgType;
typedef vcg::VoidType ParamType;
typedef Matrix PointType;
using Base::V;
// automatic conversion to similar vcg types
// the otherway round is implicit because they inherits this Matrix tyoe
operator EquivVcgType& () { return *reinterpret_cast<EquivVcgType*>(this); }
operator const EquivVcgType& () const { return *reinterpret_cast<const EquivVcgType*>(this); }
/** \deprecated use m.cast<NewScalar>() */
/// importer for points with different scalar type and-or dimensionality
// FIXME the Point3/Point4 specialization were only for same sizes ??
// while the Point version was generic like this one
template<typename OtherDerived>
inline void Import(const MatrixBase<OtherDerived>& b)
{
ei_import_selector<Matrix,OtherDerived>::run(*this,b.derived());
}
/// constructor for points with different scalar type and-or dimensionality
template<typename OtherDerived>
static inline Matrix Construct(const MatrixBase<OtherDerived>& b)
{ Matrix p; p.Import(b); return p; }
/// importer for homogeneous points
template<typename OtherDerived>
inline void ImportHomo(const MatrixBase<OtherDerived>& b)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix);
EIGEN_STATIC_ASSERT_FIXED_SIZE(Matrix);
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,SizeAtCompileTime-1);
this->template start<SizeAtCompileTime-1> = b;
data()[SizeAtCompileTime-1] = Scalar(1.0);
}
/// constructor for homogeneus point.
template<typename OtherDerived>
static inline Matrix ConstructHomo(const MatrixBase<OtherDerived>& b)
{ Matrix p; p.ImportHomo(b); return p; }
inline const Scalar &X() const { return data()[0]; }
inline const Scalar &Y() const { return data()[1]; }
inline const Scalar &Z() const { assert(SizeAtCompileTime>2); return data()[2]; }
inline Scalar &X() { return data()[0]; }
inline Scalar &Y() { return data()[1]; }
inline Scalar &Z() { assert(SizeAtCompileTime>2); return data()[2]; }
/** note, W always returns the last entry */
inline Scalar& W() { return data()[SizeAtCompileTime-1]; }
/** note, W always returns the last entry */
inline const Scalar& W() const { return data()[SizeAtCompileTime-1]; }
/** \deprecated use .data() */
EIGEN_DEPRECATED Scalar* V() { return data(); }
/** \deprecated use .data() */
EIGEN_DEPRECATED const Scalar* V() const { return data(); }
/** \deprecated use m.coeff(i) or m[i] or m(i) */
// overloaded to return a const reference
EIGEN_DEPRECATED inline const Scalar& V( const int i ) const
{
assert(i>=0 && i<SizeAtCompileTime);
return data()[i];
}
//--------------------------------------------------------------------------------
// SPACE
//--------------------------------------------------------------------------------
/** Local to Glocal
* (provided for uniformity with other spatial classes. trivial for points) */
inline Matrix LocalToGlobal(ParamType p) const { return *this; }
/** Glocal to Local
* (provided for uniformity with other spatial classes. trivial for points) */
inline ParamType GlobalToLocal(PointType /*p*/) const { return ParamType(); }
/**
* Convert to polar coordinates from cartesian coordinates.
*
* Theta is the azimuth angle and ranges between [0, 360) degrees.
* Phi is the elevation angle (not the polar angle) and ranges between [-90, 90] degrees.
*
* \note Note that instead of the classical polar angle, which ranges between
* 0 and 180 degrees we opt for the elevation angle to obtain a more
* intuitive spherical coordinate system.
*/
void ToPolar(Scalar &ro, Scalar &theta, Scalar &phi) const
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix,3);
ro = this->norm();
theta = (Scalar)atan2(data()[2], data()[0]);
phi = (Scalar)asin(data()[1]/ro);
}
/**
* Convert from polar coordinates to cartesian coordinates.
*
* Theta is the azimuth angle and ranges between [0, 360) degrees.
* Phi is the elevation angle (not the polar angle) and ranges between [-90, 90] degrees.
*
* \note Note that instead of the classical polar angle, which ranges between
* 0 and 180 degrees, we opt for the elevation angle to obtain a more
* intuitive spherical coordinate system.
*/
void FromPolar(const Scalar &ro, const Scalar &theta, const Scalar &phi)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix,3);
data()[0]= ro*ei_cos(theta)*ei_cos(phi);
data()[1]= ro*ei_sin(phi);
data()[2]= ro*ei_sin(theta)*ei_cos(phi);
}
|